Space-efficient scheduling of
stochastically generated tasks

Tomas Brazdil'*, Javier EsparZa Stefan Kiefet**, and Michael Luttenbergér

! Faculty of Informatics, Masaryk University, Brno, Czech Republic
2 Institut fur Informatik, Technische Universit Miilnchen, Germany
3 Oxford University Computing Laboratory, UK

Abstract. We study the problem of scheduling tasks for execution by a proces-
sor when the tasks can stochastically generate new tasks. Tasks daliffezent
types, and each type has a fixed, known probability of generating osiex. t&/e
present results on the random varialste modeling the maximal space needed
by the processor to store the currently active tasks when acting undsctibed-
ulero. We obtain tail bounds for the distribution §f for both offline and online
schedulers, and investigate the expected V&[S].

1 Introduction

We study the problem of scheduling tasks that can stocladigtigenerate new tasks.
We assume that the execution of a taskan generate a set of subtasks. Tasks can
be of different types, and each type has a fixed, known préihabf generating new
subtasks. Systems of tasks can be described using a natimtider to that of stochastic
grammars. For instance

x 2 xxy xZwyy x220 vy 2ixy vy
describes a system with two types of tasks. Tasks of typean generaté tasks of
type X, one task of each type, or zero tasks with probabiliti€s0.3, and0.5, respec-
tively (angular brackets denote multisets). Tasks of ty/pean generate one task, of
type X or Y, with probability0.7 and0.3. Tasks are executed by one processor. The
processor repeatedly selects a task from a pool of unpredeasks, processes it, and
puts the generated subtasks (if any) back into the pool. Dbéipitially contains one
task of typeXy, and the next task to be processed is selecteddzheaduler

We study random variables modeling the time and space ndedemnpletelyex-

ecute a task, i.e., to empty the pool of unprocessed tasks assumingrifietly the
pool only contains task. We assume that processing a task takes one time unit, and
storing it in the pool takes a unit of memory. So tteempletion timés given by the total
number of tasks processed, and tlhenpletion spacby the maximum size reached by
the pool during the computation. The completion time hasitstedied in [13], and so
the bulk of the paper is devoted to studying the distributibthe completion space for
different classes of schedulers.

* Supported by Czech Science Foundation, grant No. P202/10/1469.
** Supported by the EPSRC proje&itomated Verification of Probabilistic Programs

Our computational model is abstract, but relevant for d#ffeé scenarios. In the
context of search problems, a task is a problem instancetrensglcheduler is part of
a branch-and-bound algorithm (see e.g. [18]). In the moreegd context of multi-
threaded computations, a task models a thread, which mayrafemew threads. The
problem of scheduling multithreaded computations spéfogiestly on multiprocessor
machines has been extensively studied (see e.g. [21, §, Zidse papers assume
that schedulers know nothing about the program, while wesiden the case in which
stochastic information on the program behaviour is avégléibtained from sampling).

We study the performance ohlineschedulers that know only the past of the com-
putation, and compare them with thptimal offlinescheduler, which has complete in-
formation about the future. Intuitively, this scheduleslagcess to an oracle that knows
how the stochastic choices will be resolved. The oracle @areplaced by a machine
that inspects the code of a task and determines which sishitasil generate (if any).

We consider task systems with completion probability 1,ocliéan be further di-
vided into those with finite and infinite expected completiome, often calledsubcrit-
ical and critical. Many of our results are related to the probability genagafunc-
tions (pgfs) associated to a task system. The functionsHeretxample above are
fx(x,y) = 0222 + 0.32y + 0.5 and fy (z,y) = 0.7z + 0.3y, and the reader can
easily guess the formal definition. The completion prolighis the least fixed point of
the system of pgfs [17].

Our first results (Section 3) concern the distribution of tenpletion space °?
of the optimal offline schedulesp on a fixed but arbitrary task system wif{x) as
pgfs (in vector form). We exhibit a very surprising connentbetween the probabil-
ities Pr[S°P = k] and theNewton approximant® the least fixed point of (x) (the
approximations to the least fixed point obtained by appl\egvton’s method for ap-
proximating a zero of a differentiable function fgx) — = 0 with seed0). This
connection allows us to apply recent results on the convemyaspeed of Newton’s
method [19, 12], leading to tail bounds 6f?, i.e., bounds o®Pr[S°? > k|. We then
study (Section 4) the distribution 6f° for an online scheduler, and obtain upper and
lower bounds for the performancearfiyonline scheduler in subcritical systems. These
bounds suggest a way of assigning weights to task typestiefidwow likely they are
to require large space. We stulityht-first schedulers, in which “light” tasks are chosen
before “heavy” tasks with larger components, and obtaimgrdved tail bound.

