
Space-efficient scheduling of
stochastically generated tasks

Tomá̌s Bŕazdil1⋆, Javier Esparza2, Stefan Kiefer3⋆⋆, and Michael Luttenberger2

1 Faculty of Informatics, Masaryk University, Brno, Czech Republic
2 Institut für Informatik, Technische Universität München, Germany

3 Oxford University Computing Laboratory, UK

Abstract. We study the problem of scheduling tasks for execution by a proces-
sor when the tasks can stochastically generate new tasks. Tasks can be of different
types, and each type has a fixed, known probability of generating other tasks. We
present results on the random variableSσ modeling the maximal space needed
by the processor to store the currently active tasks when acting under thesched-
ulerσ. We obtain tail bounds for the distribution ofSσ for both offline and online
schedulers, and investigate the expected valueE[Sσ].

1 Introduction

We study the problem of scheduling tasks that can stochastically generate new tasks.
We assume that the execution of a taskτ can generate a set of subtasks. Tasks can
be of different types, and each type has a fixed, known probability of generating new
subtasks. Systems of tasks can be described using a notationsimilar to that of stochastic
grammars. For instance

X
0.2
−֒−→ 〈X,X〉 X

0.3
−֒−→ 〈X,Y 〉 X

0.5
−֒−→ ∅ Y

0.7
−֒−→ 〈X〉 Y

0.3
−֒−→ 〈Y 〉

describes a system with two types of tasks. Tasks of typeX can generate2 tasks of
typeX, one task of each type, or zero tasks with probabilities0.2, 0.3, and0.5, respec-
tively (angular brackets denote multisets). Tasks of typeY can generate one task, of
typeX or Y , with probability0.7 and0.3. Tasks are executed by one processor. The
processor repeatedly selects a task from a pool of unprocessed tasks, processes it, and
puts the generated subtasks (if any) back into the pool. The pool initially contains one
task of typeX0, and the next task to be processed is selected by ascheduler.

We study random variables modeling the time and space neededto completelyex-
ecute a taskτ , i.e., to empty the pool of unprocessed tasks assuming that initially the
pool only contains taskτ . We assume that processing a task takes one time unit, and
storing it in the pool takes a unit of memory. So thecompletion timeis given by the total
number of tasks processed, and thecompletion spaceby the maximum size reached by
the pool during the computation. The completion time has been studied in [13], and so
the bulk of the paper is devoted to studying the distributionof the completion space for
different classes of schedulers.
⋆ Supported by Czech Science Foundation, grant No. P202/10/1469.

⋆⋆ Supported by the EPSRC projectAutomated Verification of Probabilistic Programs.

Our computational model is abstract, but relevant for different scenarios. In the
context of search problems, a task is a problem instance, andthe scheduler is part of
a branch-and-bound algorithm (see e.g. [18]). In the more general context of multi-
threaded computations, a task models a thread, which may generate new threads. The
problem of scheduling multithreaded computations space-efficiently on multiprocessor
machines has been extensively studied (see e.g. [21, 6, 2, 1]). These papers assume
that schedulers know nothing about the program, while we consider the case in which
stochastic information on the program behaviour is available (obtained from sampling).

We study the performance ofonlineschedulers that know only the past of the com-
putation, and compare them with theoptimal offlinescheduler, which has complete in-
formation about the future. Intuitively, this scheduler has access to an oracle that knows
how the stochastic choices will be resolved. The oracle can be replaced by a machine
that inspects the code of a task and determines which subtasks it will generate (if any).

We consider task systems with completion probability 1, which can be further di-
vided into those with finite and infinite expected completiontime, often calledsubcrit-
ical and critical. Many of our results are related to the probability generating func-
tions (pgfs) associated to a task system. The functions for the example above are
fX(x, y) = 0.2x2 + 0.3xy + 0.5 andfY (x, y) = 0.7x + 0.3y, and the reader can
easily guess the formal definition. The completion probability is the least fixed point of
the system of pgfs [17].

Our first results (Section 3) concern the distribution of thecompletion spaceSop

of the optimal offline schedulerop on a fixed but arbitrary task system withf(x) as
pgfs (in vector form). We exhibit a very surprising connection between the probabil-
ities Pr[Sop = k] and theNewton approximantsto the least fixed point off(x) (the
approximations to the least fixed point obtained by applyingNewton’s method for ap-
proximating a zero of a differentiable function tof(x) − x = 0 with seed0). This
connection allows us to apply recent results on the convergence speed of Newton’s
method [19, 12], leading to tail bounds ofSop , i.e., bounds onPr[Sop ≥ k]. We then
study (Section 4) the distribution ofSσ for an online schedulerσ, and obtain upper and
lower bounds for the performance ofanyonline scheduler in subcritical systems. These
bounds suggest a way of assigning weights to task types reflecting how likely they are
to require large space. We studylight-first schedulers, in which “light” tasks are chosen
before “heavy” tasks with larger components, and obtain an improved tail bound.

