
Parikh’s Theorem: A simple and direct automaton
construction

Javier Esparzaa, Pierre Gantyb,1,∗, Stefan Kieferc, Michael Luttenbergera

aInstitut für Informatik, Technische Universität München, 85748 Garching, Germany
bIMDEA Software Institute, Madrid, Spain

cOxford University Computing Laboratory, Oxford, UK

Abstract

Parikh’s theorem states that the Parikh image of a context-free language is
semilinear or, equivalently, that every context-free language has the same Parikh
image as some regular language. We present a very simple construction that,
given a context-free grammar, produces a finite automaton recognizing such a
regular language.

The Parikh image of a word w over an alphabet {a1, . . . , an} is the vector
(v1, . . . , vn) ∈ Nn such that vi is the number of occurrences of ai in w. For
example, the Parikh image of a1a1a2a2 over the alphabet {a1, a2, a3} is (2, 2, 0).
The Parikh image of a language is the set of Parikh images of its words. Parikh
images are named after Rohit Parikh, who in 1966 proved a classical theorem
of formal language theory which also carries his name. Parikh’s theorem [1]
states that the Parikh image of any context-free language is semilinear. Since
semilinear sets coincide with the Parikh images of regular languages, the theorem
is equivalent to the statement that every context-free language has the same
Parikh image as some regular language. For instance, the language {anbn | n ≥
0} has the same Parikh image as (ab)∗. This statement is also often referred
to as Parikh’s theorem, see e.g. [10], and in fact it has been considered a more
natural formulation [14].

Parikh’s proof of the theorem, as many other subsequent proofs [8, 14, 13,
9, 10, 2], is constructive: given a context-free grammar G, the proof produces
(at least implicitly) an automaton or regular expression whose language has the
same Parikh image as L(G). However, the constructions are relatively compli-
cated, not given in detail, or they yield crude upper bounds, namely automata

∗Corresponding author
Email addresses: esparza@model.in.tum.de (Javier Esparza), pierre.ganty@imdea.org

(Pierre Ganty), stefan.kiefer@comlab.ox.ac.uk (Stefan Kiefer), luttenbe@in.tum.de
(Michael Luttenberger)

1This author was sponsored by the Comunidad de Madrid’s Program prometidos-cm
(S2009TIC-1465), by the people-cofund’s program amarout (PCOFUND-2008-229599),
and by the Spanish Ministry of Science and Innovation (TIN2010-20639).

Preprint submitted to Elsevier April 8, 2011

of size O(nn) for grammars in Chomsky normal form with n variables (see Sec-
tion 4 for a detailed discussion). In this note we present an explicit and very
simple construction that yields an automaton with O(4n) states for grammars
in Chomsky normal form, for a lower bound of Ω(2n). An application of the
automaton is briefly discussed in Section 3: the automaton can be used to algo-
rithmically derive the semilinear set, and, using recent results on Parikh images
of NFAs [16, 11], it leads to the best known upper bounds on the size of the
semilinear set for a given context-free grammar.

1. The Construction

We follow the notation of [3, Chapter 5]. Let G = (V, T, P, S) be a context-
free grammar with a set V = {A1, . . . , An} of variables or nonterminals, a set T
of terminals, a set P ⊆ V × (V ∪ T)∗ of productions, and an axiom S ∈ V . We
construct a nondeterministic finite automaton (NFA) whose language has the
same Parikh image as L(G). The transitions of this automaton will be labeled
with words of T ∗, but note that by adding intermediate states (when the words
have length greater than one) and removing ε-transitions (i.e., when the words
have length zero), such an NFA can be easily brought in the more common form
where transition labels are elements of T .

We need to introduce a few notions. Given α ∈ (V ∪ T)∗, we denote by
ΠV (α) (resp. ΠT (α)) the Parikh image of α where the components not in V
(resp. T) have been projected away. Moreover, we denote by α/V (resp. α/T) the
projection of α onto V (resp. T). For instance, if V = {A1, A2}, T = {a, b, c},
and α = aA2bA1A1, then ΠV (α) = (2, 1), ΠT (α) = (1, 1, 0) and α/T = ab.
Given α, β ∈ (V ∪ T)∗, let P(α, β) be the set of productions of G that can
transform α into β, i.e., P(α, β) = {(A → γ) ∈ P | ∃α1, α2 ∈ (V ∪ T)∗ : α =
α1Aα2 ∧ β = α1γα2}. If P(α, β) 6= ∅ then we call (α, β) a step, denoted by
α⇒ β.

