
Space-efficient scheduling of
stochastically generated tasksI

Tomáš Brázdila,1, Javier Esparzab, Stefan Kieferc,2,∗, Michael Luttenbergerb

aFaculty of Informatics, Masaryk University, Brno, Czech Republic
bInstitut für Informatik, Technische Universität München, Germany

cDepartment of Computer Science, University of Oxford, UK

Abstract

We study the problem of scheduling tasks for execution by a processor when the tasks
can stochastically generate new tasks. Tasks can be of different types, and each type
has a fixed, known probability of generating other tasks. We present results on the
random variable Sσ modeling the maximal space needed by the processor to store the
currently active tasks when acting under the scheduler σ. We obtain tail bounds for the
distribution of Sσ for both offline and online schedulers, and investigate the expected
value E[Sσ].

Keywords: stochastic models, space-efficient scheduling, multithreaded programs,
branching processes

1. Introduction

We study the problem of scheduling tasks where every task can stochastically gen-
erate a set of new subtasks. Tasks can be of different types, and each type has a fixed,
known probability of generating new subtasks.

Systems of tasks can be described using a notation similar to that of stochastic
context-free grammars. For instance

X
0.2
↪−−→ 〈X,X〉 X

0.3
↪−−→ 〈X,Y 〉 X

0.5
↪−−→ ∅ Y

0.7
↪−−→ 〈X〉 Y

0.3
↪−−→ 〈Y 〉

describes a system with two types of tasks. Tasks of type X can generate two tasks
of type X , one task of each type, or zero tasks with probabilities 0.2, 0.3, and 0.5,

IA preliminary version of this work appeared at the 37th International Colloquium on Automata, Lan-
guages and Programming, ICALP 2010.

∗Corresponding author
Email addresses: xbrazdil@fi.muni.cz (Tomáš Brázdil), esparza@in.tum.de (Javier

Esparza), stefan.kiefer@cs.ox.ac.uk (Stefan Kiefer), luttenbe@model.in.tum.de
(Michael Luttenberger)

1Supported by Czech Science Foundation, grant No. P202/10/1469.
2Supported by the EPSRC project Automated Verification of Probabilistic Programs and by a postdoctoral

fellowship of the German Academic Exchange Service (DAAD).

Preprint submitted to Elsevier October 11, 2011

respectively (angular brackets denote multisets). Tasks of type Y can generate one
task, of type X or Y , with probability 0.7 and 0.3. Readers familiar with process
algebra will identify this notation as a probabilistic version of Basic Parallel Processes
[1, 2, 3].

Tasks are executed by one processor. The processor repeatedly selects a task from
a pool of unprocessed tasks, processes it, and puts the generated subtasks (if any) back
into the pool. The pool initially contains one task of type X , and the next task to be
processed is selected by a scheduler. We study random variables modeling the time
and space needed to completely execute a task τ , i.e., to empty the pool of unprocessed
tasks assuming that initially the pool only contains task τ . We assume that processing
a task takes one time unit, and storing it in the pool takes one unit of memory. So the
completion time is given by the total number of tasks processed, and the completion
space by the maximum size reached by the pool during the computation. The comple-
tion time has been studied in [4], and so the bulk of the paper is devoted to studying
the distribution of the completion space for different classes of schedulers.

Our computational model is abstract, but relevant for different scenarios. In the
context of search problems, a task is a problem instance, and the scheduler is part of
a branch-and-bound algorithm (see e.g. [5]). In the more general context of multi-
threaded computations, a task models a thread, which may generate new threads. The
problem of scheduling multithreaded computations space-efficiently on multiprocessor
machines has been extensively studied (see e.g. [6, 7, 8, 9]). These papers assume
that schedulers know nothing about the program, while we consider the case in which
stochastic information on the program behaviour is available (obtained from sampling).
We restrict ourselves to the case in which a task has at most two children, i.e., all rules
X

p
↪−→ 〈X1, . . . , Xn〉 satisfy n ≤ 2. This case already allows to model the forking-

mechanism underlying many multithreaded operating systems, e.g. Unix-like systems.
We study the performance of online schedulers, which know only the past of the

computation, and compare them with the optimal offline scheduler, which has complete
information about the future. Intuitively, this scheduler has access to an oracle that
knows how the stochastic choices will be resolved. The oracle can be replaced by a
machine that inspects the code of a task and determines which subtasks it will generate
(if any).

