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Abstract

We consider the model checking problem for probabilistic pushdown au-
tomata (pPDA) and properties expressible in various probabilistic logics. We
start with properties that can be formulated as instances of a generalized ran-
dom walk problem. We prove that both qualitative and quantitative model
checking for this class of properties and pPDA is decidable. Then we show
that model checking for the qualitative fragment of the logic PCTL and pPDA
is also decidable. Moreover, we develop an error-tolerant model checking al-
gorithm for general PCTL and the subclass of stateless pPDA. Finally, we
consider the class of properties definable by deterministic Biichi automata,
and show that both qualitative and quantitative model checking for pPDA is
decidable.
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1 Introduction

Probabilistic systems can be used for modeling systems that exhibit uncertainty,
such as communication protocols over unreliable channels, randomized distributed
systems, or fault-tolerant systems. Finite-state models of such systems often use
variants of probabilistic automata whose underlying semantics is defined in terms
of homogeneous Markov chains, which are also called “fully probabilistic transi-
tion systems” in this context. For fully probabilistic finite-state systems, algorithms
for various (probabilistic) temporal logics like LTL, PCTL, PCTL*, probabilistic u-
calculus, etc., have been presented in [LS82, HS84, Var85, CY88, HI94, ASBT95,
CY95, HK97, CSS03]. As for infinite-state systems, most works so far considered
probabilistic lossy channel systems [IN97] which model asynchronous communi-
cation through unreliable channels [BE99, ABIJOO, ARO3, BS03]. A notable recent
result is the decidability of quantitative model checking of liveness properties spec-
ified by Biichi-automata for probabilistic lossy channel systems [Rab03]. In fact,
this algorithm is error tolerant in the sense that the quantitative model checking is
solved only up to an arbitrarily small (but non-zero) given error.

In this paper we consider probabilistic pushdown automata (pPDA), which
are a natural model for probabilistic sequential programs with recursive procedure
calls. There is a large number of results about model checking of non-probabilistic
PDA or similar models (see for instance [AEYO01, BS97, EHRS00, WalO1]), but
the probabilistic extension has so far not been considered. As a related work we
can mention [MO98], where it is shown that a restricted subclass of pPDA (where
essentially all probabilities for outgoing arcs are either 1 or 1/2) generates a richer
class of languages than non-deterministic PDA. Another work [AMP99] shows the
equivalence of pPDA and probabilistic context-free grammars.

Here we consider model checking problems for pPDA (and its natural subclass
of stateless pPDA denoted pBPA') and various probabilistic logics. We start with a
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Figure 1: Bernoulli random walk as a pBPA

class of properties that can be specified as a generalized random walk problem. To
get a better intuition about this class of problems, realize that some random walks
can easily be specified by pBPA systems. For example, consider a pBPA with

"This is a standard notation adopted in concurrency theory. The subclass of stateless PDA corre-
sponds to a natural subclass of ACP known as Basic Process Algebra [BW90].



just three stack symbols Z, I, D and transitions Z 51z, 7 1:>w DZ, I3 11,
= e, D gy DD, and D % ¢, where z € [0, 1]. Then the transition graph of
Z (see Fig. 1) is the well-known Bernoulli walk. A typical question examined in
theory of random walks is “Do we eventually revisit a given state (with probability
one)?”, or more generally “What is the probability of reaching a given state from
another given state?” For example, it is a standard result that the state Z of Fig. 1
is revisited with probability 1 iff # = 1/2. This simple example indicates that
answers to qualitative questions about pPDA (i.e., whether something holds with
probability 1 or 0) depend on the exact probabilities of individual transitions. This
is different from finite-state systems where qualitative properties depend only on
the topology of a given finite-state Markov chain.

The generalized random walk problem is formulated as follows: Let C; and
C2 be subsets of the set of states of a given Markov chain, and let s be a state
of C;. What is the probability that, starting at s, a state of Cy is reached via
a path leading only through states of C;? Let us denote this probability by
P(s,C1 U Cs). The problem of computing P(s,C; U Cy) has been previously con-
sidered (and solved) for finite-state systems, where this probability can be com-
puted precisely [HJ94, CY95]. In Section 3, we propose a solution for pPDA
applicable to those sets C;,Cy which are regular, i.e., recognizable by finite-state
automata. More precisely, we show that the problem whether P(s,C1 U C3) ~ o,
where ~ € {<,<,>,>,=} and ¢ € [0, 1], is decidable. Interestingly, this is
achieved without explicitly computing the probability P(s,Ci U C2). Neverthe-
less, for an arbitrary precision 0 < A < 1 we can compute rational lower and
upper approximations P¢, P* € [0, 1] such that P* < P(s,CiUCs) < P* and
Pu— Pt <.

In Section 4, we consider the model checking problem for pPDA and the logic
PCTL. This is a more general problem than the one about random walks (the class
of properties expressible in PCTL is strictly larger). In Section 4.1, we give a model
checking algorithm for the qualitative fragment of PCTL and pPDA processes. For
general PCTL formulae and pBPA processes, an error tolerant model checking
algorithm is developed in Section 4.2. The question whether this result can be
extended to pPDA is left open.

Finally, in Section 5 we prove that both qualitative and quantitative model
checking for the class of properties definable by deterministic Biichi automata is
decidable for pPDA. Again, this is done without computing the probability ex-
plicitly, but rational lower and upper approximations can be computed up to an
arbitrarily small given error.



2 Preliminary Definitions

Definition 2.1. A probabilistic transition system is a triple T = (S, —, Prob)
where S is a finite or countably infinite set of states, — C S x S is a transition
relation, and Prob is a function which to each transition s — t of T assigns its
probability Prob(s — t) € (0, 1] so that for every s € S we have

Z Prob(s — t) € {0,1}

s—t

The sum above can be 0 if it is empty, i.e., if s does not have any outgoing transi-
tions.

In the rest of this paper we also write s — ¢ instead of Prob(s — t) = .
A path in T is a finite or infinite sequence w = sg, $1,--- of states such that
s;i — si+1 for every i. We also use w(z) to denote the state s; of w (by writing
w(i) = s we implicitly impose the condition that the length of w is at least ¢ + 1).
A run 1s a maximal path, i.e., a path which cannot be prolonged. The sets of all
finite paths, all runs, and all infinite runs of 7" are denoted F'Path, Run, and IRun,
respectively?. Similarly, the sets of all finite paths, runs, and infinite runs that start
in a given s € S are denoted F'Path(s), Run(s), and IRun(s), respectively.

Each w € FPath determines a basic cylinder Run(w) which consists of
all runs that start with w. To every s € S we associate the probabilistic space
(Run(s), F,P) where F is the o-field generated by all basic cylinders Run(w)
where w starts with s, and P : F — [0, 1] is the unique probability function such
that P(Run(w)) = H;’i‘olxi where w = sq,--- , Sm and s; — s;4.1 for every

0 <i<m@f m =0, weput P(Run(w)) = 1).

2.1 The Logic PCTL

PCTL, the probabilistic extension of CTL, was defined by Hansson & Jonsson in
[HI94]. Let Ap = {a,b,c,...} be a countably infinite set of atomic propositions.
The syntax of PCTL? is given by the following abstract syntax equation:

@ u= tt|a|p|pr A2 | X% | o1 U "

Here a ranges over Ap, ¢ € [0,1],and ~ € {<,<,>,>}. Let T = (S, —, Prob)
be a probabilistic transition system. For all s € S, all C,C;,Co C S, and all
k € Ny, let

’In this paper, the 7 is always clear from the context.
3For simplicity we omit the bounded ‘until’ operator of [HJ94].



e Run(s, XC) = {w € Run(s) | w(1) € C}

e Run(s,CiUC) = {w € Run(s) | Fi > 0 : w(i) € Coandw(j) €
Cy forall0 < j < i}

° FPathk(s,Cl UCs) = {sg, -+, 8¢ € FPath(s) | 0 < ¢ < k,sy € C and s; €
Ci~\Cq forall 0 < j < £}

e FPath(s,C1 U C) = U2, FPath®(s,C1 U Co)

Obviously,

P(Run(s,C1UCs)) = > P(Run(w)).
w€FPath(s,C1 U C2)

Let v : Ap — 25 be a valuation. The denotation of a PCTL formula ¢ over T~
w.r.t. v, denoted [[]", is defined inductively as follows:

[¢t]” = S
[a]” = v(a)
[el” = S\ [el”
[er A @2]” = Teal” N p2]”
[x~2¢]” = {s€S|P(Run(s, X[¢]")) ~ o}
[ U™0pa]” = {s€S|P(Run(s,[p1]" Ulpal") ~ o}

As usual, we write s =¥ ¢ instead of s € [¢]".