The NFA whose language has the same Parikh image as L(G) will be a
member of the following family:

Definition 1.1. Let G = (V, T, P, S) be a context-free grammar, let n = |V |,
and let k ≥ 1. The k-Parikh automaton ofG is the NFAMk

G = (Q,T ∗, δ, q0, {qf})
defined as follows:

• Q = {(x1, . . . , xn) ∈ Nn |
∑n
i=1 xi ≤ k};

• δ =
{

(ΠV (α), γ/T ,ΠV (β)) | ∃(A→ γ) ∈ P(α, β) : ΠV (α),ΠV (β) ∈ Q
}

;

• q0 = ΠV (S);

• qf = ΠV (ε) = (0, . . . , 0).

It is easily seen that Mk
G has exactly

(
n+k
n

)
states. Figure 1 shows the 3-

Parikh automaton of the context-free grammar with productions A1 → A1A2|a,
A2 → bA2aA2|cA1 and axiom A1. The states are all pairs (x1, x2) such that

2

x1 + x2 ≤ 3. For instance, transition (0, 2) ba−−→ (0, 3) comes (among others)
from the step A2A2 ⇒ bA2aA2A2, and can be interpreted as follows: applying
the production A2 → bA2aA2 to a word with zero occurrences of A1 and two
occurrences of A2 leads to a word with one new occurrence of a and b, zero
occurrences of A1, and three occurrences of A2.

0, 0 2, 01, 0 3, 0

2, 11, 10, 1

0, 2 1, 2

0, 3

a

a a

a

a a

εc ba c

cc

ba

ba c

c ε ε

Figure 1: The 3-Parikh automaton of A1 → A1A2|a, A2 → bA2aA2|cA1 with S = A1.

We define the degree of G by m := −1 + max{|γ/V | : (A → γ) ∈ P};
i.e., m + 1 is the maximal number of variables on the right hand sides of the
productions. For instance, the degree of the grammar in Fig. 1 is 1. Notice that
if G is in Chomsky normal form then m ≤ 1, and m ≤ 0 iff G is regular.

In the rest of the note we prove:

Theorem 1.1. If G is a context-free grammar with n variables and degree m,
then L(G) and L(Mnm+1

G) have the same Parikh image.

For the grammar of Figure 1 we have n = 2 and m = 1, and Theorem 1.1
yields L(G) = L(M3

G). So the language of the automaton of the figure has the
same Parikh image as the language of the grammar.

Using standard properties of binomial coefficients, for Mnm+1
G and m ≥ 1

we get an upper bound of 2 · (m+ 1)n · en states. For m ≤ 1 (e.g. for grammars
in Chomsky normal form), the automaton Mn+1

G has
(

2n+1
n

)
≤ 22n+1 ∈ O(4n)

states. On the other hand, for every n ≥ 1 the grammar Gn in Chomsky
normal with productions {Ak → Ak−1 Ak−1 | 2 ≤ k ≤ n}∪{A1 → a} and axiom
S = An satisfies L(Gn) =

{
a2n−1

}
, and therefore the smallest Parikh-equivalent

NFA has 2n−1 + 1 states. This shows that our construction is close to optimal.

3

2. The Proof

Given L1, L2 ⊆ T ∗, we write L1 =Π L2 (resp. L1 ⊆Π L2) to denote that the
Parikh image of L1 is equal to (resp. included in) the Parikh image of L2. Also,
given w,w′ ∈ T ∗, we abbreviate {w} =Π {w′} to w =Π w′.

We fix a context-free grammar G = (V, T, P, S) with n variables and de-
gree m. In terms of the notation we have just introduced, we have to prove
L(G) =Π L(Mnm+1

G). One inclusion is easy:

Proposition 2.1. For every k ≥ 1 we have L(Mk
G) ⊆Π L(G).

Proof. Let k ≥ 1 arbitrary, and let q0
σ−→ q be a run of Mk

G on the word σ ∈
T ∗. We first claim that there exists a step sequence S ⇒∗ α satisfying ΠV (α) = q

and ΠT (α) = ΠT (σ). The proof is by induction on the length ` of q0
σ−→ q.