We consider task systems with completion probability 1 (in the context of search
problems or multithreaded computations, a termination probability different from 1
usually indicates the presence of an error). These can be further divided into those with
finite and infinite expected completion time, often called subcritical and critical. Many
of our results are related to the probability generating functions (pgfs) associated to a
task system. The functions for the example above are fX(x, y) = 0.2x2 + 0.3xy+ 0.5
and fY (x, y) = 0.7x+ 0.3y, and the reader can easily guess the formal definition. The
completion probability is the least fixed point of the system of pgfs [10].

Our first results (Section 3) concern the distribution of the completion space Sop

of the optimal offline scheduler op on a fixed but arbitrary task system with f(x) as
pgfs (in vector form). We exhibit a very surprising connection between the probabil-
ities Pr[Sop = k] and the Newton approximants to the least fixed point of f(x) (the
approximations to the least fixed point obtained by applying Newton’s method for ap-

2

proximating a zero of a differentiable function to f(x) − x = 0 with seed 0). This
connection allows us to apply recent results on the convergence speed of Newton’s
method [11, 12], leading to tail bounds of Sop , i.e., bounds on Pr[Sop ≥ k]. We then
study (Section 4) the distribution of Sσ for an online scheduler σ, and obtain upper
and lower bounds for the performance of any online scheduler in subcritical systems.
The proof of this result suggests two ways of improving the bounds for special classes
of task systems, and special classes of schedulers. We study continuing task systems,
which are particularly natural in the context of multithreaded computation and queue-
ing theory, and light-first schedulers, in which “light” tasks (loosely speaking, tasks
whose progeny becomes extinguished in a short time) are chosen before “heavy” tasks,
and obtain improved tail bounds.

Related work. Space-efficient scheduling for search problems or multithreaded com-
putations has been studied in [5, 6, 7, 8, 9]. These papers assume that nothing is known
about the program generating the computations. We study the case in which statistical
information is available on the probability that computations split or die.

The theory of branching processes studies stochastic processes modeling popula-
tions whose members can reproduce or die [10, 13]. In computer science terminology,
all existing work on branching processes assumes that the number of processors is
unbounded [14, 15, 16, 17, 18, 19]. We study the 1-processor case, and to our knowl-
edge we are the first to do so. The authors of [7] study, in a non-probabilistic setting,
so-called strict computations, in which a task can only terminate after all the tasks it
has (recursively) spawned have terminated. The optimal scheduler in this case is the
depth-first scheduler, i.e., the one that completely executes the child task before its par-
ent, resulting in the familiar stack-based execution. Under this scheduler our tasks are
equivalent to special classes of recursive state machines [20] and probabilistic push-
down automata [21]. Recent results [22] can be used to analyze the completion space
for such systems.

Last but not least, our results are strongly related to the area of probabilistic ver-
ification [23, 24]. They provide techniques and fast algorithms for the verification of
properties of the form: the available memory (for storing tasks) suffices to carry out
the computation with probability at least p (for some given bound p).

Structure of the paper. The rest of the paper is structured as follows. The preliminaries
in Section 2 formalize the notions from the introduction and summarize known results
on which we build. In Section 3 we study the performance of optimal offline sched-
ulers. Section 4 is dedicated to online schedulers. First we prove performance bounds
that hold uniformly for all online schedulers, then we provide improved upper bounds
for certain task systems, and then for certain schedulers. In Section 5 we obtain sev-
eral results on the expected space consumption under different schedulers. Section 6
contains conclusions.

Proofs. The main body of the paper provides proof sketches of a number of theorems.
Detailed proofs of all theorems can be found in the appendix.

3

2. Preliminaries

LetA be a finite set. We regard elements of NA and RA as vectors and use boldface
(likeu,v) to denote vectors. The vector whose components are all 0 (resp. 1) is denoted
by 0 (resp. 1). We use angular brackets to denote multisets and often identify multisets
over A and vectors indexed by A. For instance, if A = {X,Y } and v ∈ NA with
vX = 1 and vY = 2, then v = 〈X,Y, Y 〉. We often shorten 〈a〉 to a. The set of
multisets over A containing at most 2 elements is denoted by M≤2

A .

Definition 1. A task system is a tuple ∆ = (Γ, ↪−→,Prob, X0) where Γ is a finite set
of task types, ↪−→ ⊆ Γ × M≤2

Γ is a set of transition rules, Prob is a function as-
signing positive probabilities to transition rules so that for every X ∈ Γ we have∑
X↪−→α Prob((X,α)) = 1, and X0 ∈ Γ is the initial type.