So far we have assumed that there are no dependencies betweentasks, requiring a
task to be executed before another. We study in Section 4.3 the case in which a task can
only terminate after all the tasks it has (recursively) spawned have terminated. These
are thestrict computations studied in [6]. The optimal scheduler in this case is the
depth-firstscheduler, i.e., the one that completely executes the childtask before its par-
ent, resulting in the familiar stack-based execution. Under this scheduler our tasks are
equivalent to special classes of recursive state machines [15] and probabilistic push-
down automata [14]. We determine the exact asymptotic performance of depth-first
schedulers, hereby making use of recent results [8].

We restrict ourselves to the case in which a task has at most two children, i.e., all
rulesX

p
−֒→ 〈X1, . . . ,Xn〉 satisfyn ≤ 2. This case already allows to model the forking-

mechanism underlying many multithreaded operating systems, e.g. Unix-like systems.

2

Related work.Space-efficient scheduling for search problems or multithreaded com-
putations has been studied in [18, 21, 6, 2, 1]. These papers assume that nothing is
known about the program generating the computations. We study the case in which
statistical information is available on the probability that computations split or die. The
theory ofbranching processesstudies stochastic processes modeling populations whose
members can reproduce or die [17, 4]. In computer science terminology, all existing
work on branching processes assumes that the number of processors isunbounded[3,
7, 20, 22, 24, 26]. To our knowledge, we are the first to study the 1-processor case.

Structure of the paper.The rest of the paper is structured as follows. The prelimi-
naries in Section 2 formalize the notions from the introduction and summarize known
results on which we build. In Section 3 we study optimal offline schedulers. Section 4 is
dedicated to online schedulers. First we prove performancebounds that hold uniformly
for all online schedulers, then we prove improved bounds forlight-first schedulers,
and finally we determine the exact asymptotic behaviour of depth-first schedulers. In
Section 5 we obtain several results on the expected space consumption under different
schedulers. Section 6 contains some conclusions. Full proofs can be found in [9].

2 Preliminaries

LetA be a finite set. We regard elements ofN
A andR

A asvectorsand use boldface (like
u,v) to denote vectors. The vector whose components are all0 (resp.1) is denoted by0
(resp.1). We use angular brackets to denote multisets and often identify multisets over
A and vectors indexed byA. For instance, ifA = {X,Y } andv ∈ N

A with vX = 1

andvY = 2, thenv = 〈X,Y, Y 〉. We often shorten〈a〉 to a. M≤2
A denotes the multisets

overA containing at most2 elements.

Definition 2.1. A task systemis a tuple∆ = (Γ, −֒→,Prob,X0) whereΓ is a finite
set of task types, −֒→ ⊆ Γ × M≤2

Γ is a set oftransition rules, Prob is a function as-
signing positive probabilities to transition rules so thatfor everyX ∈ Γ we have
∑

X −֒→α Prob((X,α)) = 1, andX0 ∈ Γ is theinitial type.

We write X
p
−֒→ α wheneverX −֒→ α andProb((X,α)) = p. Executions of a task

system are modeled as family trees, defined as follows. Fix anarbitrary total order�
on Γ . A family treet is a pair(N,L) whereN ⊆ {0, 1}∗ is a finite binary tree (i.e. a
prefix-closed finite set of words over{0, 1}) andL : N −֒→ Γ is a labelling such that
every nodew ∈ N satisfies one of the following conditions:w is a leaf andL(w) −֒→ ε,
or w has a unique childw0, andL(w) satisfiesL(w) −֒→ L(w0), or w has two children
w0 andw1, andL(w0), L(w1) satisfyL(w) −֒→ 〈L(w0), L(w1)〉 andL(w0) � L(w1).
Given a nodew ∈ N , the subtree oft rooted atw, denoted bytw, is the family tree
(N ′, L′) such thatw′ ∈ N ′ iff ww′ ∈ N andL′(w′) = L(ww′) for everyw′ ∈ N ′. If
a treet has a subtreet0 or t1, we call this subtree achild of t. (So, the termchild can
refer to a node or a tree, but there will be no confusion.)

We define a functionPr which, loosely speaking, assigns to a family treet = (N,L)
its probability (see the assumption below). Assume that theroot oft is labeled byX. If t

consists only of the root, andX
p
−֒→ ε, thenPr[t] = p; if the root has only one child (the

3

node0) labeled byY , andX
p
−֒→ Y , thenPr[t] = p ·Pr[t0]; if the root has two children

(the nodes0 and1) labeled byY andZ, andX
p
−֒→ 〈Y,Z〉, thenPr[t] = p·Pr[t0]·Pr[t1].

We denote byTX the set of all family trees whose root is labeled byX, and byPrX the
restriction ofPr to TX . We drop the subscript ofPrX if X is understood.

Example 2.2.Figure 1 shows (a) a task system withΓ = {X,Y,Z}; and (b) a family
treet of the system with probabilityPr[t] = 0.25 · 0.1 · 0.75 · 0.6 · 0.4 · 0.9. The name
and label of a node are written close to it.