The qualitative fragment of PCTL is obtained by restricting the allowed oper-
ator/number combinations to ‘< 0’ and ‘> 1’, which will be also written as ‘= 0’
and ‘= 1’, resp. (Observe that ‘< 1’, ‘> 0’ are definable from ‘< 0, ‘> 1°, and
negation; for example, ald <'b = —~(ald Zb).)

2.2 Probabilistic PDA

Definition 2.2. A probabilistic pushdown automaton (pPDA) is a tuple A =
(Q,T, 0, Prob) where Q is a finite set of control states, I is a finite stack alphabet,
0 C Q xT x Q xT'* is a finite transition relation (we write pX — qa instead
of (p,X,q,c) € §), and Prob is a function which to each transition pX — qu
assigns its probability Prob(pX — qa) € (0,1] so that forallp € Q and X € T
we have that ) .., Prob(pX — qa) € {0, 1}.

A pBPA is a pPDA with just one control state. Formally, a pBPA is understood
as a triple A = (T, 6, Prob) where § C T x I'*.

In the rest of this paper we adopt a more intuitive notation, writing pX — go
instead of Prob(pX — qa) = z. The set Q x I'* of all configurations of A is
denoted by C(A). We also assume (w.l.o.g.) that if pX — gqa € 6, then |a| < 2.



To A we associate the probabilistic transition system 7a where C(A) is the set
of states and the probabilistic transition relation is determined by p X 3 5 qafiff
pX 5 qo.

The model checking problem for pPDA configurations and PCTL formulae
(i.e., the question whether pa = ¢ for given pa, ¢, and v) is clearly undecidable
for general valuations. Therefore, we restrict ourselves to regular valuations which
to every a € Ap assign a regular set of configurations:

Definition 2.3. A A-automaton is a triple A = (St,~, Acc) where St is a finite
set of states s.t. Q C St, v : St x ' — St is a (total) transition function, and
Acc C St a set of accepting states.

The function ~ is extended to the elements of I'* in the standard way. Each A-
automaton A determines a set C(A) C C(A) given by pa € C(A) iff v(p, a®) €
Acc. Here o™ is the reverse of o, i.e., the word obtained by reading o from right
to left.

We say that a set C C C(A) is regular iff there is a A-automaton A such that
C=C(A).

In other words, regular sets of configurations are recognizable by finite-state au-
tomata which read the stack bottom-up (the bottom-up direction was chosen just
for technical convenience).

3 Random Walks on pPDA Graphs

For the rest of this section, let us fix a pPDA A = (Q, T, 6, Prob).

An important technical step in our development is the replacement of regu-
lar sets of configurations with “simple” ones for which the membership function
depends just on the control state and the top stack symbol of a given configuration.

Definition 3.1. A set of configurations C is simple if there is a set G C Qx (T'U{e})
such that for each pa € C(A) we have that pa. € C iff either o = € and pe € G,
ora=X@andpX € G.

The next lemma says that regular sets of configurations can be effectively re-
placed with simple ones. This is a standard result (see, e.g., [EKS03]). For the sake
of completeness, we include an explicit proof.

Lemma 3.2. For each pPDA A = (Q, T, §, Prob) and regular sets C1,--- ,Cy, C
C(A) there effectively exist a pPDA A’ = (Q,I",8, Prob’), simple sets

1, Cp € C(AY), and an injective mapping G : C(A) — C(A') such that
for each pa. € C(A) the following conditions are satisfied:



o if pa = g, then G(par) = G(qB);
o if G(pa) 5 s for some s € C(A'), then there is po. = q3 such that G(gf) = s;
o for each 1 < j < k we have pa € C; iff G(pa) € C;.

Moreover, if C C C(A') is regular, then G=1(C) is also regular.

Proof. Foreach 1 < ¢ < k, let A; = (St;,i, Acc;) be a A-automaton such that
C(A;) = C;. Let States = Hle [1,eq Sti. For given 8 € States, 0 < i < k, and
p € Q, we denote by 5(i, p) the component of §which corresponds to the 7 and p.

We put IV = I' x States. The transition function §’ and probabilities Prob’ are
defined as follows:

oif pX 5 ge € 6, then p(X, 5) > qe for each 5’ € States;

oif pX 5 qY € 6, then p(X,5) 5 q(Y, 5) for each § € States;

oif pX 5 qYV Z € 6, then p(X, 5) 5 q(Y,t)(Z,5) for all 5, € States such that
7i(5(,7), Z) = t{i,r) forall 1 <i < kand r € Q.

So, the A-automata A4, --- , Ay are simulated “on-the-fly”” by storing the vector
of current states directly in the stack. Hence, the information whether a given A;
accepts the current configuration is available in the topmost stack symbol. For
every 0 < ¢ < k, the underlying set GG; of CZ{ (see Definition 3.1) is defined by

G; = {p(X, 3) | v:(5(3,p), X) € Acc;} U {pe | pe € C;}

The function G is defined by G(pe) = pe, and G(pXi1---Xp) =
p(X1,81) - (Xk, 8k), where §;(i,q) = ¢, and §5(2,q) = 7i(8j+1(4, q), Xj+1)
forall 1 < j < k. It follows immediately from the definition §’ and Prob’ that the
parts of 7a and 7a+ which are reachable from pa and G(pa) are isomorphic (for
every pa € C(A)).

Let C C C(A’) be aregular set of configurations. Since some configurations of
C can be “inconsistent” in the sense that the vectors of states that are stored together
with the original stack symbols do not correspond to a valid computation of the A;
automata, the set G~!(C) is not a simple projection of C “forgetting” the vectors of
states from the stack symbols. Fortunately, G(C(A)) is (obviously) a regular set,
so we can construct a A’-automaton recognizing the set C N G(C(A)) and apply
the mentioned projection. [

For the rest of this section, let C1,Cy C C(A) be (fixed) simple sets, and let
G1,G2 C Q x (T' U {e}) be the sets associated to Cy,Cs in the sense of Defini-
tion 3.1.

Definition 3.3. 7o simplify our notation, we adopt the following conventions:



o Foreach C C C(A), let C* = C \ (Qx{e}). Observe that if C is simple, then so
is C*.

e For every C C C(A) and every B € T'*, the symbol C(3 denotes the set {pas |
pa € C}.

e Forallp,q € Q and X € T, we use [pXq| to abbreviate P(pX,C1~CalU {qe}),
and [pX e] to abbreviate P(pX,C1 U CS).

e Let A be a set of finite paths which end in the same state t, and let B a set of
finite or infinite paths that start in t. Then the symbol A © B denotes the set of
paths {vw | v € A,tw € B}.

The following auxiliary lemmas are used in the proof of Lemma 3.6:

Lemma 34. Let T = (S,—, Prob) be a probabilistic transition system. Let
s,t € S and C;,Co C S. Further, let A = FPath(s,(C:\Co)U {t}) and
B = FPath(t,Ci U Cg). Then

Z P(Run(w ZP (Run(w Z P(Run(w

wEAGB weA weB
Proof. Immediate. (]

Lemma 3.5. Forall pa € C(A) and 8 € T* we have that P(Run(pa,C1 U Cz)) =
P(Run(pafs, C} BUC ).

Proof. For every finite path w = proyq - ppay, of FPath(pa), let wt? denote
the finite path proq - ppa B of FPath(paﬁ) Realize that P(Run(w)) =
P(Run(wtP)), because w and wtP execute the same transitions. One can eas-
ily verify that w € FPath(pa,CyUCy) iff wtP € FPath(paB,CtBU Caf3).
From this we get P(Run(paa Ci UCQ)) = zweFPath(pa,C1MCQ) P(R’U/IZ(’U))) -
D weFPath(pap,ct pu cop) P (Run(w)) = P(Run(paf,C1 BU C23)). O

The next lemma says how to compute P (Run(pXi - - - Xy, C1 U Cy)) from the
finite family of all [pXq|, [pX e] probabilities.