Figure 1 (a) shows a task system with Γ = {X,Y, Z}. We write X
p
↪−→ α whenever

X ↪−→ α and Prob((X,α)) = p. Executions of a task system are modeled as family
trees. Intuitively, a family tree is a tree whose nodes are tasks; a node is labeled with
the type of its task. The initial task is the root, and the children of a task are the tasks
generated by it, sorted according to some fixed total order on the task types. Formally,
a family tree t is a pair (N,L) where N ⊆ {0, 1}∗ is a finite binary tree (i.e. a prefix-
closed finite set of words over {0, 1}) and L : N ↪−→ Γ is a labelling such that every
node w ∈ N satisfies one of the following conditions: w is a leaf and L(w) ↪−→ ∅, or w
has a unique child w0, and L(w) satisfies L(w) ↪−→ L(w0), or w has two children w0
and w1, and L(w0), L(w1) satisfy L(w) ↪−→ 〈L(w0), L(w1)〉 and L(w0) � L(w1),
where ≺ is an arbitrary total order on Γ. Given a node w ∈ N , the subtree of t rooted
at w, denoted by tw, is the family tree (N ′, L′) such that w′ ∈ N ′ iff ww′ ∈ N and
L′(w′) = L(ww′) for every w′ ∈ N ′. If a tree t has a subtree t0 or t1, we call this
subtree a child of t. (So, the term child can refer to a node or a tree, but there will be
no confusion.) Figure 1 shows on the right a family tree of the task system on the left
of the figure.

We define a function Pr which, loosely speaking, assigns to a family tree t =
(N,L) its probability (see Assumptions below). Assume that the root of t is labeled
by X . If t consists only of the root, and X

p
↪−→ ∅, then Pr[t] = p; if the root has only

one child (the node 0) labeled by Y , and X
p
↪−→ Y , then Pr[t] = p · Pr[t0]; if the

root has two children (the nodes 0 and 1) labeled by Y and Z, and X
p
↪−→ 〈Y,Z〉, then

Pr[t] = p · Pr[t0] · Pr[t1]. We denote by TX the set of all family trees whose root is
labeled by X , and by PrX the restriction of Pr to TX . We drop the subscript of PrX if
X is understood.

For every task system ∆, we define its probability generating function (pgf) as the
function f : RΓ → RΓ where for every X ∈ Γ

fX(v) =
∑

X
p

↪−→〈Y,Z〉
p · vY · vZ +

∑
X

p

↪−→〈Y 〉
p · vY +

∑
X

p

↪−→∅
p .

4

X
0.7
↪−−→ 〈Y,Z〉 Y

0.6
↪−−→ 〈X,Z〉 Z

0.5
↪−−→ Y

X
0.3
↪−−→ ∅ Y

0.4
↪−−→ ∅ Z

0.5
↪−−→ ∅

(a)

ε,X

0, Y 1, Z

00, X 01, Z 10, Y

(b)

Figure 1: (a) A task system. (b) A family tree.

Example 1. Figure 1 shows (a) a task system with Γ = {X,Y, Z}; and (b) a family
tree t of the system with probability Pr[t] = 0.7 · 0.6 · 0.3 · 0.5 · 0.5 · 0.4. The name
and label of a node are written next to it. The pgf is given by

f(X,Y, Z) =

fX(X,Y, Z)
fY (X,Y, Z)
fZ(X,Y, Z)

 =

0.7 · Y · Z + 0.3
0.6 ·X · Z + 0.4

0.5 · Y + 0.5


with task types used as corresponding variables on R.

Assumptions. Throughout the paper we assume that a task system
∆ = (Γ, ↪−→,Prob, X0) satisfies the following two conditions for every type X ∈ Γ:
(1) X is reachable from X0, meaning that some tree in TX0 contains a node labeled
by X , and (2) Pr[TX] =

∑
t∈TX Pr[t] = 1. So we assume that (TX ,PrX) is a

discrete probability space with TX as set of elementary events and PrX as probability
function. This is the formal counterpart to assuming that every task is completed with
probability 1.

Proposition 1. It can be decided in polynomial time whether assumptions (1) and (2)
are satisfied.