(a)

X
0.25

−֒−→ 〈Y, Z〉 Y
0.1

−֒−→ 〈X, Z〉 Z
0.4

−֒−→ 〈Y 〉

X
0.75

−֒−→ ∅ Y
0.9

−֒−→ ∅ Z
0.6

−֒−→ ∅

(b)

ε, X

0, Y 1, Z

00, X 01, Z 10, Y

Fig. 1. (a) A task system. (b) A family tree.

Assumptions. Throughout the paper we assume that a task system
∆ = (Γ, −֒→,Prob,X0) satisfies the following two conditions for every typeX ∈ Γ :
(1) X is reachablefrom X0, meaning that some tree inTX0

contains a node labeled
by X, and (2)Pr[TX] =

∑

t∈TX
Pr[t] = 1. So we assume that(TX ,PrX) is a

discrete probability space withTX as set of elementary events andPrX as probability
function. This is the formal counterpart to assuming that every task is completed with
probability 1.

Proposition 2.3. It can be decided in polynomial time whether assumptions (1)and (2)
are satisfied.

Proof. (1) is trivial. For (2) let theprobability generating function(pgf) of the task
system be defined as the functionf : R

Γ → R
Γ of ∆ where for everyX ∈ Γ

fX(v) =
∑

X
p

−֒→〈Y,Z〉

p · vY · vZ +
∑

X
p

−֒→〈Y 〉

p · vY +
∑

X
p

−֒→∅

p .

It is well known (see e.g. [17]) that (2) holds iff the least nonnegative fixed point off
equals1, which is decidable in polynomial time [15]. ⊓⊔

Derivations and schedulers.Let t = (N,L) be a family tree. Astateof t is a
maximal subset ofN in which no node is a proper prefix of another node (graphically,
no node is a proper descendant of another node). The elementsof a state are calledtasks.
If s is a state andw ∈ s, then thew-successor ofs is the uniquely determined states′

defined as follows: ifw is a leaf ofN , thens′ = s \ {w}; if w has one childw0, then
s′ = (s\{w})∪{w0}; if w has two childrenw0 andw1, thens′ = (s\{w})∪{w0, w1}.
We writes ⇒ s′ if s′ is thew-successor ofs for somew. A derivation oft is a sequence

4

s1 ⇒ . . . ⇒ sk of states such thats1 = {ǫ} andsk = ∅. A scheduleris a mappingσ
that assigns to a family treet a derivationσ(t) of t. If σ(t) = (s1 ⇒ . . . ⇒ sk), then for
every1 ≤ i < k we denote byσ(t)[i] a task ofsi such thatsi+1 is theσ(t)[i]-successor
of si. Intuitively, σ(t)[i] is the task ofsi scheduled byσ. This definition allows for
schedulers that know the tree, and so how future tasks will behave. In Section 4 we
define and study online schedulers which only know the past ofthe computation. Notice
that schedulers are deterministic (non-randomized).
Example 2.4.A schedulerσ1 may schedule the treet in Figure 1 as follows:{ε} ⇒
{0, 1} ⇒ {0, 10} ⇒ {0} ⇒ {00, 01} ⇒ {01} ⇒ {}. Let σ2 be the sched-
uler which always picks the least unprocessed task w.r.t. the lexicographical order
on {0, 1}∗. (This is an example of an online scheduler.) It schedulest as follows:
{ε} ⇒ {0, 1} ⇒ {00, 01, 1} ⇒ {01, 1} ⇒ {1} ⇒ {10} ⇒ {}.

Time and space.Given X ∈ Γ , we define a random variableTX , thecompletion
time ofX, that assigns to a treet ∈ TX its number of nodes. Assuming that tasks
are executed for one time unit before its generated subtasksare returned to the pool,
TX corresponds to the time required to completely executeX. Our assumption (2)
guarantees thatTX is finite with probability1, but its expectationE[TX] may or may
not be finite. A task system∆ is calledsubcritical if E[TX] is finite for everyX ∈ Γ .
Otherwise it is calledcritical. If ∆ is subcritical, thenE[TX] can be easily computed
by solving a system of linear equations [13]. The notion of criticality comes from the
theory of branching processes, see e.g. [17, 4]. Here we onlyrecall the following results:

Proposition 2.5 ([17, 15]).Let ∆ be a task system with pgff . Denote byf ′(1) the
Jacobian matrix of partial derivatives off evaluated at1. If ∆ is critical, then the
spectral radius off ′(1) is equal to1; otherwise it is strictly less than1. It can be
decided in polynomial time whether∆ is critical.

A state models a pool of tasks awaiting to be scheduled. We areinterested in the
maximal size of the pool during the execution of a derivation. So we define the ran-
dom completion spaceSσ

X as follows. If σ(t) = (s1 ⇒ . . . ⇒ sk), then Sσ
X(t) :=

max{|s1|, . . . , |sk|}, where|si| is the cardinality ofsi. Sometimes we writeSσ(t),
meaningSσ

X(t) for the typeX labelling the root oft. If we writeSσ without specifying
the application to any tree, then we meanSσ

X0
.