Lemma 3.6. For each pX;---X, € C(A) where n > 0 we have that
P(Run(pXy - Xn,C1UCs)) equals

n 1—1 n
Z Z [QiXi°]‘H[‘Jij‘1j+1] + Z H[QijQj+1]

=1 (g1, i) €Q" i=1 (1, gnt1)€EQRTL  j=1
where p=q; where p=q1 and qn+1€€Ca

with the convention that empty sum equals 0 and empty product equals 1.



Proof. By induction on n. For n = 0 we have that P(pe, C; U C3)) is equal either
to 1 or 0, depending on whether pe belongs to Cs or not, resp. Now let n > 1, and
let B denote the sequence X3 - - - X,,. The set Run(pX;3,C1 U Cs) is equal to

L—I_-J Run(w)

w€FPath(pX18,C1 U C2)

LetC' = {qaB | q € Q,a € T't}. We have that
FPa,th(leﬁ,ClZ/{CQ) = FPath(leﬂ,ClﬂC’UCQHC’) ")

) FPath(pX18, (C1~C2)NC' U{qB}) ® FPath(qB,C1U C2)

g€
Now observe that for every simple set C C C(A) we have that C N C' = C*f.
Hence, the above equation can be rewritten as follows:

FPath(pX18,CiUCy) = FPath(pX183,CtBUCLB) W

[t FPath(pX18, (C1~C2)*BU {qB}) © FPath(qB,C U Cs)
qeQ
Using Lemma 3.5 and Lemma 5.6, we obtain that

P(Run(pX18,C1UCs)) = P(Run(pX1,C1UCY)) +
>_geq P(Run(pX18, (Ci~C2) U {gB})) - P(Run(gB,C1U C3))

This can be also written as

P(Run(pX18,C1UCy)) = [pX10]+ > [pX1q]- P(Run(gB,C1UCy))
q€Q

Now it suffices to apply induction hypothesis to P(Run (g3, C1 U C3)) and restruc-
ture the resulting expression. [

Now we show that the probabilities [pXgq|, [pXe] form the least solution of
an effectively constructible system of quadratic equations. This can be seen as
a generalization of a similar result for finite-state systems [HJ94, CY95]. In the
finite-state case, the equations are linear and can be further modified so that they
have a unique solution (which is then computable, e.g., by Gauss elimination). In
the case of pPDA, the equations are not linear and cannot be generally solved by
analytical methods. The question whether the equations can be further modified so
that they have a unique solution is left open; we just note that the method used for
finite-state systems is insufficient (this is demonstrated by Example 3.8).

Let V = {(pXq), (pXe) | p,g € Q,X € T'} be a set of “variables”. Let us
consider the system of recursive equations constructed as follows:



o if pX & G1\Gs, then (pXq) = 0 for each ¢ € Q; otherwise, we put

(pXq) = Z Z (rYt) - (tZq) + Z z-(rYq) -+ Z T

pXSryz  tEQ pX5rY pX Sqe

o if pX € Go, then (pXe) = 1;if pX ¢ G1 UGy, then (pXe) = 0; otherwise we
put

(pXo)= Y z-((rYe) + > (rYt)-(tZe)) + Y z-(rYe)

pX5ryZ teqQ pXSrYy

For given ¢ € [0,1]!V], p,g € Q, and X € T we use (pXgq), and (pXe), to
denote the component of ¢ which corresponds to the variable (pXq) and (pXe),
respectively. The above defined system of equations determines a unique operator
F :10,1]'VI = [0,1])!V] where F(t) is the tuple of values obtained by evaluating
the right-hand sides of the equations where all (pXgq) and (pXe) are substituted
with (pXq), and (pXe),, respectively.

Theorem 3.7. The operator F has the least fixed-point u. Moreover, for all p,q €
Q and X € I we have that (pXq),, = [pXq] and (pXe) = [pXe].

Proof. Since F is monotonic and continuous, it has the least fixed point u =
V52, F*(0), where 0 is the tuple of zeros. One can readily check that the tu-
ple 7 of all [pX¢] and [pX e] probabilities forms a solution of the above system;
this is done just by partitioning the associated sets of runs into appropriate disjoint
subsets similarly as in the proof of Lemma 3.6. Hence, u < 7. To prove that also
7w < u, we approximate the [pXq| and [pX e] probabilities in the following way:
For each k € Ny we define

o [pXql" = > P(Run(w))

weFPath® (pX ,C1~CoU {ge})

o [pXeo]" = Z P(Run(w))

wEFPath® (pX,C1UCY)

Let 7* be the tuple of all [pXq]* and [pXe]® probabilities. Clearly 7 =
limj_,o, 7%. By induction on k we prove that 7% < p for each k € Ny, hence
also m < p as needed.

The base case (k = 0) follows immediately. We show that if [pX ¢]* < (pX¢q) i

and [pXe]* < (pXgq),, then also [pXqFt! < (pXgq), and [pXe]" ! < (pXq),
If pX ¢ G1~\Ga, then [pXq"™! = (pXq), = 0. Otherwise, by applying the

10



definitions we obtain

pXg*™ = Y @ > P(Run(w))

pX5rYZ  wEFPath®(rY Z,Ci~ColU {qe})

+ Z T - Z P(Run(w))

pX5rY  wEFPath® (rY,C1\CaU {qe})

+Zx

pX£>q6
and
(pXq), = Z Z (rYt),-(tZq), + Z z(rYq), + Z x

pX—)rYZ teQ pXﬁ)rY pXE)qs

Since

> P(Run(w)) = [rYqP",

w€ FPath* (rY,C1~Co U {ge})

we have

Z P(Run(w)) < (rYgq),

w€ FPath® (rY,C1~Ca U {ge})

by induction hypothesis. Further,
Z T - Z P(Run(w))
pX5rYZ  wEFPath®(rY Z,C1~CaU {qe})
is surely bounded by
>z Y [rYdF-[tzq)",
pXSryz  t€Q
which is bounded by

Z Z rYt - (tZq) q

pX5ryz  tEQ

by induction hypothesis. To sum up, we have that [pXq]*™ < (pXq) .- The

k+1

inequality [pX'e]""" < (pXe)  is proved similarly. ]

11



Example 3.8. Let us consider the pBPA system A of Fig. 1, and let C; = T,
Co = {Z}. Then we obtain the following system of equations (since A has only
one control state p, we write (X, ®) and (X, ¢) instead of (pX o) and (pXp), resp.):

(Z,8) = 1

(Z,e) = z{l,e){Z,e) + (1—z)(D,e)(Z,¢)
<I7.> = x(( ’.> + <I78><I7.>)

(I,e) = z{I,e){l,e) + 1—=x

(D,o) = (1-z)((D,e) + (D,e)(D,e))
(D,e) = (1-z){(D,e)(D,e) + =

As the least solution we obtain the probabilities [Z,e] = 1, [Z,e] =0, [[,¢] = 0,
[I,e] = min{l,(1—z)/z}, [D,e] =0, [D,e] = min{l,z/(1—=x)}. By applying
Lemma 3.6 we further obtain that, e.g., P(I1Z,C1U Cy) = min{1, (1—z)?/x2}.

In Example 3.8, the least solution of the constructed system of equations could
be computed explicitly. This is generally impossible, but certain properties of the
least solution are still decidable. For our purposes, it suffices to consider the class
of properties defined in the next theorem.

Theorem 3.9. Let Const = QU {[pXq|, [pXe] | p,q € Q and X € '}, where
Q is the set of all rational constants. Let E1, E5 be expressions built over Const
using -’ and ‘+°, and let ~ € {<,=}. It is decidable whether Ey ~ Ej.

Proof. We show that, due to Theorem 3.7, E; ~ Ej is effectively expressible as a
closed formula of (IR, +, %, <). Hence, the theorem follows from the decidability
of first-order arithmetic of reals [Tar51].