PROOF. (1) is trivial. It is well known (see e.g. [10]) that (2) holds if and only if the
least nonnegative fixed point of f equals 1, which is decidable in polynomial time [20,
25]. �

Derivations and schedulers. Let t = (N,L) be a family tree. A state of t is a subset of
N in which no node is a proper prefix of another node (graphically, no node is a proper
descendant of another node). The elements of a state are called tasks. If s is a state and
w ∈ s, then the w-successor of s is the uniquely determined state s′ defined as follows:
ifw is a leaf ofN , then s′ = s\{w}; ifw has one childw0, then s′ = (s\{w})∪{w0};

5

if w has two children w0 and w1, then s′ = (s \ {w})∪ {w0, w1}. We write s⇒ s′ if
s′ is the w-successor of s for some w. A derivation of t is a sequence s1 ⇒ . . . ⇒ sk
of states such that s1 = {ε} and sk = ∅. A scheduler is a mapping σ that assigns
to a family tree t a derivation σ(t) of t. If σ(t) = (s1 ⇒ . . . ⇒ sk), then for every
1 ≤ i < k we denote by σ(t)[i] a task of si such that si+1 is the σ(t)[i]-successor of si.
Intuitively, σ(t)[i] is the task of si scheduled by σ. This definition allows for schedulers
that know the tree, and so how future tasks will behave. In Section 4 we define and
study online schedulers which only know the past of the computation. Notice that
schedulers are deterministic (non-randomized).

Example 2. A scheduler may schedule the tree t in Figure 1 as follows: {ε} ⇒
{0, 1} ⇒ {0, 10} ⇒ {0} ⇒ {00, 01} ⇒ {01} ⇒ {}. The sched-
uler which always picks the least unprocessed task w.r.t. the lexicographi-
cal order on {0, 1}∗ (an online scheduler), schedules t differently, as follows:
{ε} ⇒ {0, 1} ⇒ {00, 01, 1} ⇒ {01, 1} ⇒ {1} ⇒ {10} ⇒ {}.

Time and space. Given X ∈ Γ, we define a random variable TX , the completion
time of X , which assigns to a tree t ∈ TX its number of nodes. Assuming that tasks
are executed for one time unit before its generated subtasks are returned to the pool,
TX corresponds to the time required to completely execute X . Our assumption (2)
guarantees that TX is finite with probability 1, but its expectation E[TX] may or may
not be finite. A task system ∆ is called subcritical if E[TX] is finite for every X ∈ Γ.
Otherwise it is called critical. If ∆ is subcritical, then E[TX] can be easily computed
by solving a system of linear equations [4]. The notion of criticality comes from the
theory of branching processes, see e.g. [10, 13]. Here we only recall the following
results:

Proposition 2 ([10, 20]). Let ∆ be a task system with pgf f . Denote by f ′(1) the
Jacobian matrix of partial derivatives of f evaluated at 1. If ∆ is critical, then the
spectral radius of f ′(1) is equal to 1; otherwise it is strictly less than 1. It can be
decided in polynomial time whether ∆ is critical.

The proposition essentially follows from statements in [10, 20], but we provide an
explicit proof, in order to make the paper more self-contained.

PROOF. One can show (see e.g. [21]) that E[TX] is the X-component of the least non-
negative fixed point of f ′(1)x+ 1, i.e., the X-component of the (componentwise)
least vector x ∈ [0,∞]Γ with x = f ′(1)x + 1. This least fixed point is given by∑∞
i=0(f ′(1))i1, a series that may or may not converge. It is a standard fact (see

e.g. [26]) that the series converges iff ρ(f ′(1)) < 1 holds for the spectral radius
ρ(f ′(1)) of f ′(1).

Assume first that ∆ is subcritical. Then the above series must converge, so we
have ρ(f ′(1)) < 1 in this case. Now assume that ∆ is critical. Then the above series
must diverge, so we have ρ(f ′(1)) ≥ 1. On the other hand, in [12, 20] it is shown
that ρ(f ′(1)) ≤ 1. (More precisely, it is shown there that ρ(f ′(y)) < 1 holds for
y that are strictly less than the least fixed point of f . By continuity of eigenvalues,
ρ(f ′(y)) ≤ 1 also holds for the least fixed point of f which is 1 according to the proof
of Proposition 1.) Hence we have ρ(f ′(1)) = 1.

6

In order to decide on the criticality, it thus suffices to decide whether the spectral
radius of f ′(1) is ≥ 1. This condition holds iff f ′(1)x ≥ x holds for a nonnegative,
nonzero vector x (see e.g. Thm. 2.1.11 of [27] and cf. [20]). This can be checked in
polynomial time with linear programming. �

Example 3. For the task system of Figure 1, the spectral radius of f ′(1) is ≈ 0.97.
Hence it is subcritical.