So far we have assumed that there are no dependencies béaskgnrequiring a
task to be executed before another. We study in Section é &tbe in which a task can
only terminate after all the tasks it has (recursively) spasvhave terminated. These
are thestrict computations studied in [6]. The optimal scheduler in thasecis the
depth-firstscheduler, i.e., the one that completely executes the sldbefore its par-
ent, resulting in the familiar stack-based execution. Urldis scheduler our tasks are
equivalent to special classes of recursive state machirigsahd probabilistic push-
down automata [14]. We determine the exact asymptotic pedaoce of depth-first
schedulers, hereby making use of recent results [8].

We restrict ourselves to the case in which a task has at maostiwidren, i.e., all

rulesX < (X1,...,X,) satisfyn < 2. This case already allows to model the forking-
mechanism underlying many multithreaded operating systerg. Unix-like systems.

Related workSpace-efficient scheduling for search problems or muététied com-
putations has been studied in [18,21,6,2,1]. These pamstsnee that nothing is
known about the program generating the computations. Wiy she case in which
statistical information is available on the probabilitatltomputations split or die. The
theory ofbranching processestudies stochastic processes modeling populations whose
members can reproduce or die [17,4]. In computer scieneairietogy, all existing
work on branching processes assumes that the number ofsgmysdsunbounded3,
7,20,22,24,26]. To our knowledge, we are the first to studyltprocessor case.

Structure of the papemlhe rest of the paper is structured as follows. The prelimi-
naries in Section 2 formalize the notions from the introducand summarize known
results on which we build. In Section 3 we study optimal offlsthedulers. Section 4 is
dedicated to online schedulers. First we prove performanoads that hold uniformly
for all online schedulers, then we prove improved boundslifgnt-first schedulers,
and finally we determine the exact asymptotic behaviour ptldéirst schedulers. In
Section 5 we obtain several results on the expected spasemmion under different
schedulers. Section 6 contains some conclusions. Fulfpoam be found in [9].

2 Preliminaries

Let A be a finite set. We regard element$6f andR“ asvectorsand use boldface (like
u, v) to denote vectors. The vector whose components abqi@kp.1) is denoted by
(resp.1). We use angular brackets to denote multisets and oftenifigemultisets over
A and vectors indexed byt. For instance, ifA = {X,Y} andv € N4 with vy = 1
andvy = 2,thenv = (X, Y, Y). We often shortefa) to a. Mfz denotes the multisets
over A containing at mos? elements.

Definition 2.1. A task systenis a tupleA = (I, —, Prob, X,) whereI is a finite
set of task types— C I' x M,§2 is a set oftransition rules Prob is a function as-
signing positive probabilities to transition rules so thiar every X € I' we have
Yo xesg Prob((X,a)) =1, and X, € I'is theinitial type.

We write X <> o wheneverX — o and Prob((X,«a)) = p. Executions of a task
system are modeled as family trees, defined as follows. Fixrbitrary total order<
onI'. A family treet is a pair(N, L) whereN C {0,1}* is a finite binary tree (i.e. a
prefix-closed finite set of words ovéf, 1}) andL : N — I is a labelling such that
every nodav € N satisfies one of the following conditions:is a leaf and.(w) — &,
or w has a unique chila0, andL(w) satisfiesL(w) — L(w0), orw has two children
w0 andwl, andL(w0), L(w1) satisfyL(w) — (L(w0), L(w1)) andL(w0) < L(wl).
Given a nodew € N, the subtree of rooted atw, denoted byt,,, is the family tree
(N’, L") such thatw’ € N’ iff ww’ € N andL'(w') = L(ww') for everyw’ € N'. If
a treet has a subtreg, or t;, we call this subtree ahild of . (So, the ternchild can
refer to a node or a tree, but there will be no confusion.)

We define a functio®r which, loosely speaking, assigns to a family ttee (N, L)
its probability (see the assumption below). Assume thatdbeofz is labeled byX. If ¢

consists only of the root, and <& ¢, thenPr [t] = p; if the root has only one child (the

node0) labeled byY, andX <% Y, thenPr [t] = p- Pr[to]; if the root has two children
(the node® and1) labeled byy andZ, andX < (Y, Z), thenPr[t] = p-Pr[to]-Pr[t1].
We denote byZ'y the set of all family trees whose root is labeledXyand byPrx the
restriction ofPr to 7 . We drop the subscript dfr x if X is understood.