Example 2.6.For the schedulers of Example 2.4 we haveSσ1(t) = 2 andSσ2(t) = 3.

3 Optimal (Offline) Schedulers

Let Sop be the random variable that assigns to a family tree the minimal completion
space of its derivations. We callSop(t) the optimal completion spaceof t. The opti-
mal scheduler assigns to each tree a derivation with optimalcompletion space. In the
multithreading scenario, it corresponds to a scheduler that can inspect the code of a
thread and decide whether it will spawn a new thread or not. Note that, although the
optimal scheduler “knows” how the stochastic choices are resolved, the optimal com-
pletion spaceSop(t) is still a random variable, because it depends on a random tree.
The following proposition characterizes the optimal completion space of a tree in terms
of the optimal completion space of its children.

5

Proposition 3.1. Let t be a family tree. Then

Sop(t) =



















min

{

max{Sop(t0) + 1, Sop(t1)},

max{Sop(t0), S
op(t1) + 1}

}

if t has two childrent0, t1

Sop(t0) if t has exactly one childt0
1 if t has no children.

Proof sketch.The only nontrivial case is whent has two childrent0 andt1. Consider
the following schedulings fort, wherei ∈ {0, 1}: Execute first all tasks ofti and
then all tasks oft1−i; within both ti and t1−i, execute tasks in optimal order. While
executingti, the root task oft1−i remains in the pool, and so the completion space is
s(i) = max{Sop(ti)+1, Sop(t1−i)}. The optimal scheduler chooses the value ofi that
minimizess(i). ⊓⊔

Given a typeX, we are interested in the probabilitiesPr[Sop

X ≤ k] for k ≥ 1.
Proposition 3.1 yields a recurrence relation which at first sight seems difficult to handle.
However, using results of [11, 10] we can exhibit a surprising connection between these
probabilities and the pgff .

Let µ denote the least fixed point off and recall from the proof of Proposition 2.3
that µ = 1. Clearly,1 is a zero off(x) − x. It has recently been shown thatµ can
be computed by applying tof(x) − x Newton’s method for approximating a zero of a
differentiable function [15, 19]. More precisely,µ = limk→∞ ν(k) where

ν(0) = 0 and ν(k+1) = ν(k) + (I − f ′(ν(k)))−1
(

f(ν(k)) − ν(k)
)

andf ′(ν(k)) denotes the Jacobian matrix of partial derivatives off evaluated atν(k)

andI the identity matrix. Computingµ, however, is in our case uninteresting, because
we already know thatµ = 1. So, why do we need Newton’s method? Because the
sequence of Newton approximants provides exactly the information we are looking for:

Theorem 3.2. Pr[Sop

X ≤ k] = ν
(k)
X for every typeX and everyk ≥ 0.

Proof sketch.We illustrate the proof idea on the one-type task system withpgf f(x) =
px2 + q, whereq = 1 − p. Let T≤k andT=k denote the sets of treest with Sop(t) ≤ k
andSop(t) = k, respectively. We showPr[T≤k] = ν(k) for all k by induction onk.
The casek = 0 is trivial. Assume thatν(k) = Pr[T≤k] holds for somek ≥ 0. We prove
Pr[T≤k+1] = ν(k+1). Notice that

ν(k+1) := ν(k) + f(ν(k))−ν(k)

1−f ′(ν(k))
= ν(k) + (f(ν(k)) − ν(k)) ·

∑∞
i=0 f ′(ν(k))i.

Let B(0)
k+1 be the set of trees that have two children both of which belongto T=k, and,

for everyi ≥ 0, letB(i+1)
k+1 be the set of trees with two children, one belonging toT≤k,

the other one toB(i)
k+1. By Proposition 3.1 we haveT≤k+1 =

⋃

i≥0 B
(i)
k+1. We prove

Pr
[

B
(i)
k+1

]

= f ′(ν(k))i (f(ν(k) − ν(k)) by an (inner) induction oni, which completes

the proof. For the basei = 0, letA≤k be the set of trees with two children inT≤k; by
induction hypothesis we havePr[A≤k] = pν(k)ν(k). In a tree ofA≤k either (a) both

6

children belong toT=k, and sot ∈ B
(0)
k+1, or (b) at most one child belongs toT=k. By

Proposition 3.1, the trees satisfying (b) belong toT≤k. In fact, a stronger property holds:
a tree ofT≤k either satisfies (b) or it has one single node. Since the probability of the tree

with one node isq, we getPr[A≤k] = Pr
[

B
(0)
k+1

]

+Pr[T≤k]−q. Applying the induction

hypothesis again we obtainPr
[

B
(0)
k+1

]

= pν(k)ν(k) + q − ν(k) = f(ν(k)) − ν(k).