A state models a pool of tasks awaiting to be scheduled. We are interested in
the maximal size of the pool during the execution of a derivation. So we define the
random completion space SσX as follows. If σ(t) = (s1 ⇒ . . .⇒ sk), then SσX(t) :=
max{|s1|, . . . , |sk|}, where |si| is the cardinality of si. Sometimes we write Sσ(t),
meaning SσX(t) for the typeX labelling the root of t. If we write Sσ without specifying
the application to any tree, then we mean SσX0

.

Example 4. The schedulers of Example 2 have completion space 2 and 3, respectively.

Running examples. Throughout the paper we use two task systems as running exam-
ples. The first one is the task system of Figure 1, which we analyze numerically. The
second one is actually a family of task systems: the family X

p
↪−→ 〈X,X〉, X

q
↪−→ ∅

with pgf f(x) = px2 + q, where 0 < p ≤ 1/2 is a parameter and q = 1 − p. This
family is very simple, which allows to interpret our results analytically. Notice that the
probability p satisfies p ≤ 1/2: For 1/2 < p ≤ 1 the least fixed point of f is q/p < 1,
and so the system does not terminate with probability 1. For p ≤ 1/2 the least fixed
point of f is 1, and the system is critical for p = 1/2, and subcritical for p < 1/2.

3. Optimal (Offline) Schedulers

Let Sop be the random variable that assigns to a family tree the minimal comple-
tion space of its derivations. We call Sop(t) the optimal completion space of t. The
optimal scheduler assigns to each tree a derivation with optimal completion space. In
the multithreading scenario, it corresponds to a scheduler that can inspect the code of
a thread and decide whether it will spawn a new thread or not. Note that, although
the optimal scheduler “knows” how the stochastic choices are resolved, the optimal
completion space Sop(t) is still a random variable, because it depends on a random
tree. The following proposition characterizes the optimal completion space of a tree in
terms of the optimal completion space of its children.

Proposition 3. Let t be a family tree. Then

Sop(t) =


min

{
max{Sop(t0) + 1, Sop(t1)},
max{Sop(t0), Sop(t1) + 1}

}
if t has two children t0, t1

Sop(t0) if t has exactly one child t0
1 if t has no children.

7

PROOF. The only nontrivial case is when t has two children t0 and t1. Consider the
following schedulings for t, where i ∈ {0, 1}: Execute first all tasks of ti and then
all tasks of t1−i; within both ti and t1−i, execute tasks in optimal order. While ex-
ecuting ti, the root task of t1−i remains in the pool, and so the completion space is
s(i) = max{Sop(ti) + 1, Sop(t1−i)}. Since the optimal scheduler can choose the
value of i that minimizes s(i), we have Sop(t) ≤ min{s(0), s(1)}.

It remains to argue why the scheduler cannot save space by interleaving the schedul-
ings for t0 and t1. Consider an optimal scheduling of t. Assume that the derivation of
the t0-tree is completed first. Then at least one task from t1 terminates only after the
derivation of t0 is completed, so this scheduling needs space of at least Sop(t0) + 1.
Since any scheduling of t needs space of at least Sop(t1), we have Sop(t) ≥ s(0).
Assume now that the derivation of the t1-tree is completed first. Then, similarly, we
have Sop(t) ≥ s(1). So, we obtain Sop(t) ≥ min{s(0), s(1)}, and, with the inequality
above, Sop(t) = min{s(0), s(1)}. �

Given a type X , we are interested in the probabilities Pr[Sop
X ≤ k] for k ≥ 1.

Proposition 3 yields a recurrence relation which at first sight seems difficult to handle.
However, using results of [28, 29] we can exhibit a surprising connection between
these probabilities and the pgf f .

Let µ denote the least fixed point of f and recall from the proof of Proposition 1
that µ = 1. Clearly, 1 is a zero of f(x) − x. It has recently been shown that µ can
be computed by applying to f(x)−x Newton’s method for approximating a zero of a
differentiable function [20, 11]. More precisely, µ = limk→∞ ν

(k) where

ν(0) = 0 and ν(k+1) = ν(k) + (I − f ′(ν(k)))−1
(
f(ν(k))− ν(k)

)
and f ′(ν(k)) denotes the Jacobian matrix of partial derivatives of f evaluated at ν(k)

and I the identity matrix. Surprisingly, the sequence of approximants computed by
Newton’s method provides exactly the information we are looking for:

Theorem 1. Pr[Sop
X ≤ k] = ν

(k)
X for every type X and every k ≥ 0.