If ` = 0, then σ = ε, and we choose α = S, which satisfies ΠV (S) = q0 and

ΠT (S) = (0, . . . , 0) = ΠT (ε). If ` > 0, then let σ = σ′γ and q0
σ′−−→ q′

γ−→ q.
By induction hypothesis there is a step sequence S ⇒∗ α′ satisfying ΠV (α′) = q′

and ΠT (α′) = ΠT (σ′). Moreover, since q′
γ−→ q is a transition of Mk

G, there is
a production A → γ′ and a step α1Aα2 ⇒ α1γα2 such that ΠV (α1Aα2) = q′,
ΠV (α1γ

′α2) = q and γ′/T = γ. Since ΠV (α′) = q′ = ΠV (α1Aα2), α′ contains
at least one occurrence of A, i.e, α′ = α′1Aα

′
2 for some α′1, α

′
2. We choose

α = α′1γ
′α′2, and get ΠV (α) = ΠV (α′1γ

′α′2) = ΠV (α′1Aα
′
2)−ΠV (A) + ΠV (γ′) =

ΠV (α′) − ΠV (A) + ΠV (γ′) = ΠV (α1Aα2) − ΠV (A) + ΠV (γ′) = ΠV (α1γ
′α2) =

q. Also ΠT (α) = ΠT (α′1γ
′α′2) = ΠT (α′1Aα

′
2) + ΠT (γ′) = ΠT (α′) + ΠT (γ′) =

ΠT (σ′) + ΠT (γ′) = ΠT (σ′) + ΠT (γ) = ΠT (σ). This concludes the proof of the
claim.

Now, let σ be an arbitrary word with σ ∈ L(Mk
G). Then there is a run

q0
σ−→ ΠV (ε). By the claim there exists a step sequence S ⇒∗ α satisfying

ΠV (α) = (0, . . . , 0) and ΠT (α) = ΠT (σ). So α ∈ T ∗, and hence α ∈ L(G).
Since ΠT (α) = ΠT (σ) we have α =Π σ, and we are done. �

The proof of the second inclusion L(G) ⊆Π L(Mnm+1
G) is more involved. To

explain its structure we need a definition.

Definition 2.1. A derivation S = α0 ⇒ · · · ⇒ α` of G has index k if for every
i ∈ {0, . . . , `}, the word (αi)/V has length at most k. The set of words derivable
through derivations of index k is denoted by Lk(G).

For example, the derivation A1 ⇒ A1A2 ⇒ A1cA1 ⇒ A1ca ⇒ aca has index
two. Clearly, we have L1(G) ⊆ L2(G) ⊆ L3(G) . . . and L(G) =

⋃
k≥1 Lk(G).

The proof of L(G) ⊆Π L(Mnm+1
G) is divided into two parts. We first prove

the Collapse Lemma, Lemma 2.3, stating that L(G) ⊆Π Lnm+1(G), and then
we prove, in Lemma 2.4, that Lk(G) ⊆Π L(Mk

G) holds for every k ≥ 1. A similar
result has been proved in [7] with different notation and in a different context.
We reformulate its proof here for the reader interested in a self-contained proof.

4

The Collapse Lemma. We need a few preliminaries. We assume the reader is
familiar with the fact that every derivation can be parsed into a parse tree [3,
Chapter 5], whose yield is the word produced by the derivation. We denote the
yield of a parse tree t by Y (t) ∈ T ∗, and the set of yields of a set T of trees
by Y (T) ⊆ Σ∗. Figure 2 shows the parse tree of the derivation A1 ⇒ A1A2 ⇒
aA2 ⇒ acA1 ⇒ aca. We introduce the notion of dimension of a parse tree.

a c A1

A1 A2

A1

a

Figure 2: A parse tree of A1 → A1A2|a, A2 → bA2aA2|cA1 with S = A1

Definition 2.2. Let t be a parse tree. A child of t is a subtree of t whose root is
a child of the root of t. A child of t is called proper if its root is not a leaf, i.e., if
it is labeled with a variable. The dimension d(t) of a parse tree t is inductively
defined as follows. If t has no proper children, then d(t) = 0. Otherwise, let
t1, t2, . . . , tr be the proper children of t sorted such that d(t1) ≥ d(t2) ≥ . . . ≥
d(tr). Then

d(t) =

{
d(t1) if r = 1 or d(t1) > d(t2)
d(t1) + 1 if d(t1) = d(t2).