Example 2.2.Figure 1 shows (a) a task system with= {X,Y, Z}; and (b) a family
treet of the system with probabilityr[t] = 0.25-0.1-0.75-0.6 - 0.4 - 0.9. The name
and label of a node are written close to it.

e, X
°
x 2% wyvzy vEx,zy oz () / \
0.75 0.9 0.6 0,Y o e 1,7
X =0 Y <0 Z 0 /\
00,X e 01,Z e e 10,V

(@ (b)

Fig. 1. (a) A task system. (b) A family tree.

Assumptions. Throughout the paper we assume that a task system
A = (I',—, Prob, X)) satisfies the following two conditions for every typé € I

(1) X is reachablefrom X, meaning that some tree ifiy, contains a node labeled
by X, and (2)Pr[Tx] = > ,cr Prlt] = 1. So we assume thay,Prx) is a
discrete probability space withy as set of elementary events afdy as probability
function. This is the formal counterpart to assuming thargvtask is completed with
probability 1.

Proposition 2.3. It can be decided in polynomial time whether assumptionartd)(2)
are satisfied.

Proof. (1) is trivial. For (2) let theprobability generating functiorfpgf) of the task
system be defined as the functign R — R’ of A where for everyX € I"

fx(v)= Z p-vy vz + Z p-vy+2p.

x5y, 2) X<y x50
It is well known (see e.g. [17]) that (2) holds iff the leashnegative fixed point of
equalsl, which is decidable in polynomial time [15]. O

Derivations and schedulerdet ¢t = (N, L) be a family tree. Astateof ¢ is a
maximal subset oV in which no node is a proper prefix of another node (graphicall
no node is a proper descendant of another node). The eleoferdtate are calledsks
If sis a state anav € s, then thew-successor of is the uniquely determined state
defined as follows: ifv is a leaf of N, thens’ = s\ {w}; if w has one childv0, then
s = (s\{w})U{w0}; if w has two childrenv0 andw1, thens’ = (s\{w})U{w0, wl}.
We writes = ¢’ if s is thew-successor of for somew. A derivation oft is a sequence

s1 = ... = sy of states such thaty = {e¢} ands; = 0. A scheduleiis a mappingr
that assigns to a family treea derivatiors (¢) of ¢. If o(t) = (s1 = ... = si), thenfor
everyl < i < k we denote by (¢)[i] a task ofs; such that,; is theo (¢)][i]-successor
of s;. Intuitively, o(¢)[i] is the task ofs; scheduled bysr. This definition allows for
schedulers that know the tree, and so how future tasks wllkbe In Section 4 we
define and study online schedulers which only know the pasteoéomputation. Notice
that schedulers are deterministic (non-randomized).

Example 2.4.A schedulers; may schedule the treein Figure 1 as follows{c} =
{0,1} = {0,10} = {0} = {00,01} = {01} = {}. Let oo be the sched-
uler which always picks the least unprocessed task w.iet.l¢kicographical order
on {0,1}*. (This is an example of an online scheduler.) It schedules follows:
{e} = {0,1} = {00,01,1} = {01,1} = {1} = {10} = {}.

Time and spaceGiven X € I, we define a random variablgy, the completion
time of X, that assigns to a tree € 7x its number of nodes. Assuming that tasks
are executed for one time unit before its generated subtagkseturned to the pool,
Tx corresponds to the time required to completely executeOur assumption (2)
guarantees thafy is finite with probability1, but its expectatiof£[T’x| may or may
not be finite. A task system is calledsubcriticalif E[Tx] is finite for everyX € I'.
Otherwise it is callectritical. If A is subcritical, therE[Tx] can be easily computed
by solving a system of linear equations [13]. The notion daality comes from the
theory of branching processes, see e.g. [17, 4]. Here waecd}l the following results:

Proposition 2.5 ([17, 15]).Let A be a task system with pgf. Denote byf’(1) the
Jacobian matrix of partial derivatives of evaluated atl. If A is critical, then the
spectral radius off’(1) is equal to1; otherwise it is strictly less than. It can be
decided in polynomial time whetheY is critical.

A state models a pool of tasks awaiting to be scheduled. Weanéeeested in the
maximal size of the pool during the execution of a derivati8o we define the ran-
dom completion spaces% as follows. If o(t) = (s1 = ... = sg), then S¢(¢) =
max{|s1],...,|sk|}, where|s;| is the cardinality ofs;. Sometimes we write&5” (¢),
meaningS% (¢) for the typeX labelling the root of. If we write S without specifying
the application to any tree, then we me%p .