Proof sketch. We illustrate the proof idea on the one-type task system with the pgf
f(x) = px2 + q, where q = 1 − p. Notice that the “vectors” f and ν(k) and the
“matrix” f ′ have a single entry only, so they can be treated as numbers. Let T≤k and
T=k denote the sets of trees t with Sop(t) ≤ k and Sop(t) = k, respectively. We show
Pr[T≤k] = ν(k) for all k by induction on k. The case k = 0 is trivial. Assume that
ν(k) = Pr[T≤k] holds for some k ≥ 0. We prove Pr[T≤k+1] = ν(k+1). Notice that

ν(k+1) := ν(k) +
f(ν(k))− ν(k)

1− f ′(ν(k))
= ν(k) + (f(ν(k))− ν(k)) ·

∞∑
i=0

f ′(ν(k))i.

Let B(0)
k+1 be the set of trees that have two children both of which belong to T=k, and,

for every i ≥ 0, let B(i+1)
k+1 be the set of trees with two children, one belonging to T≤k,

the other one to B(i)
k+1. By Proposition 3 we have T≤k+1 =

⋃
i≥0 B

(i)
k+1. We prove

8

Pr
[
B(i)
k+1

]
= f ′(ν(k))i (f(ν(k))− ν(k)) by an (inner) induction on i, which completes

the proof. For the base i = 0, let A≤k be the set of trees with two children in T≤k;
by induction hypothesis we have Pr[A≤k] = pν(k)ν(k). In a tree of A≤k either (a)
both children belong to T=k, and so t ∈ B(0)

k+1, or (b) at most one child belongs to
T=k. By Proposition 3, the trees satisfying (b) belong to T≤k. In fact, a tree of T≤k
either satisfies (b) or it has one single node. Since the probability of the tree with
one node is q, we get Pr[A≤k] = Pr

[
B(0)
k+1

]
+ Pr[T≤k] − q. Applying the induction

hypothesis again we obtain Pr
[
B(0)
k+1

]
= pν(k)ν(k) + q − ν(k) = f(ν(k)) − ν(k).

For the induction step, let i ≥ 0. Divide B(i+1)
k+1 into two sets, one containing the

trees whose left (right) child belongs to B(i)
k+1 (to T≤k), and the other the trees whose

left (right) child belongs to T≤k (to B(i)
k+1). Using both induction hypotheses, we get

that the probability of each set is pν(k)f ′(ν(k))i(f(ν(k)) − ν(k)). So Pr
[
B(i+1)
k+1

]
=

(2pν(k)) ·f ′(ν(k))i(f(ν(k))−ν(k)). Since f(x) = px2 +q we have f ′(ν(k)) = 2pν(k),
and so Pr

[
B(i+1)
k+1

]
= f ′(ν(k))i+1(f(ν(k))− ν(k)) as desired. �

Example 5. Computing Newton approximants for the task system from Figure 1 and
applying Theorem 1 yields

Pr[Sop
X ≤ 0] = 0 Pr[Sop

X ≤ 3] ≈ 0.88
Pr[Sop

X ≤ 1] = 0.3 Pr[Sop
X ≤ 4] ≈ 0.96

Pr[Sop
X ≤ 2] ≈ 0.70 Pr[Sop

X ≤ 5] ≈ 0.99 .

Example 6. Consider the task system X
p
↪−→ 〈X,X〉, X

q
↪−→ ∅ with pgf f(x) = px2 +

q, where 0 < p ≤ 1/2 and q = 1 − p. Using Newton approximants we obtain the
recurrence relation

Pr[Sop ≥ k + 1] =
p · Pr[Sop ≥ k]2

1− 2p+ 2p · Pr[Sop ≥ k]

for the distribution of the optimal scheduler. In particular, for the critical value p = 1/2
we get Pr[Sop ≥ k] = 21−k.

Theorem 1 allows to compute the probability mass function of Sop . As a Newton
iteration requiresO(|Γ|3) arithmetical operations for a task system with set of types Γ,
we obtain the following corollary, where by the unit cost model we refer to the model
in which arithmetic operations have cost 1, independently of the size of the operands
[30].

Corollary 1. Pr[Sop
X = k] can be computed in time O(k · |Γ|3) in the unit cost model.