The set of parse trees of G of dimension k is denoted by T (k), and the set of all
parse trees of G by T .

The parse tree of Fig. 2 has two children, both of them proper. It has dimension
1 and height 3. Observe also the following fact, which can be easily proved by
induction.

Fact 2.1. Denote by h(t) the height of a tree t. Then h(t) > d(t).

For the proof of the collapse lemma, L(G) ⊆Π Lnm+1(G), observe first that,
since every word in L(G) is the yield of some parse tree, we have L(G) =
Y (T), and so it suffices to show Y (T) ⊆Π Lnm+1(G). The proof is divided into
two parts. We first show Y (T) ⊆Π

⋃n
i=0 Y (T (i)) in Lemma 2.1, and then we

show
⋃n
i=0 Y (T (i)) ⊆ Lnm+1(G) in Lemma 2.2. Actually, the latter proves the

stronger result that parse trees of dimension k ≥ 0 have derivations of index
km+ 1, i.e., Y (T (k)) ⊆ Lkm+1(G) for all k ≤ 0.

Lemma 2.1. Y (T) ⊆Π

⋃n
i=0 Y (T (i)).

5

Proof. In this proof we write t = t1 · t2 to denote that t1 is a parse tree except
that exactly one leaf ` is labelled by a variable, say A, instead of a terminal;
the tree t2 is a parse tree with root A; and the tree t is obtained from t1 and t2
by replacing the leaf ` of t1 by the tree t2. Figure 3 shows an example. In the

A1 A2

A1 A2 c A1

a a

Figure 3: A decomposition t1, t2 such that t = t1 · t2 is the parse tree of Fig. 2

rest of the proof we abbreviate parse tree to tree.
We need to prove that for every tree t there exists a tree t′ such that Y (t) =Π

Y (t′) and d(t′) ≤ n. Say that two trees t, t′ are equivalent if they have the same
number of nodes, the sets of variables appearing in t and t′ as well as their root
variable coincide, and Y (t) =Π Y (t′) holds. Say further that a tree t is compact
if d(t) ≤ K(t), where K(t) denotes the number of distinct variables that appear
in t. Since K(t) ≤ n for every t, it suffices to show that every tree is equivalent
to a compact tree.

The proof is by induction on the number of non-leaf nodes in t. In the base
case, t has no proper child, and we have d(t) = 0 ≤ K(t). So t is compact and
we are done.

Consider now the case in which t has r ≥ 1 proper children t1, . . . , tr. Choose
x with 1 ≤ x ≤ r such that K(tx) = maxiK(ti). We construct a compact
tree that is equivalent to t. To this end we use an iterative procedure whose
description begins in the following line.

By the induction hypothesis, each child ti is equivalent to a compact tree.
Replace in t each child by its equivalent compact counterpart. Clearly, the new t
and the old t are equivalent. Also note that x still satisfies K(tx) = maxiK(ti).
If t is now compact, the procedure terminates successfully. Otherwise, let 1 ≤
y ≤ r such that d(ty) = maxi d(ti). We have

d(t) ≤ d(ty) + 1 (by definition of dimension and of y)
≤ K(ty) + 1 (as ty is compact)
≤ K(tx) + 1 (as K(tx) = max

i
K(ti))

≤ K(t) + 1 (as tx is a child of t)
≤ d(t) (as t is not compact),

(1)

so all inequalities in (1) are in fact equalities. In particular, it follows d(t) =
d(ty) + 1. The definitions of dimension and of y then imply that there exists
y′ 6= y with d(ty′) = d(ty). Hence x 6= y or x 6= y′, and w.l.o.g. we can choose

y such that x 6= y. Further, it follows K(ty)
(1)
= d(ty) < h(ty) by Fact 2.1, thus

6

we find a path in ty from the root to a leaf which passes through at least two
nodes with the same variable, say A. So ty can be factored into tay · (tby · tcy)

such that the roots of tby and tcy are labelled by A. As K(t)
(1)
= K(tx), we also

find an A-labelled node in tx, which allows us to write tx = tax · tbx with the
root of tbx labelled by A. Now we cut out the middle part tby of ty, and insert
it between the two parts tax and tbx of tx, so that we get t′x = tax · (tby · tbx) and
t′y = tay · tcy. Replace in t the child tx by t′x and the child ty by t′y. Clearly, the
new t and the old t are equivalent. Observe that the child tx has gained some
nodes and not lost any. All other children did not gain any nodes, so we still
have K(tx) = maxiK(ti). Now we iterate the procedure.