For all p,g € Q and X € T, let z(pXq), z(pXe), y(pXq), and y(pXe) be
first order variables, and let X and Y be the vectors of all z(pXq), z(pXe), and
y(pXq), y(pXe) variables, respectively. Let us consider the formula ® constructed
as follows:

3X :0<X<1T A X=FX)
ANWY : (0<Y<TAY=F®)) = X<Y))
A Ei[X/n] ~ Ey[X /7]

Observe that the conditions X = F(X) and Y = F(Y) are expressible only using
multiplication, summation, and equality. The expressions E; [)Z /7] and Fs [)Z" /7]
are obtained from E; and Fs by substituting all [pX ¢] and [pX e] with z(pX q) and
z(pXe), respectively. It follows immediately that £} ~ Ej iff ® holds. ]

An immediate consequence of Theorem 3.9 is the following:
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Input: pX € C(A),0< A< 1
Output: P*, Pv
1: Pt=0;P% :=1;
for i =1 to [—log, ]
if [pXe]+ 3 ccc, [PXal > (P* = P)/2
then P¢ := (P* — P*)/2
else PU := (P* — P*)/2
fi

DO WN

Figure 2: Computing P*¢, P“

Theorem 3.10. Let pa € C(A), p € [0,1], ~ € {<,<,>,>}and0 < A < 1. Itis
decidable whether P(pa,C1 U Ca) ~ 0. Moreover, there effectively exist rational
numbers P¢, P* such that P* < P(pa,CiU Cs) < P* and P* — Pt < .

Proof. We can assume w.lo.g. that « = X for some X € I'. Note that
P(pX,C1UC2) ~ oiff [pXe]+3" ¢, [PXq] ~ o by Lemma 3.6. Hence, we can
apply Theorem 3.9. The numbers P¢, P* are computable, e.g., by the algorithm of
Fig. 2. O

4 Model Checking PCTL for pPDA Processes

4.1 Qualitative Fragment of PCTL
For the rest of this section we fix a pPDA A = (Q, T, 4, Prob).

Lemma 4.1. Let C C C(A) be a simple set. The sets {pa € C(A) | P(pa, XC) =
1} and {pa € C(A) | P(pa, XC) = 0} are effectively regular.

Proof. Tmmediate. [

Lemma 4.2. Let C1,C2 C C(A) be simple sets. The set {pac € C(A) |
P(pa,C1 U Cy) = 1} is effectively regular.

Proof. Let R(pX) ={q € Q | [pXq] > O} forallp € Q, X €. Foreachi € Ny
we define the set S; C C(A) inductively as follows:

eSo={qec| ge € Co} U{qXa|[gXe] =1,a € T*}
® Sit1={pXB| [pXe] + > crpx)[pXq] =1and Vg € R(pX) : g8 € S;}

Using Lemma 3.6, we can easily check that |J;2,S; = {pa € C(A) |
P(pa,CiUCy) = 1}. To see that the set | J;2, S; is effectively regular, for each
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p € @ we construct a finite automaton M, such that L(M,) = {a € T | pa €
U2, Si}. A A-automaton A recognizing the set | J;°, S; can then be constructed
using standard algorithms of automata theory (in particular, note that regular lan-
guages are effectively closed under reverse). The states of M, are all subsets of
Q, {p} is the initial state, I' is the input alphabet, final states are those 7' C Q)
where for every ¢ € T we have that ge € Cy (in particular, note that ) is a final

state), and transition function is given by T’ X U iff for every g € T' we have that

[gX o] + 3 crx)laXr] = 1and U = |J,er R(gX). Note that ( % ¢ for each
X € I'. The definition of M, is effective due to Theorem 3.9. It is straightforward
to check that L(M,) = {a € I'* | pa € U2, Si} O

Lemma 4.3. Let C1,Co C C(A) be simple sets. The set {pac € C(A) |
P(pa, C1 U Ca) = 0} is effectively regular.

Proof. Let R(pX) ={q € Q| [pXq] > 0} forallp € Q, X €I'. Foreachi € Ny
we define the set S; C C(A) inductively as follows:

S0 ={qe| qe & Co}

 Sit1={pXpB|[pXe] =0and Vg € R(pX) : g8 € S;}

The fact [ J;2,S; = {pa € C(A) | P(pa,CiUCy) = 0} follows immediately
from Lemma 3.6. The set | J;°, S; is effectively regular, which can be shown by
constructing a finite automaton M, recognizing the set {a € I'* | pac € ;2 i}
This construction and the rest of the argument are very similar to the ones of the
proof of Lemma 4.2. Therefore, they are not given explicitly. 0

Theorem 4.4. Let © be a qualitative pCTL formula and v a regular valuation. The
set {pa € C(A) | pa =Y ¢} is effectively regular.

Proof. By induction on the structure of ¢. The cases when ¢ = tt and ¢ = a
follow immediately. For Boolean connectives we use the fact that regular sets
are closed under complement and intersection. The other cases are covered by
Lemma 4.1, 4.2, and 4.3 (here we also need Lemma 3.2). ]

4.2 Model Checking PCTL for pBPA Processes

In this section we provide an error tolerant model checking algorithm for PCTL
formulae and pBPA processes. Since it is not so obvious what is meant by error
tolerance in the context of PCTL model checking, this notion is defined formally.

Let 7 = (S, —, Prob) be a probabilistic transition system and 0 < A < 1. For
every negation-free PCTL formula ¢ and valuation v we define the denotation of
@ over T w.rt. v with error tolerance )\, denoted [¢]}, in the same way as [¢]”.
The only exception is @1 U ~¢p9 where
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oif ~ € {<, <}, then [p; U ~2po]% = {s € S | P(Run(s, [p1]5 U [2]})) ~ 0+ A}
oif ~ € {>, >}, then [1 U ~2po]5 = {s € S | P(Run(s, [pr] U [¢2]X)) ~ 0 — A}

Note that for every negation-free formula ¢ we have that [¢]” C [¢]5. Nega-
tions can be “pushed inside” to atomic propositions using dual connectives (note
that, e.g., (o U 29%) is equivalent to ¢ U <2)), and for regular valuations we can
further replace every —a with a fresh proposition b where v(b) is the complement
of v(a). Hence, we can assume w.l.o.g. that ¢ is negation-free.

An error tolerant PCTL model checking algorithm is an algorithm which, for
each PCTL formula ¢, valuation v, s € S, and 0 < A < 1, outputs YES/NO so
that

e if s € [¢]", then the answer is YES;
e if the answer is YES, then s € [¢]5.

For the rest of this section, let us fix a pBPA A = (I',§, Prob). Since A has
just one (or “none”) control state p, we write [ X, o] and [X, £] instead of [pX e] and
[pXp], respectively.

Lemma 4.5. Let C C C(A) be a simple set, o € [0,1], and ~ € {<,<,>,>}
The set {a € C(A) | P(a, XC) ~ p} is effectively regular.

Proof. Immediate. [

The following lemma presents the crucial part of the algorithm. This is the
place where we need the assumption that A is stateless.

Lemma 4.6. Let C1,Co C C(A) be simple sets. Forall p € [0,1] and0 < A < 1
there effectively exist A-automata AZ and AS such that for all o € C(A) we have
that

o if P(a,C1UCs) > o (or P(a,CLUCy) < o), then o € C(AZ) (or a € C(AS),
respectively.)

eifa € C(A2) (or a € C(AS)), then P(a,CLUC2) > 0— ) (or P(a, CLUCs) <
0 + A, respectively.)