Example 2.6.For the schedulers of Example 2.4 we h&e (t) = 2 andS?(t) = 3.

3 Optimal (Offline) Schedulers

Let S°P be the random variable that assigns to a family tree the naihdompletion
space of its derivations. We c&l°? (t) the optimal completion spacef ¢. The opti-
mal scheduler assigns to each tree a derivation with opthm@pletion space. In the
multithreading scenario, it corresponds to a scheduldrdha inspect the code of a
thread and decide whether it will spawn a new thread or note Nmat, although the
optimal scheduler “knows” how the stochastic choices aselved, the optimal com-
pletion spaceS°?(t) is still a random variable, because it depends on a randan tre
The following proposition characterizes the optimal coatipin space of a tree in terms
of the optimal completion space of its children.

Proposition 3.1. Lett be a family tree. Then

min { maX{SOp(tO) +1, SOp(tl)}v

o0 (1) max{S (ty), S (t1) + 1}
S°P(tp) if ¢ has exactly one chilé,
1 if ¢ has no children.

} if ¢ has two childreng, t;

Proof sketchThe only nontrivial case is whenhas two childrerty and¢;. Consider
the following schedulings fot, wherei € {0,1}: Execute first all tasks of, and
then all tasks ot;_;; within both¢;, andt,_;, execute tasks in optimal order. While
executingt;, the root task of;_; remains in the pool, and so the completion space is
s(i) = max{S°P(t;)+1, S°?(t;—;)}. The optimal scheduler chooses the valuéetbht
minimizess(z). O

Given a typeX, we are interested in the probabiliti®s[S’ < k] for £ > 1.
Proposition 3.1 yields a recurrence relation which at figiitsseems difficult to handle.
However, using results of [11, 10] we can exhibit a surpggiannection between these
probabilities and the pgf.

Let i denote the least fixed point gfand recall from the proof of Proposition 2.3
thaty = 1. Clearly, 1 is a zero off(x) — x. It has recently been shown thatcan
be computed by applying tf(x) — & Newton’s method for approximating a zero of a
differentiable function [15, 19]. More precisely, = lim;_.., v*) where

v =0 and »*D = p® (1 W) (f(,,w)) _ ,,(k))

and f'(v*)) denotes the Jacobian matrix of partial derivativeg dvaluated at/(*)
and! the identity matrix. Computinge, however, is in our case uninteresting, because
we already know thajs = 1. So, why do we need Newton’s method? Because the
sequence of Newton approximants provides exactly therimdition we are looking for:

Theorem 3.2. Pr[SY < k] = ug?) for every typeX and everyk > 0.

Proof sketchWe illustrate the proof idea on the one-type task system pgfhf (z) =
pr? + q, whereq = 1 — p. Let 7, and7_,, denote the sets of treesvith S°P(¢) < k
andS°r(t) = k, respectively. We showr[7;] = v*) for all k by induction onk.
The casé: = 0 is trivial. Assume that(¥) = Pr[7<;] holds for somé: > 0. We prove
Pr[7<;11] = v**1). Notice that

O o i
p+1) . — (k) | % =B 4 (f®) —)2 (k)i

Let 51(321 be the set of trees that have two children both of which betorig-., and,

for everyi > 0, let B,(fjll) be the set of trees with two children, one belongindiq,

the other one td?,(cﬂ)rl. By Proposition 3.1 we hav@<;+1 = ;> B,(j}rl. We prove
Pr [B,ﬁ’il} = f'(v®)? (f(v®) —v(*)) by an (inner) induction om, which completes

the proof. For the base= 0, let A<, be the set of trees with two children #x;; by
induction hypothesis we haver[A<;] = pr¥)v). In a tree of A<, either (a) both

children belong ta/_, and sot € B,(ﬂzl, or (b) at most one child belongs .. By
Proposition 3.1, the trees satisfying (b) belon@iq. In fact, a stronger property holds:
atree of7<, either satisfies (b) or it has one single node. Since the pilityaof the tree

with one node ig, we getPr[A<;] = Pr [B,(ﬂzl] +Pr[7<;]—q. Applying the induction
hypothesis again we obtaiPr {Bfﬁzl} = prFpE) g —) = FpR)) — k),