For the induction step, leti > 0. Divide B
(i)
k+1 into two sets, one containing the trees

whose left (right) child belongs toB(i)
k+1 (to T≤k), and the other the trees whose left

(right) child belongs toT≤k (toB
(i)
k+1). Using both induction hypotheses, we get that the

probability of each set ispν(k)f ′(ν(k))i(f(ν(k)) − ν(k)). SoPr
[

B
(i+1)
k+1

]

= (2pν(k)) ·

f ′(ν(k))i(f(ν(k)) − ν(k)). Sincef(x) = px2 + q we havef ′(ν(k)) = 2pν(k), and so

Pr
[

B
(i+1)
k+1

]

= f ′(ν(k))i+1(f(ν(k) − ν(k)) as desired. ⊓⊔

Example 3.3.Consider the task systemX
p
−֒→ 〈X,X〉, X

q
−֒→ ∅ with pgf f(x) =

px2 + q, wherep is a parameter andq = 1 − p. The least fixed point off is 1 if
p ≤ 1/2 andq/p otherwise. So we consider only the casep ≤ 1/2. The system is
critical for p = 1/2 and subcritical forp < 1/2. Using Newton approximants we obtain
the following recurrence relation for the distribution of the optimal scheduler, where
pk := Pr[Sop ≥ k] = 1 − ν(k−1): pk+1 = (pp2

k)/(1 − 2p + 2ppk). In particular, for
the critical valuep = 1/2 we getpk = 21−k andE[Sop] =

∑

k≥1 Pr[Sop ≥ k] = 2.

Theorem 3.2 allows to compute the probability mass functionof Sop . As a Newton
iteration requiresO(|Γ |3) arithmetical operations, we obtain the following corollary,
where by the unit cost model we refer to the cost in the Blum-Shub-Smale model, in
which arithmetic operations have cost 1 independently of the size of the operands [5].

Corollary 3.4. Pr[Sop

X = k] can be computed in timeO(k·|Γ |3) in the unit cost model.

It is easy to see that Newton’s method converges quadratically for subcritical systems
(see e.g. [23]). For critical systems, it has recently been proved that Newton’s method
still converges linearly [19, 12]. These results lead to tail bounds forSop

X :

Corollary 3.5. For any task system∆ there are real numbersc > 0 and0 < d < 1
such thatPr[Sop

X ≥ k] ≤ c · dk for all k ∈ N. If ∆ is subcritical, then there are real

numbersc > 0 and0 < d < 1 such thatPr[Sop

X ≥ k] ≤ c · d2k

for all k ∈ N.

4 Online Schedulers

From this section on we concentrate on online schedulers that only know the past of the
computation. Formally, a schedulerσ is online if for every treet with σ(t) = (s1 ⇒
. . . ⇒ sk) and for every1 ≤ i < k, the taskσ(t)[i] depends only ons1 ⇒ . . . ⇒ si

and on the restriction of the labelling functionL to
⋃i

j=1 sj .
Compact Task Systems.Any task system can be transformed into a so-calledcompact
task system such that for every scheduler of the compact tasksystem we can construct a
scheduler of the original system with nearly the same properties. A typeW is compact

7

if there is a ruleX −֒→ 〈Y,Z〉 such thatX is reachable fromW . A task system is
compactif all its types are compact.From now on we assume that task systems are
compact.This assumption is essentially without loss of generality,as we argue in [9].

4.1 Tail Bounds for Online Schedulers

The following main theorem gives computable lower and upperbounds which hold
uniformly for all online schedulersσ.

Theorem 4.1. Let∆ be subcritical.

– Let v,w ∈ (1,∞)Γ be vectors withf(v) ≤ v andf(w) ≥ w. Denote byvmin

andwmax the least component ofv and the greatest component ofw, respectively.
Then

wX0
− 1

wk+2
max − 1

≤ Pr[Sσ ≥ k] ≤
vX0

− 1

vk
min − 1

for all online schedulersσ.

– Vectorsv,w ∈ (1,∞)Γ with f(v) ≤ v andf(w) ≥ w exist and can be computed
in polynomial time.

Proof sketch.Chooseh > 1 andu ∈ (0,∞)Γ such thathuX = vX for all X ∈ Γ .
Define for alli ≥ 1 the variablem(i) = z(i) u where “” denotes the scalar product,
i.e.,m(i) measures the number of tasks at timei weighted by types according tou. One
can show thathm(1)

, hm(2)

, . . . is a supermartingale for any online schedulerσ, and,
using the Optional Stopping Theorem [27], thatPr

[

supi m(i) ≥ x
]

≤ (vX0
−1)/(hx−

1) for all x (see [9] for the details and [16, 25] for a similar argument onrandom walks).
As each type has at least weightumin, we have thatSσ ≥ k implies supi m(i) ≥
kumin. HencePr[Sσ ≥ k] ≤ Pr

[

supi m(i) ≥ kumin

]

≤ (vX0
− 1)/(vk

min − 1). The
lower bound is shown similarly. ⊓⊔

All online schedulers perform within the bounds of Theorem 4.1. For an applica-
tion of the upper bound, assume one wants to provide as much space as is necessary to
guarantee that, say, 99.9% of the executions of a task systemcan run without needing
additional memory. This can be accomplished, regardless ofthe scheduler, by provid-
ing k space units, wherek is chosen such that the upper bound of Theorem 4.1 is at
most0.001.