Proof. We describe just the construction of AZ (the A-automaton AS is con-
structed similarly). Let S = {X € I' | [X, €] # 1}. For every o € T'*, let o(.S) be
the string obtained by deleting all symbols of I'\.S from «. For each 3 € S* we
define the set Cl(3) = {a € I'* | «(S) = §}. It follows directly from Lemma 3.6
that for all 8 € S* and o € CI(8) we have that P(3,C1 U C) = P(a,C1UCy).
Further, for all n € Ny and 8 € |J;-_, S™ we define the set

B Cl(,B) ifaeStAi<n
Genn(B) = {{aa' | € Cl(B),o' €T*} ifaesSn
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Input: pPBPAA, 0 < A< 1
Output: n, s, v, [X, o], [ X, e]%, [ X, o]%, [ X, €]“

00 ~NO Ok WN -

©

10:
11:
12:
13:
14:
15:
16:
17:
18:

S:={Xel'|[X,e] #1}
v:=1;n:=00;
foreach X € S do
[X,e]lf :=0; [X,0]¢ :=0; [X,e]* :=1; [ X, o]* := 1;
done
repeat
foreach X €T do
avg® 1= ([X,e]" — [X, 5]2)/2;
avg® = ([X,e]" - [X, .]2)/2;
if [X,e] > avg® then [X, ¢l := avg®;
else [X,e]" := avg®;
if [X,e] > avg® then [X,e]’:= avg®;
else [X,e]* := avg®;
done
v:i=v/2;
k:=max{[X,e]* | X € S};
if x <1 then n := [(log(A/3)/logk]|
until «x <1 and n(v +v(n+1)(1+v)") < A/3

Figure 3: A part of the algorithm for pBPA

16



We prove that for every 0 < X < 1 there effectively existn € Ny and G C |J;, S ‘
such that for every o € I'* we have that

o if P(a,C1UC2) > o, then o € Jgeg Genn(B);
oif @ € Ugeg Genn(B), then P(a, C1UC2) > 0 — A

This suffices for our purposes, because the set (g Genn () is clearly recogniz-
able by an effectively constructible A-automaton A=,

The crucial part of the algorithm for computing the set G is shown in Fig. 3.
The algorithm starts by computing the set .S (note that S is effectively computable
due to Theorem 3.9). For each X € S, there are four rational variables [X, s]‘e,
[X, e]“, [X, o]% and [X, e]* whose values are lower and upper approximations of
the probabilities [X, €] and [X, ], resp. These variables are initialized in lines 3-5
and successively refined in lines 7-14. Note that the conditions of the if statements
in lines 10 and 12 are effective due to Theorem 3.9. The current “precision”, i.e.,
the difference between the upper and the lower approximation is stored in the ratio-
nal variable v. The subtle point is the termination condition. First, one necessary
condition for termination is that K = max{[X,e]* | X € S} becomes less than
one. This must happen eventually, because [X,e] < 1 for every X € S. An
important observation is that x can only decrease by performing the assignment
in line 16. This means that n = [(log(A\/3)/logk]| also only decreases (since
both A and & are less than 1, we have log(A/3)/logk = |log(A\/3)|/|log |; and
if 0 < k¥ < k < 1, then |log /| > |logkl|). Therefore, we eventually find a
sufficiently small v such that n(v + v(n + 1)(1 + v)™) < A/3.

The output of the algorithm of Fig. 3 are the (values of the) variables n, v, &,
[X, e, [X,e]%, [X, o], and [X, e]* where X ranges over S. For each 3 € S*,
let P4(B3,C1U C2) and P*(3,C1U Cs) be the lower and upper approximations of
P(B,C1U C3) obtained by using the formula of Lemma 3.6 where [X, ], [ X, o,
and [X, e]", [X, o]" are used instead of [X, €], [X, o], respectively. The set G is
constructed as follows:

¢ = {BeS|0<i<nPB,CiUCs > o}
U {BeS"|PUB,CLUC, > 0 — N3}

To verify that the set G has the properties mentioned above, we need to formulate
two auxiliary observations.

(a) for all 3 € S™ and @ € I'* we have that

|P(B,C1UCs) — P(Ba, CLUCs)| < A/3
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This follows immediately from the following (in)equalities:

"P(ﬂa, Cl Z/{Cz) P(,B, Cl Z/{C5) + P(,B, Cl \CQ U {6}) . ’P(a, Cl Z/IC2)
P(ﬂ, Cll/{CQ) S P(,B,Cl Z/{C5) + P(,B, Cl\CQU{E})
P(,B,Cl\CQU{S}) S )\/3
The first two (in)equalities are obtained just by applying Lemma 3.6. The
last one is derived as follows: P(3,C1~\CaoU {c}) is surely bounded by " (by
Lemma 3.6 and the definition of ). Since n = [(log(A/3)/logk]|, we have

n -logk < log(A/3). Hence, log k™ < log(A/3), thus k™ < /3.
(b) for each 8 € |JI_, S* we have that

P“(ﬁ,CﬂJCg) — P(ﬂ,Clb{CQ) < )\/3

Let k = length(8). A straightforward induction on k reveals that
P4(B,C1UC2) < (k+1)- (1 + v)*. Now we prove (again by induction on
k) that

PUB,CLUCy) — P(B,C1UC) < k(v + vk +1)(1+v)F)

The base case (when k& = 0) is immediate, because P"(e,CiUC2) =
P(e,C1UCy). Now let 3 = XpF'. By definition, P*( X3 ,C1UCs) —
P(XB',C1U Cy) is equal to

(X, o]" + [X,e]" - PU(B,CLU Ca) — ([X,0] +[X,e] - P(B,C1UC2)) (D)

Since [ X, o] < [X, o]+ and [X, ] < [X €]+, the expression (1) is bounded
by

v + [X,e]- (PYB,CLUCy) —P(B,CLUCy)) + v-PYB,C1UCy) (2)

By applying induction hypothesis and the facts that [X,¢] < 1 and
PY(B,C1UC2) < (k+ 1) - (1 + v)F (see above), we obtain that the expres-
sion (2) is bounded by

v4+k(v+vk+1D0+v)") +uE+ 1)1 +v)F

which is bounded by (k + 1)(v + v(k +2)(1 + v)**1) as required. This finishes
the inductive step.

Since n(v + v(n + 1)(1 + v)™) < A/3 and k < n, we have P*(3,C1 UC2) —
P(B,C1UC) < k(v +v(k+1)(1+v)F) < \/3.

Now we are ready to prove that the set G has the required properties. Let o € I'™*
such that P(a,C1 U C2) > p, and let § = «(.S). There are two possibilities:

18



o length(B) < n. Then P“(3,C;UC2) > p, hence § € G and a €
Ugeg Genn(B).

o length(B) > n. Let B = ~~' where length(y) = n. Due to the observation
(a) above we have that P(v,C1 U C2) > o — A/3, hence also P*(vy,C1 U C2) >
0 — A/3, which means that 7 € G and thus a € Jgeg Genn(B).

Now let a € Gen,,(3) for some 8 € G. Again, we distinguish two possibilities:

o length(B) < m. Then P*“(8,C1U C2) > p, which means that P(3,C; U C2) >
0 — \/3 by the observation (b) above. Hence, P(a,C1 U C2) > 0 — \/3.

e length(B) = mn. Then P“(B,C1UC2) > o — A/3, which means that
P(B,C1UC2) > o — 2)/3 due to the observation (b). Further, for every o/ € T’
we have that P(8a’,C1 U C2) > o — X due to the observation (a) above. Hence,
P(a,C1UCy) > p — X as required.

The automaton A< is constructed similarly. Here, the set G is computed using
the lower approximations [ X, ]® and [X, €]¢. Since this construction is analogous
to the one just presented, it is not given explicitly. 0

Theorem 4.7. There is an error-tolerant PCTL model checking algorithm for pBPA
processes.

Proof. The proof is similar to the one of Theorem 4.4, using Lemma 4.5 and 4.6
instead of Lemma 4.1, 4.2, and 4.3. Note that Lemma 3.2 is applicable also to
pBPA (the system A’ constructed in Lemma 3.2 has the same set of control states
as the original system A). ]

5 Model Checking Deterministic Biichi Automata Speci-
fications

Definition 5.1. A deterministic Biichi automaton is a tuple B = (X, B, o, br, Acc),
where . is a finite alphabet, B is a finite set of states, o: B X X — B is a (total)
transition function (we write b = ¥ instead of o(b,a) = V'), by is the initial state,
and Acc C B is a set of accepting states.

A run of B is an infinite sequence byb; . .. of states such that for every ¢ > 0
there is a. € ¥ such that b; = b;1. A run byby ... is accepting if b; € Acc for
infinitely many indices © > 0.

For the rest of this section, we fix apPDA A = (Q, T, §, Prob).

Definition 5.2. Given a configuration pX a of A, we call pX the head and « the
tail of pX . The set Q x I of all heads of A is also denoted by H(A).

19



We consider specifications given by deterministic Biichi automata having
H(A) as their alphabet. It is well known that every LTL formula whose atomic
propositions are interpreted over simple sets can be encoded into a nondetermin-
istic Biichi automaton having H(A) as alphabet. Deterministic Biichi automata
can encode the fragment of LTL that can also be expressed in the alternation-free
modal p-calculus [KV98]. Our results can be extended to atomic propositions in-
terpreted over arbitrary regular sets of configurations using the same technique as
in [EKSO3].