The whole procedure must terminate eventually, as the child tx grows in each
iteration, but the total number of nodes stays constant. Since the procedure only
terminates after having constructed an equivalent compact tree, it eventually
constructs an equivalent compact tree. �

Lemma 2.2. For every k ≥ 0: Y (T (k)) ⊆ Lkm+1(G).

Proof. In this proof we will use the following notation. If D is a derivation
α0 ⇒ · · · ⇒ α` and w,w′ ∈ (V ∪ T)∗, then we define wDw′ to be the step
sequence wα0w

′ ⇒ · · · ⇒ wα`w
′.

Let t be a parse tree such that d(t) = k. We show that there is a derivation
for Y (t) of index km + 1. We proceed by induction on the number of non-leaf
nodes in t. In the base case, t has no proper child. Then we have k = 0 and
t represents a derivation S ⇒ Y (t) of index 1. For the induction step, assume
that t has r ≥ 1 proper children t1, . . . , tr where the root of ti is assumed to be
labeled by A(i); i.e., we assume that the topmost level of t is induced by a rule
S → γ0A

(1)γ1 · · · γr−1A
(r)γr for γi ∈ T ∗. Note that r− 1 ≤ m. By definition of

dimension, at most one child ti has dimension k, while the other children have
dimension at most k−1. W.l.o.g. assume d(t1) ≤ k and d(t2), . . . , d(tr) ≤ k−1.
By induction hypothesis, for all 1 ≤ i ≤ r there is a derivation Di for Y (ti) such
that D1 has index km+ 1, and D2, . . . , Dr have index (k− 1)m+ 1. Define, for
each 1 ≤ i ≤ r, the step sequence

D′i := γ0A
(1)γ1 · · · γi−2A

(i−1)γi−1DiγiY (ti+1)γi+1 · · · γr−1Y (tr)γr .

If the notion of index is extended to step sequences in the obvious way, then
D′1 has index km + 1, and for 2 ≤ i ≤ r, the step sequence D′i has in-
dex (i − 1) + (k − 1)m + 1 ≤ km + 1. By concatenating the step sequences
S ⇒ γ0A

(1)γ1 · · · γr−1A
(r)γr and Dr, Dr−1, . . . , D1 in that order, we obtain a

derivation for Y (t) of index km+ 1. �

Putting Lemma 2.2 and Lemma 2.1 together we obtain:

Lemma 2.3. [Collapse Lemma] L(G) ⊆Π Lnm+1(G).

Proof.
L(G) = Y (T)

⊆Π

⋃n
i=0 Y (T (i)) (Lemma 2.1)

⊆ Lnm+1(G) (Lemma 2.2)

7

�

Lemma 2.4. For every k ≥ 1: Lk(G) ⊆Π L(Mk
G).

Proof. We show that if S ⇒∗ α is a prefix of a derivation of index k then
Mk
G has a run q0

w−→ ΠV (α) such that w ∈ T ∗ and α/T =Π w. The proof is by
induction on the length i of the prefix.

i = 0. In this case α = S, and since q0 = ΠV (S) and S/T = ε we are done.
i > 0. Since S ⇒i α there exist β1Aβ2 ∈ (V ∪ T)∗ and a production A→ γ

such that S ⇒i−1 β1Aβ2 ⇒ α and β1γβ2 = α. By induction hypothesis, there
exists a run of Mk

G such that q0
w1−−→ ΠV (β1Aβ2) and (β1Aβ2)/T =Π w1. Then

the definition of Mk
G and the fact that S ⇒i α is of index k show that there exists

a transition (ΠV (β1Aβ2), γ/T ,ΠV (α)), hence we find that q0

w1·γ/T−−−−→ ΠV (α).
Next we conclude from (β1Aβ2)/T =Π w1 and α = β1γβ2 that α/T =Π w1 · γ/T
and we are done.