A comparison of the lower bound with Corollary 3.5 proves forsubcritical task
systems that the asymptotic performance of any online scheduler σ is far away from
that of the optimal offline scheduler: the ratioPr[Sσ ≥ k] /Pr[Sop ≥ k] is unbounded.
Example 4.2.Consider again the task system with pgff(x) = px2+q. Forp < 1/2 the
pgf has two fixed points,1 andq/p. In particular,q/p > 1, soq/p can be used to obtain
both an upper and a lower bound for online schedulers. Since there is only one type
of tasks, vectors have only one component, and the maximal and minimal components
coincide; moreover, in this case the exponentk+2 of the lower bound can be improved
to k. So the upper and lower bounds coincide, and we getPr[Sσ ≥ k] = q/p−1

(q/p)k−1
for

every online schedulerσ. In particular, as one intuitively expects, all online schedulers
are equivalent.4

4 For this examplePr[Sσ ≥ k] can also be computed by elementary means.

8

4.2 Tail Bounds for Light-First Schedulers

We present a class of online schedulers for which a sharper upper bound than the one
given by Theorem 4.1 can be proved. It may be intuitive that a good heuristic is to pick
the task with the smallest expected completion time. If we compute a vectorv with
f(v) ≤ v in polynomial time according to the proof of Theorem 4.1, then the type
Xmin for which vXmin

= vmin holds turns out to be the type with smallest expected
completion time. This suggests choosing the active typeX with smallest component
in v. So we look atv as a vector of weights, and always choose the lightest activetype.
In fact, for this (intuitively good) scheduler we obtain twodifferent upper bounds.

Given a vectorv with f(v) ≤ v we denote by⊑ a total order onΓ such that
wheneverX ⊑ Y thenvX ≤ vY . If X ⊑ Y , then we say thatX is lighter thanY . The
v-light-first scheduleris an online scheduler that, in each step, picks a task of the lightest
type available in the pool according tov. Theorem 4.3 below strengthens the upper
bound of Theorem 4.1 for light-first schedulers. For the second part of Theorem 4.3 we
use the notion ofv-accumulating types. A typeX ∈ Γ is v-accumulating if for every
k ≥ 0 thev-light-first scheduler has a nonzero probability of reaching a state with at
leastk tasks of typeX in the pool.

Theorem 4.3. Let ∆ be subcritical andv ∈ (1,∞)Γ with f(v) ≤ v. Let σ be a
v-light-first scheduler. Letvminmax := minX −֒→〈Y,Z〉 max{vY ,vZ} (here the mini-
mum is taken over all transition rules with two types on the right hand side). Then
vminmax ≥ vmin and for allk ≥ 1

Pr[Sσ ≥ k] ≤
vX0

− 1

vminvk−1
minmax − 1

.

Moreover, letvminacc := min{vX | X ∈ Γ, X is v-accumulating}. Then
vminacc ≥ vminmax, vminacc can be computed in polynomial time, and there is an
integerℓ such that for allk ≥ ℓ

Pr[Sσ ≥ k] ≤
vX0

− 1

vℓ
minvk−ℓ

minacc − 1
.

Proof sketch.Recall the proof sketch of Theorem 4.1 where we used thatSσ ≥ k
impliessupi m(i) ≥ kumin, as each type has at least weightumin. Let ℓ be such that
no more thanℓ tasks of non-accumulating type can be in the pool at the same time.
ThenSσ ≥ k implies supi m(i) ≥ ℓumin + (k − ℓ)uminacc which leads to the final
inequality of Theorem 4.3 in a way analogous to the proof sketch of Theorem 4.1. ⊓⊔

Intuitively, a light-first scheduler “works against” lighttasks by picking them as
soon as possible. In this way it may be able to avoid the accumulation of some light
types, so it may achievevminacc > vmin. This is illustrated in the following example.

Example 4.4.Consider the task system with 2 task types and pgfsx = a2xy+a1y+a0

andy = b2xy + b1y + b0, wherea2 + a1 + a0 = 1 = b2 + b1 + b0 = 1. The system
is subcritical ifa1b2 < a2b1 − a2 + b0. The pgfs have a greatest fixed pointv with
vX = (1−a2−b1−a1b2+a2b1)/b2 andvY = (1−b1−b2)/(a2+a1b2−a2b1). We have
vX ≤ vY iff a2−b2 ≤ a2b1−a1b2, and so the light-first scheduler choosesX beforeY

9

if this condition holds, andY beforeX otherwise. We show that the light-first scheduler
is asymptotically optimal. Assume w.l.o.g.vX ≤ vY . ThenX is not accumulating
(becauseX-tasks are picked as soon as they are created), and sovminacc = vY . So the
upper bound for the light-weight scheduler yields a constant c2 such thatPr[Sσ ≥ k] ≤
c2/vk

Y . But the general lower bound for arbitrary online schedulers states that there is
a constantc1 such thatPr[Sσ ≥ k] ≥ c1/vk

Y , so we are done.