Definition 5.3. The product of A and B is a probabilistic pushdown automa-
ton AB = (QxB,T,d', Prob’) where §' and Prob’ are determined as follows:

[p, )X 5 [p,b]aiff pX 5 paandb PX ¥ are transitions of A and B, respec-
tively.

Notice that every (finite or infinite) path in Tap corresponds to a unique path
in T obtained by projecting the control state of every configuration [p, bja of the
path onto its first component, yielding the configuration pa. Conversely, for each
path in A (starting in some pa) and each b € B there is exactly one path in Tag
starting in [p, bl because B is deterministic.

Definition 5.4. A configuration [p,bla of AB is accepting if b € Acc. A run in
TAR is accepting if it visits accepting configurations infinitely often. A run in Ta is
accepting if its corresponding run in Tap is accepting.

The probability P(pa, B) that a configuration pa of A satisfies the specifica-
tion B is defined as P(pa, B) = P({w € Run(pa) | w is accepting}).

We solve the following two problems for a given configuration pa of A:

(a) Given g € [0,1] and ~ € {<, <, >,>,=}, do we have P(pa,B) ~ o ?
(b) Given 0 < A < 1, compute rationals P¢, P* such that P* < P(pa, B) < P
and P* — Pt < .

For finite-state automata, the problem can be solved as follows (see [CY95]).
Let A be a finite-state automaton. Since the product automaton A x B is finite, it
can be transformed into a finite Markov chain M by just ‘copying’ the probabilities
of the system [CY95]. It is then possible to reduce problems (a),(b) to the problem
of computing the probability of hitting a bottom strongly connected component of
M which contains a state of the form (s, b), where b is accepting.

In our case, the product automaton AB is again a pPDA, and so its associated
probabilistic transition system is infinite. The key to our solution for (a) and (b) is
the construction of a new finite Markov chain Map that plays the role of M in the
case of finite automata.
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5.1 The Markov chain MA

A Biichi pPDA is a tuple A = (Q,T,§, Prob, Acca), where all elements except
for Acca are defined as for pPDA and Acca C Q is a set of accepting states.

A configuration pa of A is accepting if p € Acca. A run of A is accepting
if it visits accepting configurations infinitely often. For all p € () and X € T, the
probability that a run w € Run(pX) is accepting is denoted by P(p X, Acc).

Obviously, the model checking problems (a),(b) of the previous section can
be reduced to the following problems about a given configuration p.X of a Biichi
pPDA A (where pX € H(A)):

(A) Given p € [0,1] and ~ € {<, <, >,>,=}, do we have P(pX, Acc) ~ o ?
(B) Given 0 < X < 1, compute rationals P*, P such that P* < P(pX, Acc) < P
and P* — Pt < .

For the rest of this section, we fix a Biichi pPDA A = (Q, T, d, Prob, Acca).

Definition 5.5. Let w = poag, praq, - - - be an infinite run in Ta. For each i € N
we define the i minimum of w, denoted min;(w), inductively as follows:

e min; (w) = prag, where k € Ny is the least number such that |ay| > || for
each k' > k.

e min; j(w) = ming(wy41), where min;(w) = pyoy. Here wyyq is the suffix of
w that starts with py 10y 1.

We say that w flashes at min;(w) if either i = 1 and min;(w) is accepting, or
i > 1 and w visits an accepting configuration between min;_1(w) and min;(w)
(Where min;_1 (w) is not included).

Sometimes we abuse language and use min;(w) to denote not only a configu-
ration, but the particular occurrence of the configuration that corresponds to the ¢
minimum. .

For all pX € #H(A) and all ¢ € N we define a random variable Vp()zg over
Run(pX) as follows: The possible values of V;f;g are all pairs of the form (qY, f),
where ¢Y € H(A) and f € {0,1} is a boolean flag; there is also a special value

L. For a given w € Run(pX), Vp(;g(w) is determined as follows:
e if w is finite then V;gg(w) =1;
e if conditions (1)—(3) below are satisfied, then Vp(;g (w) = (¢Y,1);

(1) w is infinite;
(2) the head of min;(w) is ¢Y’;
(3) w flashes at min;(w).
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e if conditions (1) and (2) above are satisfied and condition (3) is not satisfied, then
ViR (w) = (a¥,0)

Notice that the random variables are well defined, because they assign to each run
exactly one value.

Now we formulate two auxiliary lemmas which will be used in the proof of
Lemma 5.8.

For every finite or infinite path w = pjay paas - - - inTa andevery 8 € ', the
symbol w? denotes the path pj o 3 paaaf3 - - - obtained from w by concatenating

(3 to the stack content in every configuration. Similarly, if R is a set of paths in 7a
and 3 € T'*, then [R]™# denotes the set {w™? | w € R}.

Lemma 5.6. Let pX € QxI' and B € T*. Then P([IRun(pX)|tP) =
P(IRun(pX)).

Proof. Let Dead = Qx{e} U {gYa | ¢Y hasno transitions in §,a € I'*}. We
have that

P([[Run(pX)]*?) = 1—P(Run(pXB,C(A)*BU Dead 3))
= 1—P(Run(pX,C(A)U Dead)) (by Lemma 3.5)
= P(IRun(pX)).

[

Lemma 5.7. Let sg - - s, be a path in a probabilistic transition system, and let
X be a measurable subset of Run(sy). Then {so---s,} ® X is a measurable
subset of Run(sg), and moreover P({so---sn} ® X) = II? ;x; - P(X), where

S; i Si+1 for every 0 < i < n. (The ‘®’ operator has been introduced in
Definition 3.3.)

Proof. Standard. (]

Lemma 5.8. For all pX € H(A), n € N, and vy, -+ , vy, the probability of
V;S() =vy A+ A Vp(;?:vn exists (i.e., the set of all w € Run(pX) which satisfy
this condition is P-measurable). Moreover, for every rational constant y there
is an effectively constructible formula of (R, +,*, <) which holds if and only if

P(VIS():m Ao A Vp(;):vn) = 1.

Proof. For the sake of clarity, assume for the moment that the possible values of

V;)()ig are | or the heads qY of A, instead of pairs (qY, f). At the end of the proof
we show how to modify it in order to take into account the boolean flag f.
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Let R C Run(pX) be a set of runs. We say that P(R) is well-definable
if P(R) is effectively definable from a finite family of probabilities of the form
P(Run(qY,C1UCy)), where Cy,Co are simple sets, using only summation, mul-
tiplication, and rational constants. Note that if P(R) is well-definable, it can be
expressed in (R, +, *, <) using the results of Section 3.

By induction on n we prove that ’P(V;)()l() =v1 A - A V;g}):vn) is well-

definable. The base case when n = 1 follows immediatelly, because P(V;S() =v1)
equals either P(/Run(pX)), 1 — P(IRun(pX)), or 0, depending on whether
v = pX, vy = 1, or pX # wv; # L, respectively. Observe that
P(IRun(pX)) = 1 — P(Run(pX,C(A)U Dead)), where Dead = Qx{e} U
{gY a | gY has no transitions in 6, € I'*}.

Now let n > 2. For each 1 < 7 < n, let Sat; be the set of all runs that satisfy
V;D()l() =v1 A A V;gg:vi. If P(Saty,—1) = 0, which is decidable by induction
hypothesis, then P(Sat,) = 0 as well. If P(Sat,—1) # 0 and thereisi < n —1
such that v; = L, then for all j < n — 1 we have that v; = L, and P(Sat,,) is
equal either to P(Sat,—1) or 0, depending on whether v,, = L or not, respectively.
If P(Sat,—1) #0,v; # L foralli <n —1,and v, = L, then P(Sat,,) = 0. So,
the only interesting case is when P(Sat,_1) # 0 and v; # L for all ¢ < n. Since

’P(V;g?zvn | Sat,—1)
P(Satn_l)

P(Saty) =

and P(Sat,_1) is well-definable by induction hypothesis, it suffices to show that

the conditional probability ’P(V;)(;-)zvn | Sat,—1) is also well-definable. For this
we use a general result of basic probability theory saying that if A, B are events
and B = W,;¢1 B;, where I is a finite or countably infinite index set, then

P(A|B) = D iel P(ii;i) -P(Bi)

An immediate consequence of this equation is that if the probability P(A|B;) is
independent of ¢, then P(A|B) = P(A|B;). In our case, A is the event V;)(;)zvn,
and B is Sat,_1. Let

Chop = {w(0) - - - w(min,_1(w)) | w € Sat,—1}.