It is easy to see that Newton’s method converges quadratically for subcritical sys-
tems (see e.g. [31]), meaning, roughly speaking, that each iteration doubles the number
of accurate bits of Pr[Sop

X ≥ k] computed so far. For critical systems, it has recently
been proved that Newton’s method still converges linearly [11, 12]. These results lead
to tail bounds for Sop

X :

9

Corollary 2. For any task system ∆ there are real numbers c > 0 and 0 < d < 1
such that Pr[Sop

X ≥ k] ≤ c · dk for all k ∈ N. If ∆ is subcritical, then there are real
numbers c > 0 and 0 < d < 1 such that Pr[Sop

X ≥ k] ≤ c · d2k for all k ∈ N.

PROOF. By Theorem 1 we have Pr[Sop ≥ k] = 1 − ν(k−1)
X0

. So the corollary can be
understood as a statement on the convergence speed of Newton’s method for solving
x = f(x). The fact that Newton’s method started at 0 converges to 1 (the least fixed
point of f) is shown in [20].

For the subcritical case, observe that the matrix I − f ′(1) is nonsingular because
otherwise 1 would be an eigenvalue of f ′(1) which would, together with Proposition 2,
contradict the assumption that the task system is subcritical. For nonsingular systems,
it is a standard fact (see e.g. [31]) that Newton’s method converges quadratically. As
Pr[Sop ≥ k] ≤ 1− ν(k−1)

X0
, the statement follows.

For the general case (subcritical or critical) Newton’s method for solving x = f(x)
has been extensively studied in [11, 12] and it follows from there that there is a c1 ∈
(0,∞) such that 1− ν(k)

X ≤ c1 · 2−k/(n2n) where n = |Γ|, implying the statement. �

4. Online Schedulers

From this section on we concentrate on online schedulers, which only know the
past of the computation. Formally, a scheduler σ is online if for every tree t with
σ(t) = (s1 ⇒ . . . ⇒ sk) and for every 1 ≤ i < k, the task σ(t)[i] depends only on
s1 ⇒ . . .⇒ si and on the restriction of the labelling function L to

⋃i
j=1 sj .

For our results in this section it is convenient to assume that the task system is in a
certain normal form, which we call compact.

Compact Task Systems. Any task system can be transformed into a so-called compact
task system such that for every scheduler of the compact task system we can construct a
scheduler of the original system yielding the same completion space up to an increase
of at most |Γ|. A type W is compact if there is a rule X ↪−→ 〈Y,Z〉 such that X is
reachable from W . A task system is compact if all its types are compact. A non-
compact task system can be compacted by iteratively removing all rules with non-
compact types on the left hand side, and all occurrences of non-compact types on the
right hand side.

Example 7. Consider the following task system:

X
0.5
↪−−→ 〈X,Y 〉 Y

0.5
↪−−→ 〈Y,Z〉 Z

0.5
↪−−→ Z

X
0.5
↪−−→ 〈X,X〉 Y

0.5
↪−−→ Z Z

0.5
↪−−→ ∅.

Here, only type Z is not compact. After removing it, we obtain the new system:

X
0.5
↪−−→ 〈X,Y 〉 Y

0.5
↪−−→ Y

X
0.5
↪−−→ 〈X,X〉 Y

0.5
↪−−→ ∅.

10

In the reduced system, type Y is not compact anymore, which necessitates a second
iteration:

X
0.5
↪−−→ X

X
0.5
↪−−→ 〈X,X〉.

Note that if a scheduler schedules Z-tasks before Y -tasks and Y -tasks before X-tasks,
then the pool has, at any time, at most two non-X-tasks.

The following proposition allows us to concentrate on compact task systems.

Proposition 4. Let Γ′ denote the set of all task types removed from ∆ by the above
compacting procedure and let |Γ′| = `. If X0 ∈ Γ′, then there is a scheduler σ such
that Sσ ≤ `. Assume that X0 6∈ Γ′. Let ∆′ be the compacted version of ∆. Every
scheduler σ′ for ∆′ can be transformed into a scheduler σ for ∆ such that for all k

Pr
[
Sσ

′,∆′
≥ k

]
≤ Pr

[
Sσ,∆ ≥ k

]
≤ Pr

[
Sσ

′,∆′
≥ k − `

]
.

(The second superscript of S indicates the task system on which the scheduler oper-
ates.)