4.3 Tail Bounds for Depth-first Schedulers

Space-efficient scheduling of multithreaded computationshas received considerable at-
tention [21, 6, 2, 1]. The setting of these papers is slightlydifferent from ours, because
they assume data dependencies among the threads, which may cause a thread to wait for
a result from another thread. In this sense our setting is similar to that of [18], where, in
thread terminology, the threads can execute independently.

These papers focus ondepth-firstcomputations, in which if threadA has to wait for
threadB, thenB was spawned byA or by a descendant ofA. The optimal scheduler
is the one that, whenA spawnsB, interrupts the execution ofA and continues withB;
this online scheduler produces the familiar stack-based execution [6, 21].

We study the performance of thisdepth-firstscheduler. Formally, a depth-first
schedulerσλ is determined by a functionλ that assigns to each ruler = X −֒→ 〈Y,Z〉
eitherY Z or Z Y . If λ(r) = Y Z, thenZ models the continuation of the threadX,
while Y models a new thread for whose terminationZ waits. The depth-first scheduler
σλ keeps as an internal data structure a wordw ∈ Γ ∗, a “stack”, such that the Parikh
image ofw is the multiset of the task types in the pool. Ifw = Xw′ for somew′ ∈ Γ ∗,
thenσ picksX. If a transition ruleX −֒→ α “fires”, thenσλ replacesXw′ by βw′ where
β = λ(X −֒→ α).
Using techniques of [8] forprobabilistic pushdown systems, we obtain the following:

Theorem 4.5. Let ∆ be subcritical and σ be any depth-first scheduler. Then
Pr[Sσ = k] can be computed in timeO(k · |Γ |3) in the unit-cost model. Moreover,
there is0 < ρ < 1 such thatPr[Sσ ≥ k] ∈ Θ(ρk), i.e, there arec, C > 0 such
that cρk ≤ Pr[Sσ ≥ k] ≤ Cρk for all k. Furthermore,ρ is the spectral radius of a
nonnegative matrixB ∈ R

Γ×Γ , whereB can be computed in polynomial time.

While the proof of Theorem 4.5 does not conceptually require much more than the
results of [8], the technical details are delicate. The proof can be found in [9].

5 Expectations

In this section we study the expected completion space, i.e., the expectationE[Sσ] for
both offline and online schedulers. Fix a task system∆ = (Γ, −֒→,Prob,X0).

Optimal (Offline) Schedulers.The results of Section 3 allow to efficiently approxi-
mate the expectationE[Sop]. Recall that for any random variableR with values in the
natural numbers we haveE[R] =

∑∞
i=1 Pr[R ≥ i]. So we can (under-) approximate

E[R] by
∑k

i=1 Pr[R ≥ i] for finite k. We say thatk terms computeb bits ofE[Sop] if

E[Sop] −
∑k−1

i=0 (1 − ν
(i)
X0

) ≤ 2−b.

10

Theorem 5.1. The expectationE[Sop] is finite (no matter whether∆ is critical or sub-
critical). Moreover,O(b) terms computeb bits ofE[Sop]. If the task system∆ is sub-
critical, thenlog2 b +O(1) terms computeb bits ofE[Sop]. Finally, computingk terms
takes timeO(k · |Γ |3) in the unit cost model.

Online Schedulers.The main result for online schedulers states that the finiteness
of E[Sσ] does not depend on the choice of the online schedulerσ.

Theorem 5.2. If ∆ is subcritical, thenE[Sσ] is finite for every online schedulerσ. If
∆ is critical, thenE[Sσ] is infinite for every online schedulerσ.

Proof sketch.The first assertion follows from Theorem 4.1. Let∆ be critical. For this
sketch we focus on the case whereX0 is reachable from every type. By Proposition 2.5
the spectral radius off ′(1) equals1. Then Perron-Frobenius theory guarantees the
existence of a vectoru with f ′(1)u = u anduX > 0 for all X. Using a martin-
gale argument, similar to the one of Theorem 4.1, one can showthat the sequence
m(1),m(2), . . . with m(i) := z(i) u is a martingale for every schedulerσ, and, us-
ing the Optional-Stopping Theorem, thatPr[Sσ ≥ k] ≥ uX0

/(k + 2). So we have
E[Sσ] =

∑∞
k=1 Pr[Sσ ≥ k] ≥

∑∞
k=1 uX0

/(k + 2) = ∞. ⊓⊔
Since we can decide in polynomial time whether a system is subcritical or critical,

we can do the same to decide on the finiteness of the expected completion time.
Depth-first Schedulers.To approximateE[Sσ] for a given depth-first schedulerσ,

we can employ the same technique as for optimal offline schedulers, i.e., we approx-
imateE[Sσ] by

∑k
i=1 Pr[Sσ ≥ i] for finite k. We say thatk terms computeb bits of

E[Sσ] if E[Sσ] −
∑k

i=1 Pr[Sσ ≥ i] ≤ 2−b.