Observe that if y € Chop, then the last configuration of y is of the form
Prn—1X,—1a. We denote the a by Stack(y). For every y € Chop, let

Satn_1(y) = {y} © [[Run(p,—1 Xp_y)|* 52k W) (3)
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Now we can easily check that

Sat,—1 = tl—J Sat,—1(y)
y€ Chop

Hence, Chop plays the role of I, and Sat,,_1(y) plays the role of B;. We show
that P(V;)(;)zvn | Sat,—1(y)) is independent of y, which means that

’P(va};’):vn | Satn—l(y)) = ‘P(V;)(;-):’Un | Satn_l).
By definition of conditional probability,

P(V;f;):vn A Satn—1(y))
P(Satn—1(y))

The denominator of the fraction in equation (4) is well-definable, because

PV, =vn | Satn_1(y)) = )

P(Sat,—1(y)) = P(Run(y)) - P(IRun(pp—1Xn—1))

Here we used Lemma 5.6, Lemma 5.7, and equation (3). Now we show that
P(Vp(;)zvn A Sat,—1(y)) is also well-definable. Let R be the set of all runs satis-

fying Vp(;):vn A Sat,—1(y), and let @ = Stack(y). Obviously, each w € R starts
with y. Now let us consider what transitions can be performed from the final state
Pn—1Xpn-1a of y.

e Obviously, transitions which decrease the stack cannot be performed, because
Pn—1Xn—1a would not be a minimum then (i.e., w would not belong to R).

e If a transition of the form p,,_1X,,_ 1« 5 rZais performed, then rZa must be
the n-th minimum, because the stack cannot be decreased below Z (otherwise,
Prn—1Xn_1a would not be a minimum). So, if w € R, we must have that rZ =
PnXn-

e If a transition of the form p,,_1X,_1c — rPQa is performed, then the stack
cannot be decreased below (). Now there are two possibilities:

— If the stack is never decreased below P, then the configuration r PQ« is the
n-th minimum. Hence, if w € R, we must have that rP = p,, X,,.

— If the stack is decreased below P, i.e., if a sequence of transitions of the form
rPQa —* tQa, where rP —* te, is performed, then tQ« is the n-th mini-
mum. Hence, if w € R, we must have that tQ) = p, X,,.
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From the above discussion, it follows that R can be partitioned as follows:

R = I (9} © (pe1Xn10 puXaa) © [TRun(p,X,)| ™
pn—an—lgann

I {4} © {Pa-1Xn_10 puXnYal} ©® [IRun(p,X,) ™

pnflxnflgpnxny
Yer

U {y} © [FPath(qY,C(A) U {pne})]"* © [IRun(pn X, )] "

pnflxnflﬁqyxn
qeEQ,Yel

Using Lemma 5.6, Lemma 5.7, and the above equation, we obtain that

PV =0, A Satn_1(y)) = P(Run(y)) - P(IRun(pn X)) - S

where

S = Zx—i— Z r +

Pr—1Xn—1-pnXn Pr—1Xn—19pnXnY
Yel©
>z P(Run(qY,C(A)UA{pac})) (5)
Pn—1Xn-1—qY Xn,
qgeQ,Yel

Equation (4) can now be rewritten to

P(IRun(pnXn))

P(IRun(pp-1Xn-1)) o ©)

PV =vy | Satn-1(y)) =

where the meaning of S is given by equation (5). So, P(Vgp =vy, | Sat,—1(y))
is indeed independent of y, and hence equation (6) also defines the probability
PV, =vn | Saty_y).

We still have to consider the case in which the v;’s are pairs of the form
(piXi, fi). For this we can use the same construction as above with a minor mod-
ification in equation (5). Let us first consider the case when v, = (p,Xp,0).
If p, is accepting, then ’P(Vp(;):(ann,O) | Sat,_1) is zero. Otherwise,
P(Vp(;) =(pnXn,0) | Sat,—1) is given by the right-hand side of equation (6) where
the following sum S’ is used instead of S:

S = Z xr + Z x -+

pn—an—li:*ann pn—an—lgannY
Yer

Z T - P(RUTL(QY, (Q\ACCA)XF+U {pne}))

Pr—1Xn—1—2qY Xp
qe€Q,YET
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Finally, let us consider the case when v, = (p,Xy,1). If p, is accepting, then

P(Vp(;):(ann, 1) | Sat,—1) = 1. Otherwise, we use the right-hand side of
equation (6) where S is replaced with S” given by

S = Z z-D

Pn—1Xn-1-qY Xn,
qeQ,Yel

where
D = P(Run(qY,C(A)U {pne})) — P(Run(qY, (Q~Acca)xT* U {pne}))
]

The following lemma proves the Markov property. In fact, it follows immediatelly
from equation (6) used in the proof of Lemma 5.8.

Lemma 5.9. The conditional probability of V;)(;? = vp, on the hypothesis V;g() =
vi A A V(n_l) = vp,—1 IS equal to the probability of V( n) - vy, conditioned on

V(n D= = v,,_1, assuming that the probability ofV(X) =V A\~ V(n D= = Up—1
lS non-zero.

For each control state ¢ € ) we define a flag f,;, which is equal either to 1 or
0 depending on whether ¢ € Acca or not, respectively. Another consequence of
Lemma 5.8 is the following:

Lemma 5.10. The conditional probability of V(n) (d'Y’, f') on the hypothesis
V(n - =(qY, f)) is equal to the conditional probability ofV(Q) ("Y', f') on the
hypothesis V( )= =(qY, fq), assuming thatP(V(n D= =(qY, f)) #0.

Now we can define the finite Markov chain M.

Definition 5.11. Let M be a finite-state Markov chain where the set of states is

{(¢Y,0) | ¢ & Acca,Y €T ’P( (1) =(¢Y,0)) > 0}
U {(g¥;1) | gY € %<A>,P<v;%i’=<qx fa) > 0}
U H(A)U{L}

and transition probabilities are defined as follows:

e Prob(L — 1) =1,
e Prob(pX — (qY, f)) = P(V;,()l():(qya ),
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e Prob(pX — 1) = P(Vé)l():J_),
o Prob((qY, f) = (Y, f)) = P(VL=(Y", ') | V) =(aY, f,)).

One can readily check that M is indeed a Markov chain, i.e., for every state
s of Ma we have that the sum of probabilities of all outgoing transitions of s is
equal to one.

A trajectory in M is an infinite sequence o(0) o(1) - - - of states of Ma where
Prob(o(i) — o(i+ 1)) > 0 forevery i € Ny.

To every run w € Run(pX ) of A we associate its footprint, denoted o, which
is an infinite sequence of states of M defined as follows:

¢ 0,(0) =pX

e if w is finite, then for every ¢ € N we have o,,(i) = L;

e if w is infinite, then for every ¢ € N we have o,,(7) = (p; X, fi), where p; X; is
the head of min;(w), and f; = 1 iff w flashes at min;(w).

We say that a given w € Run(pX) is good if oy, is a trajectory in Ma. Our next
lemma reveals that almost all runs are good.

Lemma 5.12. Let pX € H(A), and let Good be the subset of all good runs of
Run(pX). Then P(Good) = 1.

Proof. Let Bad = Run(pX) \ Good. Let Fail be the set of all finite sequences
vg - - - v;41 of states of Ma such that ¢ € Ny, vg = pX, vg---v; is a trajectory
in Ma, and Prob(v; — v;4+1) = 0, where Prob is the probability assignment of
MAa. Each y € Fail determines a set Bad, = {w € Bad | o, starts with y}.
Obviously, Bad = 4, ¢,y Bady. We prove that P(Bad,) = 0 for each y € Fail.
Lety = vy - - - v;41. By applying definitions, we obtain

P(Bady) = P(V.Y=vi A AV =vi41)

’P(va})i(-l-l):w.ﬂ | V;)(Q:'Ui A A ‘/;})1():@1)
PV D=t A AV D=uy)

Since P(Vp(;gzvi AR V;)()l() =v1) # 0, the last fraction makes sense and it is

equal to
Prob(v; — viy1)

P(V;)(szi Ao A V;f)l()zvl)

which equals zero. [

It follows directly from the definition of Ma that if both (¢Y,0) and (qY, 1)
are states of M, then they have the “same” outgoing arcs (i.e., (¢Y,0) = (rZ, f)
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iff (¢Y,1) 5 (rZ, f), where > 0). In particular, this means that (¢Y,0) and
(qY, 1) either belong to the same bottom strongly connected component of Ma, or
do not belong to a bottom strongly connected component of MAa.