For the induction step, lgt > 0. Divide 51@1 into two sets, one containing the trees

whose left (right) child belongs t5."), (to 7<), and the other the trees whose left
(right) child belongs t@<, (to B,(Cﬁ)rl). Using both induction hypotheses, we get that the
probability of each set g™ f/(v®)Yi(f (1)) — v(¥)). SoPr [B,ﬁfﬂ = (2p).
FrwENi(f(v) — k), Sincef(z) = pa® + q we havef’(v*) = 2pv(®), and so

Pr [B,ﬁf)} = f/(®)i+L(f(u*) — (k) as desired. 0

Example 3.3.Consider the task systedd A (X, X), X < 9 with paf f(z) =
px? + ¢, wherep is a parameter ang = 1 — p. The least fixed point off is 1 if

p < 1/2 andq/p otherwise. So we consider only the case< 1/2. The system is
critical for p = 1/2 and subcritical fop < 1/2. Using Newton approximants we obtain
the following recurrence relation for the distribution dketoptimal scheduler, where
pr = Pr[S? > k] =1 — v+ V:pp = (pp?)/(1 — 2p + 2ppy.). In particular, for
the critical valuep = 1/2 we getp;, = 2! 7% andE[S°P] = Y, ., Pr[S°P > k] = 2.

Theorem 3.2 allows to compute the probability mass funabiofi*?. As a Newton
iteration require<O(|I"|?) arithmetical operations, we obtain the following corofiar
where by the unit cost model we refer to the cost in the Blumabs&male model, in
which arithmetic operations have cost 1 independently @fihe of the operands [5].

Corollary 3.4. Pr[S{¥ = k] can be computed in tim@(k-|I"|3) in the unit cost model.

It is easy to see that Newton’s method converges quaddgticalsubcritical systems
(see e.g. [23]). For critical systems, it has recently beewgad that Newton’s method
still converges linearly [19, 12]. These results lead tbdaunds forSy’:

Corollary 3.5. For any task systera there are real numbers > 0 and0 < d < 1
such thatPr[SF > k] < ¢ - d* for all k € N. If A is subcritical, then there are real

numbers: > 0 and0 < d < 1 such thatPr[S% > k] < ¢-d*" forall k € N.

4 Online Schedulers

From this section on we concentrate on online scheduletstiaknow the past of the
computation. Formally, a scheduleris onlineif for every treet with o(t) = (s; =
... = si) and for everyl < i < k, the tasks(t)[:] depends only oy = ... = s;
and on the restriction of the labelling functidnto | J;_, s;.

Compact Task Systermsny task system can be transformed into a so-cati@pact
task system such that for every scheduler of the compacsyet&m we can construct a
scheduler of the original system with nearly the same ptazerA typelV is compact

if there is a ruleX — (Y, Z) such thatX is reachable fromiV. A task system is
compactif all its types are compactrom now on we assume that task systems are
compact.This assumption is essentially without loss of generadisyve argue in [9].

4.1 Tail Bounds for Online Schedulers

The following main theorem gives computable lower and ugdpminds which hold
uniformly for all online schedulers.

Theorem 4.1. Let A be subcritical.

— Letw,w € (1,00)!" be vectors withf(v) < v and f(w) > w. Denote byv,,,
andw,, ., the least component efand the greatest componentwof respectively.
Then

wx, — 1 vy, — 1 .
kXoi < Pr[S° > k] < —~*—— for all online schedulers-.
whi2 —1 vk~

max min

— Vectorsv,w € (1, 00)" with f(v) < v and f(w) > w exist and can be computed
in polynomial time.

Proof sketchChooseh > 1 andu € (0,00)!" such thath*x = vx forall X € I
Define for alli > 1 the variablen® = z(9) «y where ¥ denotes the scalar product,
i.e.,m(") measures the number of tasks at timeeighted by types according ta One
can show thahm(l), hmm, ... Is a supermartingale for any online scheduterand,
using the Optional Stopping Theorem [27], tRafsup; m® > 2] < (vyx,—1)/(h®—

1) for all = (see [9] for the details and [16, 25] for a similar argumentamdom walks).
As each type has at least weiglt,;,,, we have thatS? > k implies sup, m >
kW in. HencePr[S? > k] < Pr[sup; m() > ktmin] < (vx, —1)/(v5,;, —1). The
lower bound is shown similarly. O

All online schedulers perform within the bounds of Theorer. &or an applica-
tion of the upper bound, assume one wants to provide as made §3 is necessary to
guarantee that, say, 99.9% of the executions of a task systamun without needing
additional memory. This can be accomplished, regardle$iseo$cheduler, by provid-
ing k& space units, wherg is chosen such that the upper bound of Theorem 4.1 is at
most0.001.