Finally, if α ∈ T ∗ so that S ⇒∗ α is a derivation, then q0
w−→ ΠV (α) =

(0, . . . , 0) where (0, . . . , 0) is an accepting state and α = α/T =Π w. �

We now have all we need to prove the other inclusion.

Proposition 2.2. L(G) ⊆Π L(Mnm+1
G).

Proof.
L(G) ⊆Π Lnm+1(G) (Collapse Lemma)

⊆Π L(Mnm+1
G) (Lemma 2.4)

�

3. An Application: Bounding the Size of Semilinear Sets

Recall that a set S ⊆ Nk, k ≥ 1, is linear if there is an offset b ∈ Nk and
periods p1, . . . ,pj ∈ Nk such that S = {b+

∑j
i=1 λipi | λ1, . . . , λj ∈ N}. A set is

semilinear if it is the union of a finite number of linear sets. It is easily seen that
the Parikh image of a regular language is semilinear. Procedures for computing
the semilinear representation of the language starting from a regular expression
or an automaton are well-known (see e.g. [14]). Combined with Theorem 1.1
they provide an algorithm for computing the Parikh image of a context-free
language.

Recently, To has obtained an upper bound on the size of the semilinear
representation of the Parikh image of a regular language (see Theorem 7.3.1 of
[16]):

Theorem 3.1. Let A be an NFA with s states over an alphabet of ` letters.
Then Π(L(A)) is a union of O(s`

2+3`+3 `4`+6) linear sets with at most ` periods;
the maximum entry of any offset is O(s3`+3 `4`+6), and the maximum entry of
any period is at most s.

8

Plugging Theorem 1.1 into Theorem 3.1, we get the (to our knowledge) best
existing upper bound on the size of the semilinear set representation of the
Parikh image of a context-free language. Let G = (V, T, P, S) be a context-free
grammar of degree m with n = |V | and t = |T |. Let p be the total number
of occurrences of terminals in the productions of G, i.e., p =

∑
X→α∈P |α/T |.

The number of states of Mnm+1
G is

(
n+nm+1

n

)
. Recall that the transitions of

Mnm+1
G are labelled with words of the form γ/T , where γ is the right-hand-side

of some production. Splitting transitions, adding intermediate states, and then
removing ε-transitions yields an NFA with

(
n+nm+1

n

)
· p states. So we finally

obtain for the parameters s and ` in Theorem 3.1 the values s :=
(
n+nm+1

n

)
· p,

and ` := t. This result (in fact a slightly stronger one) has been used in [6] to
provide a polynomial algorithm for a language-theoretic problem relevant for
the automatic verification of concurrent programs.

4. Conclusions and Related Work

For the sake of comparison we will assume throughout this section that all
grammars have degree m ≤ 1. Given G a context-free grammar with n variables,
we have shown how to construct an NFA M with O(4n) states such that L(G)
and L(M) have the same Parikh image. We compare this result with previous
proofs of Parikh’s theorem.

Parikh’s proof [1] (essentially the same proof is given in [15]) shows how to
obtain a Parikh-equivalent regular expression from a finite set of parse trees of
G. The complexity of the resulting construction is not studied. By its definition,
the regular expression basically consists of the sum of words obtained from the
parse trees of height at most n2. This leads to the admittedly rough bound
that the regular expression consists of at most O(22n2−1

) words each of length
at most O(2n

2
).

Greibach [8] shows that a particular substitution operator on language classes
preserves semilinearity of the languages. This result implies Parikh’s theorem,
if the substitution operator is applied to the class of regular languages. It is
hard to extract a construction from this proof, as it relies on previously proved
closure properties of language classes.

Pilling’s proof [14] (also given in [4]) of Parikh’s theorem uses algebraic prop-
erties of commutative regular languages. From a constructive point of view, his
proof leads to a procedure that iteratively replaces a variable of the grammar G
by a regular expression over the terminals and the other variables. This proce-
dure finally generates a regular expression which is Parikh-equivalent to L(G).
Van Leeuwen [13] extends Parikh’s theorem to other language classes, but, while
using very different concepts and terminology, his proof leads to the same con-
struction as Pilling’s. Neither [14] nor [13] study the size of the resulting regular
expression.