Definition 5.13. We say that a given qY € H(A) is recurrent if there is a bottom
strongly connected component Cgy of Ma such that (qY, f) € Cgy for some
f €40, 1} (here the state pX of Mn is considered as a root of Ma).

Each recurrent head is either accepting or rejecting, depending on whether
Cqy contains a state of the form (rZ, 1) or not, respectively.

We say that a run w € Run(pX) hits a head qY € H(A) if there is some
i € N such that the head of min;(w) is gY". The next lemma says that an infinite
run eventually hits a recurrent head.

Lemma 5.14. Let us assume that P(IRun(pX)) > 0. Then the conditional prob-
ability that w € Run(pX) hits a recurrent head on the hypothesis that w is infinite
is equal to one.

Proof. Let Rec denote the event that a run of Run(pX) hits a recurrent head. Due
to Lemma 5.12, we have that

P(Rec | IRun(pX)) = P(Rec | IRun(pX) N Good) (7)

A run belongs to JRun(pX ) N Good ift its footprint is a trajectory in M that does
not hit the state 1. Arunw € IRun(pX)NGood satisfies Rec iff its footprint hits a
state of the form (¢Y, f), where qY is a recurrent head. It follows directly from the
definition of M that the right-hand side of equation (7) is equal to the probability
that a trajectory from pX in M hits a bottom strongly connected component on
the hypothesis that the state L is not visited. Since M(A) is finite, this happens
with probability one by ergodicity. [

So, an infinite run eventually hits a recurrent head. Now we prove that if this
head is accepting/rejecting, then the run will be accepting/rejecting with probabil-
ity one.

Lemma 5.15. Let qY be an accepting/rejecting head. The conditional probability
that w € Run(pX) is accepting/rejecting on the hypothesis that the first recurrent
head hit by w is accepting/rejecting is equal to one.

Proof. The argument is similar as in the proof of Lemma 5.14. Let C be a bottom
strongly connected component of M. By ergodicity, the conditional probability
that an infinite trajectory in M hits each state of C infinitely often on the hypoth-
esis that the trajectory hits C' is equal to one. [
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A simple consequence of Lemma 5.15 is the following:

Lemma 5.16. (c¢f. Proposition 4.1.5 of [CY95]) Let pX € H(A). P(pX, Acc)
is equal to the probability that a trajectory from pX in Ma hits a state of the
form (qY, f) where qY is an accepting head (this is equivalent to saying that the

trajectory hits a bottom strongly connected component of M A which contains a
state of the form (rZ,1)).

Theorem 5.17. Let A be a Biichi pPDA. Given a head pX € H(A), ~ €
{<,<,>2,>,=}, and ¢ € [0,1], we can decide if P(pX, Acc) ~ o. Further, for
each 0 < \ < 1 we can compute rationals P¢, P* such that P* < P(pX, Acc) <
P and P — P < A

Proof. Similarly as in Theorem 3.9, we compute a closed formula & of
(R, +, %, <) such that P(pX, Acc) ~ p iff ® holds. Then, the rationals P¢, P*
can be computed by a simple binary search similarly as in Fig. 2.

Due to Lemma 5.16 we know that P(pX, Acc) = P(pX,CilUCs), where C;
is the set of all states of M, and Co consists of all states of the form (qY, f)
where ¢Y is an accepting head. This means that there is a system of recursive
equations such that P(pX, Acc) appears in the tuple of values which form the least
solution of the system (we can assume that P(pX, Acc) is, e.g., the first element of
this tuple). Since M A is finite, these equations are linear and by using the results
of [HJ94, CY95] we can even assume that there is a unique solution. The only
problem is that numeric coefficients in this system of equations are the probabilities
of transitions in M A which cannot be precisely computed. This can be overcome as
follows: we construct the mentioned system of linear equations where we replace
each coefficient with a fresh first-order variable; let C' be the tuple of all variables
which correspond to the coefficients. Now we can effectively construct the formula

U = 3Z:Z=LZ)NZi~0

where Z = L’(Z ) says that the tuple of variables Z is a solution of the constructed
system of linear equations. Note that W is not closed because the variables of C
(which appear in the Z = L(Z ) subformula) are free. Due to Lemma 5.8, for
each of these coefficients there effectively exists a formula of (R, +, %, <) which
says that a given coefficient is equal to the probability of the corresponding transi-
tion in Ma (we just “translate” the definition of Prob given in Definition 5.11 into
(R, +, *, <), using the formulae provided by Lemma 5.8). Let ¥ 5 by a conjunc-
tion of all these formulae. The formula @ is constructed as follows:

d = EZ:HG:WGAZ:E(Z)AleQ

Obviously, P(pX, Acc) ~ g iff @ holds. O
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We conclude this section by trying to explain why our results cannot be directly
extended to nondeterministic Biichi automata. First of all, notice that we cannot
assign probabilities to the transitions of AB in a meaningful way, because a tran-
sition paw = g of A should ‘“split’ into several transitions of AB. In the case of
a finite automaton A, this problem can be solved by working with the product of
A and dB, where dB is the result of applying the determinization construction to
B. Let AdB denote this product. In [CY95], a definition of recurrence is provided,
which characterizes the states [s, b] of LAdB that, loosely speaking, return to [s, b]
with probability 1 in terms of topological properties of the probabilistic transition
system AdB. It is then possible to compute the accepting recurrent states.

Unfortunately, this construction does not seem to generalize to the case of push-
down automata. The problem is that the Biichi pPPDA AdB has infinitely many
states, and so it must be replaced by the chain Ma ;5. However, in Ma 45 we can-
not directly ‘observe’ the points at which a run hits an accepting state; we can only
observe the points at which a run hits a minimum. While we can use Ma 45 to com-
pute the recurrent minima, i.e., the heads to which one can return with probability
1 at a minimum, at the moment we do not know how to compute the accepting
recurrent minima, i.e., the recurrent minima that not only return, but also visit an
accepting configuration along the way. More precisely, we know how to decide for
a given head pX if the runs starting at it will almost surely hit some head p; X; out
of aset = {p1Xy,.-..,pnXy} and visit some accepting configuration along the
way. We can also decide if some head p; X; € H(A) will hit p X with probability
one. However, since we do not know whether ¢ = 5 or not, this information is not
sufficient to decide if pX is an accepting recurrent minimum.

6 Conclusions

We have provided model checking algorithms for pushdown automata against
PCTL specifications, and against linear-time specifications represented as deter-
ministic Biichi automata. Contrary to the case of finite automata, qualitative prop-
erties (i.e., whether a property holds with probability O or 1), depend on the exact
probabilities of the transitions.

There are many possibilities for future work. An obvious question is what is
the complexity of the obtained algorithms. Since the formulae of first order arith-
metic which are constructed in our algorithms have a fixed alternation depth, we
can apply a powerful result of Grigoriev [Gri88] which says that the validity of
such formulae is decidable in single exponential time. From this we can easily
derive the time complexity of some of our algorithms (for example, the qualita-
tive/quantitative random walk problem of Section 3 is decidable in exponential
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time). Since the complexity issues were not the main priority of our work, the
efficiency of our algorithms can be improved even by relatively straightforward
optimizations. Moreover, there is a lot of space for advanced numerical algorithms
which might be used to compute the required probabilities with enough precision.

An obvious question about linear-time specifications is whether our procedure
can be improved to deal with nondeterministic Biichi automata. Another possibility
is to consider LTL specifications and try to generalize the technique of [CY95],
which modifies the probabilistic transition systems step-by-step and at the same
time simplifies the formula, until it becomes a propositional formula.
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