A comparison of the lower bound with Corollary 3.5 proves $oibcritical task
systems that the asymptotic performance of any online sdbed is far away from
that of the optimal offline scheduler: the raito[S” > k] /Pr[S°? > k] is unbounded.
Example 4.2.Consider again the task system with ggf) = px?+q. Forp < 1/2the
pgf has two fixed points], andg/p. In particular,g/p > 1, sog/p can be used to obtain
both an upper and a lower bound for online schedulers. Shee tis only one type
of tasks, vectors have only one component, and the maxinteframimal components
coincide; moreover, in this case the exponemt2 of the lower bound can be improved
to k. So the upper and lower bounds coincide, and wePgét” > k] = (qq/pﬁgil for
every online scheduler. In particular, as one intuitively expects, all online sthlers
are equivalent.

* For this exampléPr[S° > k] can also be computed by elementary means.

4.2 Tail Bounds for Light-First Schedulers

We present a class of online schedulers for which a sharpesrdwund than the one
given by Theorem 4.1 can be proved. It may be intuitive thad@dcheuristic is to pick
the task with the smallest expected completion time. If wengote a vectow with
f(v) < v in polynomial time according to the proof of Theorem 4.1 nttike type
Xomin forwhichwvy, , = v.,.., holds turns out to be the type with smallest expected
completion time. This suggests choosing the active t§pwith smallest component
in v. So we look aty as a vector of weights, and always choose the lightest ayjhee

In fact, for this (intuitively good) scheduler we obtain taifferent upper bounds.

Given a vectorv with f(v) < v we denote byC a total order on/” such that
wheneverX C Y thenvy < wy. If X C Y, then we say thaX is lighter thanY. The
v-light-first scheduleis an online scheduler that, in each step, picks a task oightebkt
type available in the pool according o Theorem 4.3 below strengthens the upper
bound of Theorem 4.1 for light-first schedulers. For the sdqeart of Theorem 4.3 we
use the notion ob-accumulating typesA type X € I'is v-accumulating if for every
k > 0 the v-light-first scheduler has a nonzero probability of reaghanstate with at
leastk tasks of typeX in the pool.

Theorem 4.3. Let A be subcritical andv € (1,00)!" with f(v) < v. Leto be a

v-light-first scheduler. Leb ,inmae 1= minx—s(y,z) max{vy,vz} (here the mini-

mum is taken over all transition rules with two types on ttghtihand side). Then
VUminmax > VUmin and for a” k Z 1

vx, — 1
Pr[S” > k] < o :
vminvminmax -1
Moreover, letv,,ineee = min{vx | X € I, Xiswv-accumulating. Then

Uminace = Uminmazs Yminace CAN De computed in polynomial time, and there is an
integer/ such that for allk > ¢

VX, —1

ol ekt

min "~ minacc

Pr(s” > K] <

Proof sketchRecall the proof sketch of Theorem 4.1 where we used $fat> &
impliessup, m > ku,,;,, as each type has at least weight,;,,. Let ¢ be such that
no more thary tasks of non-accumulating type can be in the pool at the sanee t
ThenS? > k impliessup, m® > luin + (k — O)Uminace Which leads to the final
inequality of Theorem 4.3 in a way analogous to the proofctkef Theorem 4.1. O
Intuitively, a light-first scheduler “works against” liglasks by picking them as
soon as possible. In this way it may be able to avoid the actation of some light
types, so it may achieve,,;,qcc > vmin- Thisis illustrated in the following example.

Example 4.4.Consider the task system with 2 task types and pgfsasxy + a1y +ag
andy = boxy + byy + b, Whereas + a1 + ag = 1 = by + by + by = 1. The system
is subcritical ifa;by < asb; — as + by. The pgfs have a greatest fixed potntvith
Vx = (1—a2—b1—a1b2—|—a2b1)/b2 andvy = (1—()1—bg)/(a2+a1b2—a2b1). We have
vy < wy iff ag—by < asb; —aybe, and so the light-first scheduler choosébeforeY”

if this condition holds, and@” beforeX otherwise. We show that the light-first scheduler
is asymptotically optimal. Assume w.l.o.gx < vy. ThenX is not accumulating
(becauseX -tasks are picked as soon as they are created), angl $Q.. = vy. So the
upper bound for the light-weight scheduler yields a cortstasuch thaPr[S° > k] <
c2/v%.. But the general lower bound for arbitrary online schedutgates that there is
a constant; such thar[S7 > k] > cl/v’;, so we are done.