Goldstine [9] simplifies Parikh’s original proof. An explicit construction
can be derived from the proof, but it is involved: for instance, it requires to

9

compute for each subset of variables, the computation of all derivations with
these variables up to a certain size depending on a pumping constant.

Hopkins and Kozen [10] generalize Parikh’s theorem to commutative Kleene
algebra. Like in Pilling [14] their procedure to compute a Parikh-equivalent
regular expression is iterative; but rather than eliminating one variable in each
step, they treat all variables in a symmetric way. Their construction can be
adapted to compute a Parikh-equivalent finite automaton. Hopkins and Kozen
show (by algebraic means) that their iterative procedure terminates after O(3n)
iterations for a grammar with n variables. In [7] we reduce this bound (by
combinatorial means) to n iterations. The construction yields an automaton,
but it is much harder to explain than ours. The automaton has size O(nn).

In [2] Parikh’s theorem is derived from a small set of purely equational
axioms involving fixed points. It is hard to derive a construction from this
proof.

In [5] Parikh’s theorem is proved by showing that the Parikh image of a
context-free language is the union of the sets of solutions of a finite number of
systems of linear equations. In [17] the theorem is also implicitly proved, this
time by showing that the Parikh image is the set of models of an existential
formula of Presburger arithmetic. While the constructions yielding the systems
of equations and the Presburger formulas are very useful, they are also more
complicated than our construction of the Parikh automaton. Also, neither [5]
nor [17] give bounds on the size of the semilinear set.

Acknowledgments

We thank two anonymous referees and Anca Muscholl for very useful sug-
gestions.

[1] R. J. Parikh, On context-free languages, Journal of the ACM 13 (4) (1966)
570–581.

[2] L. Aceto, Z. Ésik, A. Ingólfsdóttir, A fully equational proof of Parikh’s
Theorem, ITA 36 (2) (2002) 129–153.

[3] J. E. Hopcroft, R. Motwani, J. D. Ullman, Introduction to Automata Theory,
Languages, and Computation, 3rd Edition, Addison-Wesley (2006).

[4] J. H. Conway, Regular algebra and finite machines, Chapman and Hall,
1971.

[5] J. Esparza, Petri Nets, Commutative Context-Free Grammars, and Basic
Parallel Processes, Fundamentæ Informaticæ (1997).

[6] J. Esparza, P. Ganty, Complexity of Pattern-Based Verification for Multi-
threaded Programs, POPL, Proceedings, ACM (2011), 499–510.

[7] J. Esparza, S. Kiefer, M. Luttenberger, Newtonian program analysis, Journal
of the ACM 57 (6) (2010) 33:1–33:47.

10

[8] S. A. Greibach, A generalization of Parikh’s semilinear theorem, Discrete
Mathematics 2 (4) (1972) 347–355.

[9] J. Goldstine, A simplified proof of Parikh’s Theorem, Discrete Mathematics
19 (3) (1977) 235–239.

[10] M. W. Hopkins, D. C. Kozen, Parikh’s Theorem in commutative Kleene
algebra, LICS (1999), 394–401.

[11] E. Kopczynski, A. W. To, Parikh Images of Grammars: Complexity and
Applications, LICS, Proceedings, IEEE Computer Society (2010), 80–89.

[12] M. Lange, H. Leiß, To CNF or not to CNF? An Efficient Yet Presentable
Version of the CYK Algorithm, Informatica Didactica (8) (2008–2010).

[13] J. van Leeuwen, A generalisation of Parikh’s Theorem in formal language
theory, ICALP, LNCS 14 (1974) 17–26.

[14] D. L. Pilling, Commutative regular equations and Parikh’s Theorem, J.
London Math. Soc. 2 (6) (1973) 663–666.

[15] A. Salomaa, Formal Languages, Academic Press, 1973.

[16] A. W. To, Model-Checking Infinite-State Systems: Generic and Specific
Approaches, PhD Thesis, University of Edinburgh (2010).

[17] K. N. Verma, H. Seidl, T. Schwentick, On the Complexity of Equational
Horn Clauses, CADE, LNCS 1831 (2005) 337–352.

11

	The Construction
	The Proof
	An Application: Bounding the Size of Semilinear Sets
	Conclusions and Related Work