Theorem 5.3 (see Theorem 19 of [8]).Let∆ be subcritical, and letσ be a depth-first
scheduler. ThenO(b) terms computeb bits ofE[Sσ], and computingk terms takes time
O(k · |Γ |3) in the unit cost model.

6 Conclusions

We have initiated the study of scheduling tasks that can stochastically generate other
tasks. We have provided strong results on the performance ofboth online and offline
schedulers for the case of one processor and task systems with completion probabil-
ity 1. It is an open problem how to compute and analyze online schedulers which are
optimal in a sense. While we profited from the theory of branching processes, the theory
considers (in computer science terms) systems with an unbounded number of proces-
sors, and therefore many questions had not been addressed before or even posed.

Acknowledgement.We thank the referees for their helpful comments.

References

1. K. Agrawal, C.E. Leiserson, Y. He, and W.J. Hsu. Adaptive work-stealing with parallelism
feedback.ACM TOCS, 26(3), 2008.

11

2. N.S. Arora, R.D. Blumofe, and C.G. Plaxton. Thread scheduling for multiprogrammed mi-
croprocessors.Theory of Computing Systems, 34:115–144, 2001.

3. K.B. Athreya. On the maximum sequence of a critical branching process.Annals of Proba-
bility, 16:502–507, 1988.

4. K.B. Athreya and P.E. Ney.Branching Processes. Springer, 1972.
5. L. Blum, F. Cucker, M. Shub, and S. Smale.Complexity and Real Computation. Springer-

Verlag, 1998.
6. R.D. Blumofe and C.E. Leiserson. Scheduling multithreaded computations by work stealing.

Journal of the ACM, 46(5):720–748, 1999.
7. K.A. Borovkov and V.A. Vatutin. On distribution tails and expectations ofmaxima in critical

branching processes.Journal of Applied Probability, 33(3):614–622, 1996.
8. T. Bŕazdil, J. Esparza, and S. Kiefer. On the memory consumption of probabilistic pushdown

automata. InProceedings of FSTTCS, pages 49–60, 2009.
9. T. Bŕazdil, J. Esparza, S. Kiefer, and M. Luttenberger. Space-efficientschedul-

ing of stochastically generated tasks. Technical report, 2010. Availableat
http://arxiv.org/abs/1004.4286.

10. J. Esparza, S. Kiefer, and M. Luttenberger. An extension of Newton’s method toω-
continuous semirings. InDLT’07, LNCS 4588, pages 157–168. Springer, 2007.

11. J. Esparza, S. Kiefer, and M. Luttenberger. On fixed point equations over commutative
semirings. InSTACS’07, LNCS 4397, pages 296–307. Springer, 2007.

12. J. Esparza, S. Kiefer, and M. Luttenberger. Convergence thresholds of Newton’s method for
monotone polynomial equations. InSTACS 2008, pages 289–300, 2008.

13. J. Esparza, A. Kǔcera, and R. Mayr. Quantitative analysis of probabilistic pushdown au-
tomata: Expectations and variances. InLICS 2005, pages 117–126. IEEE, 2005.

14. J. Esparza, A. Kǔcera, and R. Mayr. Model checking probabilistic pushdown automata. In
LICS 2004, pages 12–21. IEEE Computer Society, 2004.

15. K. Etessami and M. Yannakakis. Recursive markov chains, stochastic grammars, and mono-
tone systems of nonlinear equations.Journal of the ACM, 56(1):1–66, 2009.

16. W. Feller.An introduction to probability theory and its applications, volume I. John Wiley
& Sons, 1968.

17. T.E. Harris.The Theory of Branching Processes. Springer, 1963.
18. R.M. Karp and Y. Zhang. Randomized parallel algorithms for backtrack search and branch-

and-bound computation.Journal of the ACM, 40(3):765–789, 1993.
19. S. Kiefer, M. Luttenberger, and J. Esparza. On the convergence of Newton’s method for

monotone systems of polynomial equations. InSTOC 2007, pages 217–226. ACM, 2007.
20. T. Lindvall. On the maximum of a branching process.Scandinavian Journal of Statistics,

3:209–214, 1976.
21. G.J. Narlikar and G.E. Belloch. Space-efficient scheduling of nested parallelism. ACM

TOPLAS, 21(1):138–173, 1999.
22. O. Nerman. On the maximal generation size of a non-critical galton-watson process.Scan-

dinavian Journal of Statistics, 4(3):131–135, 1977.
23. J.M. Ortega and W.C. Rheinboldt.Iterative solution of nonlinear equations in several vari-

ables. Academic Press, 1970.
24. A.G. Pakes. A limit theorem for the maxima of the para-critical simple branching process.

Advances in Applied Probability, 30:740–756, 1998.
25. F. Spitzer.Principles of Random Walk. Springer, 1976.
26. A. Sp̆ataru. A maximum sequence in a critical multitype branching process.Journal of

Applied Probability, 28(4):893–897, 1991.
27. D. Williams.Probability with Martingales. Cambridge University Press, 1995.

12