4.3 Tail Bounds for Depth-first Schedulers

Space-efficient scheduling of multithreaded computatiassreceived considerable at-
tention [21, 6, 2, 1]. The setting of these papers is slighiifferent from ours, because
they assume data dependencies among the threads, whictaosgyacthread to wait for
a result from another thread. In this sense our setting igagito that of [18], where, in
thread terminology, the threads can execute independently

These papers focus alepth-firstcomputations, in which if thread has to wait for
threadB, then B was spawned byl or by a descendant of. The optimal scheduler
is the one that, wherd spawnsB, interrupts the execution of and continues wittB;
this online scheduler produces the familiar stack-basedwion [6, 21].

We study the performance of thidepth-firstscheduler. Formally, a depth-first
schedulew, is determined by a functioh that assigns to each rutle= X — (Y, Z)
eitherYZ or ZY. If A(r) = Y Z, thenZ models the continuation of the thread,
while Y models a new thread for whose terminatidnvaits. The depth-first scheduler
o keeps as an internal data structure a word I'™*, a “stack”, such that the Parikh
image ofw is the multiset of the task types in the poolulf= Xw’ for somew’ € I'*,
theno picks X. If a transition ruleX — « “fires”, theno, replacesXw’ by Sw’ where
B=ANX < a).

Using techniques of [8] foprobabilistic pushdown systemse obtain the following:

Theorem 4.5. Let A be subcritical ando be any depth-first scheduler. Then
Pr[S° = k] can be computed in tim@(k - |I"|?) in the unit-cost model. Moreover,
there is0 < p < 1 such thatPr[S° > k] € O(p*), i.e, there arec,C > 0 such
that cp® < Pr[S? > k] < Cp* for all k. Furthermore,p is the spectral radius of a
nonnegative matri3 € R7'>*!" whereB can be computed in polynomial time.

While the proof of Theorem 4.5 does not conceptually requitelmmore than the
results of [8], the technical details are delicate. The pcam be found in [9].

5 Expectations

In this section we study the expected completion spacethe expectatiofi[S?] for
both offline and online schedulers. Fix a task systém (I, —, Prob, Xj).

Optimal (Offline) Scheduler3he results of Section 3 allow to efficiently approxi-
mate the expectatioB[S°F]. Recall that for any random variabR with values in the
natural numbers we haugR] = > :°, Pr[R > i]. So we can (under-) approximate
E[R] by Zle Pr[R > 1] for finite k. We say thak terms computé bits of E[S°?] if
E[S7] = Y1 (1-vy)) < 27"

10

Theorem 5.1. The expectatiofi[S°?] is finite (no matter whethed is critical or sub-
critical). Moreover,O(b) terms computé bits of E[S°?]. If the task system is sub-
critical, thenlog, b + O(1) terms computé bits of E[S°P]. Finally, computingk terms
takes timeD(k - |I'|?) in the unit cost model.

Online SchedulersThe main result for online schedulers states that the fiagen
of E[S?] does not depend on the choice of the online scheduler

Theorem 5.2. If A is subcritical, thenE[S?] is finite for every online scheduler. If
Ais critical, thenE[S“] is infinite for every online scheduler.

Proof sketchThe first assertion follows from Theorem 4.1. Létbe critical. For this
sketch we focus on the case whéfgis reachable from every type. By Proposition 2.5
the spectral radius of’(1) equalsl. Then Perron-Frobenius theory guarantees the
existence of a vector with f'(1)u = w anduy > 0 for all X. Using a martin-
gale argument, similar to the one of Theorem 4.1, one can gshawthe sequence
mM m@ . with m® = 2Dy is a martingale for every scheduler and, us-
ing the Optional-Stopping Theorem, thRt[S? > k] > ux,/(k + 2). So we have
E[S7] = 3202 Pr[S7 > k] > 3207 ux, /(k +2) = oc. U
Since we can decide in polynomial time whether a system isrgtidal or critical,
we can do the same to decide on the finiteness of the expeatguletmn time.
Depth-first Scheduler§o approximatel[S?] for a given depth-first scheduler,
we can employ the same technique as for optimal offline sdbegju.e., we approx-
imate E[S7] by Zle Pr[S? > i] for finite k. We say that terms computé bits of

E[S?]if E[S7] — Y2F | Pr[S” > <27,

Theorem 5.3 (see Theorem 19 of [8]L.et A be subcritical, and let be a depth-first
scheduler. Thed®(b) terms computé bits of E[S“], and computing: terms takes time
O(k - |T"3) in the unit cost model.