Computing σ from σ′ is easy: σ acts like σ′ but gives preferences to the types
that have been (first) eliminated during the compacting procedure. Now we prove
Proposition 4.

PROOF. Let ∆1 be a non-compact task system with non-compact types Γnon , and let
∆0 be the (possibly non-compact) task system obtained from ∆1 by removing all rules
with non-compact types on the left hand side and all occurrences of non-compact types
on the right hand side of all rules, i.e., ∆0 is obtained from ∆1 by performing the
first iteration of the compacting procedure. Let σ0 be a scheduler for ∆0. Construct a
scheduler σ1 for ∆1 as follows:

The scheduler σ1 acts exactly like σ0 until one or two Γnon -tasks are cre-
ated at which point the completion space of the derivation is increased by
at most 1. Then σ1 picks a Γnon -task, say τ1. Since the Γnon -types are
non-compact, σ1 can complete τ1 without further increasing the comple-
tion space. After τ1 has been finished, there may be another Γnon -task
left, say τ2, that was created at the time when τ1 was created. If there is
such a τ2, then σ1 completes τ2 in the same way it has completed τ1. After
τ1 (and possibly τ2) have been completed, σ1 resumes to act like σ0.

It follows from this construction that the incorporation of the non-compact type Γnon

increases the completion space of a derivation by at most 1.
A straightforward induction on this construction shows in terms of the proposition

statement:

Pr
[
Sσ

′,∆′

X ≤ k
]
≤ Pr

[
Sσ,∆X ≤ k + `

]
for all X ∈ Γ \ Γ′.

11

If X0 ∈ Γ′, then the above construction also works. (It extends a scheduler op-
erating on a possibly empty task system, but this poses no problems.) So, again by
induction, we obtain a scheduler σ for ∆ with Sσ,∆X ≤ ` for all X ∈ Γ′.

It remains to show the inequality Pr
[
Sσ

′,∆′

X ≥ k
]
≤ Pr

[
Sσ,∆X ≥ k

]
; but this fol-

lows directly from the fact that ∆′ is obtained by deleting rules and types from ∆ and
σ is obtained by extending σ′. �

Assumption. In light of Proposition 4 we assume for the rest of the section that task
systems are compact.

The following main theorem gives lower and upper bound on Pr[Sσ ≥ k] which hold
uniformly for all online schedulers σ. The bounds are given in terms of vectors v,w
with f(v) ≤ v and f(w) ≥ w. We will show later (Proposition 5) how to compute
such vectors.

Theorem 2. Let ∆ be subcritical. Let v,w ∈ (1,∞)Γ be vectors with f(v) ≤ v and
f(w) ≥ w. Denote by vmin and wmax the least component of v and the greatest
component of w, respectively. Then

wX0 − 1
wk+2

max − 1
≤ Pr[Sσ ≥ k] ≤ vX0 − 1

vkmin − 1
for all online schedulers σ.

Proof sketch. The proof adapts a technique for the analysis of random walks going
back to Feller (see [32, 33]), which uses the vector v to derive a supermartingale (and
proceeds analogously withw). More precisely, we use v to assign a weight m(i) to the
pool of tasks at time i and to choose a constant h, so that the following property holds:
at any stopping time τ of the process, the expected value of hm

(τ)
is at most vX0 . This

provides a “stochastic invariant” of the process, from which we can extract an upper
bound for Pr[Sσ ≥ k].

We now give some more details. For every i ≥ 1, let z(i) be the vector of random
variables that measures the number of tasks of each type at time i. We choose h > 1
and u ∈ (0,∞)Γ such that huX = vX for all X ∈ Γ. Now, let m(i) = z(i) u

def.
=∑

X∈Γ z
(i)
X uX , i.e., m(i) is the random variable that measures the weight of the tasks

at time i, when the weight of a task of type X is given by uX . One can show that
hm

(1)
, hm

(2)
, . . . is a supermartingale for any online scheduler σ. Define a stopping

time τk := inf{i ≥ 1 | m(i) ∈ {0} ∪ [k,∞)}; i.e., τk is the time when the task
system either terminates or has at least k tasks in the pool. Using the Optional Stopping
Theorem [34], we obtain

E
[
hm

(τk)
]
≤ huX0 = vX0 .

Set pk := Pr
[
m(τk) ≥ k

]
. Then we have

vX0 ≥ E
[
hm

(τk)
]
≥ h0 · (1− pk) + hk · pk = 1− pk + hk · pk

12