6 Conclusions

We have initiated the study of scheduling tasks that carhsiiically generate other
tasks. We have provided strong results on the performanbetbfonline and offline
schedulers for the case of one processor and task systemgamitpletion probabil-
ity 1. It is an open problem how to compute and analyze onlatedulers which are
optimal in a sense. While we profited from the theory of branglprocesses, the theory
considers (in computer science terms) systems with an undemlinumber of proces-
sors, and therefore many questions had not been addredseel tveeven posed.

Acknowledgement®e thank the referees for their helpful comments.

References

1. K. Agrawal, C.E. Leiserson, Y. He, and W.J. Hsu. Adaptive watdaling with parallelism
feedback ACM TOCS26(3), 2008.

11

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

. N.S. Arora, R.D. Blumofe, and C.G. Plaxton. Thread schedubngriultiprogrammed mi-

croprocessorsTheory of Computing Systen®t:115-144, 2001.

. K.B. Athreya. On the maximum sequence of a critical branchinggaénnals of Proba-

bility, 16:502-507, 1988.

. K.B. Athreya and P.E. NeyBranching ProcessesSpringer, 1972.
. L. Blum, F. Cucker, M. Shub, and S. Smaleomplexity and Real ComputatioSpringer-

Verlag, 1998.

. R.D. Blumofe and C.E. Leiserson. Scheduling multithreaded coripuseby work stealing.

Journal of the ACM46(5):720-748, 1999.

. K.A. Borovkov and V.A. Vatutin. On distribution tails and expectationmaiima in critical

branching processesdournal of Applied Probability33(3):614—622, 1996.

. T.Brazdil, J. Esparza, and S. Kiefer. On the memory consumption of pilattier pushdown

automata. IProceedings of FSTTCPages 49-60, 2009.

. T. Brazdil, J. Esparza, S. Kiefer, and M. Luttenberger. Space-efficgatiedul-

ing of stochastically generated tasks. Technical report, 2010. Availalble
http://arxiv.org/abs/1004. 4286.

J. Esparza, S. Kiefer, and M. Luttenberger. An extension oftdi€sy method tow-
continuous semirings. IDLT'07, LNCS 4588, pages 157-168. Springer, 2007.

J. Esparza, S. Kiefer, and M. Luttenberger. On fixed point temngaover commutative
semirings. ISTACS'07LNCS 4397, pages 296—307. Springer, 2007.

J. Esparza, S. Kiefer, and M. Luttenberger. Convergencshbias of Newton's method for
monotone polynomial equations. 8TACS 2008ages 289-300, 2008.

J. Esparza, A. Ktera, and R. Mayr. Quantitative analysis of probabilistic pushdown au-
tomata: Expectations and variancesLI@S 2005 pages 117-126. IEEE, 2005.

J. Esparza, A. Ktera, and R. Mayr. Model checking probabilistic pushdown automata. |
LICS 2004 pages 12-21. IEEE Computer Society, 2004.

K. Etessami and M. Yannakakis. Recursive markov chaindiastic grammars, and mono-
tone systems of nonlinear equatiodsurnal of the ACM56(1):1-66, 2009.

W. Feller.An introduction to probability theory and its applicatianslume I. John Wiley

& Sons, 1968.

T.E. Harris.The Theory of Branching Process&pringer, 1963.

R.M. Karp and Y. Zhang. Randomized parallel algorithms for tsack search and branch-
and-bound computatiodournal of the ACM40(3):765—-789, 1993.

S. Kiefer, M. Luttenberger, and J. Esparza. On the conveegehblewton’s method for
monotone systems of polynomial equationsSIFOC 2007pages 217-226. ACM, 2007.

T. Lindvall. On the maximum of a branching proceStandinavian Journal of Statistics
3:209-214, 1976.

G.J. Narlikar and G.E. Belloch. Space-efficient scheduling efedkeparallelism. ACM
TOPLAS 21(1):138-173, 1999.

O. Nerman. On the maximal generation size of a non-critical gal&isem processScan-
dinavian Journal of Statisticg}(3):131-135, 1977.

J.M. Ortega and W.C. Rheinboldterative solution of nonlinear equations in several vari-
ables Academic Press, 1970.

A.G. Pakes. A limit theorem for the maxima of the para-critical simpdathing process.
Advances in Applied Probabilit30:740-756, 1998.

F. SpitzerPrinciples of Random WallSpringer, 1976.

A. Spataru. A maximum sequence in a critical multitype branching procdssirnal of
Applied Probability 28(4):893-897, 1991.

D. Williams. Probability with Martingales Cambridge University Press, 1995.

12

