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1 Introduction

This chapter describes the automata-theoretic approach to the satisfiability and model-checking problems
for temporal logics. In a nutshell, the approach reduces these problems to standard decision problems
about automata, like nonemptiness, language containment, or membership (whether a given object is
accepted by a given automaton). These problems are solved using results of automata theory, which
leads to algorithms for satisfiability and model-checking.

Temporal logics are modal logics for the description of the temporal ordering of events. They have
become one of the most popular and flexible formalisms for specifying the behavior of concurrent pro-
grams [Pnu77, MP92]. In the early 80s, algorithmic methods were proposed for automatically verifying
temporal logic properties of finite-state programs [QS82, LP85, CES86, VW86a]. (A state of a program
is a complete description of its status, including the assignment of values to variables, the value of the
program counter, and the like. Finite-state programs have finitely many possible states. Many hardware
designs, synchronization and communication protocols, abstract versions of device drivers and many other
systems can be modeled as finite-state programs.) The behavior of a finite-state program can be for-
malized as a finite propositional Kripke structure, and its desired behavior as a formula of propositional
temporal logic. In order to verify the correctness of the program, one checks that its associated Kripke
structure is a model of (satisfies) the formula. In other words, the problem of verifying whether a given
finite-state program behaves as desired is reduced to the model-checking problem for the temporal logic.
Extensive introductions to model checking can be found in [CGP99, BK08].

Temporal logics can describe time as linear or branching. In linear-time logics, each moment in time
has a unique possible future, while in branching-time logics, each moment in time may split into several
possible futures. (For an extensive discussion of various temporal logics, see [Eme90].) For both types,
a close and fruitful connection with the theory of automata on infinite structures has been developed.
The central idea is to associate with each temporal logic formula a finite automaton on infinite structures
recognizing the computations that satisfy the formula. For linear temporal logic the structures are infinite
words [Sis83, LPZ85, SVW87, VW94], while for branching temporal logic the structures are infinite trees
[ES84, SE84, Eme85, VW86b, EJ88]. Once this has been achieved, the satisfiability problem for a
logic reduces to the nonemptiness problem for its corresponding class of automata. The model-checking
problem reduces to the language containment problem or to the membership problem, depending on the
logic.

In the 80s and the first half of the 90s, the literature produced direct translations from temporal
logic formulas to nondeterministic automata (cf. [VW86b, VW94, GPVW95]). However, for branching
time logics this translations did not lead to asymptotically optimal algorithms: in particular, algorithms
for branching-time logics derived from these translations were exponential, while other approaches only
required linear time. Work carried out since the second half of the 90s has solved this problem by splitting
the translation into two steps: a first translation of temporal formulas into alternating automata, followed
by a translation of alternating into nondeterministic automata [Var94, KVW00]. The existential and
universal states of alternating automata match the disjunctive and conjunctive operators of the logic,
which makes the first translation simple and succinct: the size of the alternating automaton is linear in

1



the size of the formula [MSS88, KVW00, EJ91, Var94]. The two steps also decouple the logical and the
combinatorial part of the problem: the translations from formulas to automata handle the logical part,
while the combinatorics are handled by automata constructions.

The chapter is divided into two parts, corresponding to linear-time and branching-time logics. In the
first part we present a translation of the logic LTL [Pnu81] into alternating Büchi word automata. The
second part contains translations of the logics CTL, CTL∗, and the propositional µ-calculus into different
classes of symmetric alternating tree automata: weak automata for CTL, hesitant automata for CTL∗,
and parity automata for the µ-calculus.

Historical Note: The connection between logic and automata goes back to work in the early 1960s
[Büc60, Elg61, Tra62] on monadic second-order logic and automata over finite words. This was extended
in [Büc62] to infinite words, in [Don65, TW68] to finite trees, and in [Rab69] to infinite trees. As tempo-
ral logics can be expressed in first-order or monadic second-order logic [Kam68, HT87], the connection
between monadic second-order logic and automata yields a connection between temporal logics and au-
tomata. Developing decision procedures that go via monadic second-order logic was a standard approach
in the 1970s, see [Gab72]. A direct translation to automata was proposed first in [Str82] in the context
of propositional dynamic logic. A direct translation from temporal logic to automata was first given in
[WVS83] (see also [VW94] for linear time and [VW84] for branching time). The translation to alternating
automata was first proposed in [MSS88] and pursued further in [Var94, Var95, KVW00].

2 Linear-time Logics

2.1 Linear temporal logic

The logic LTL is a linear temporal logic [Pnu81]. Formulas of LTL are constructed from a set AP of
atomic propositions using the usual Boolean operators and the temporal operators X (“next time”) and
U (“until”). Formally, an LTL formula over AP is defined as follows:

• true, false, or p, for p ∈ AP .

• ¬ψ1, ψ1 ∧ ψ2, Xψ1, or ψ1Uψ2, where ψ1 and ψ2 are LTL formulas.

The logic LTL is used for specifying properties of reactive systems. The systems are modeled by
Kripke structures, and the semantics of LTL is defined with respect to infinite computations, modeled by
infinite paths in Kripke structures. Formally, a Kripke structure is K = 〈AP,W,R,W0, `〉, where AP is
the set of atomic propositions, W is a set of states, R ⊆ W ×W is a total transition relation (that is,
for every state w ∈W there is at least one state w′ ∈W such that R(w,w′)), W0 ⊆W is a set of initial
states, and ` : W → 2AP maps each state to the set of atomic propositions that hold in this state.

A path of the Kripke structure K is an infinite sequence w0, w1, . . . of states such that w0 ∈ W0 and
R(wi, wi+1) for all i ≥ 0. A computation over AP is an infinite word over the alphabet 2AP , namely a
sequence of truth assignments to the atomic propositions in AP . Every path w0, w1, . . . of K induces the
computation `(w0), `(w1), . . . of K.

Consider a computation π = π0, π1, π2, . . ., where for every j ≥ 0, the set πj ⊆ AP is the set of atomic
propositions that hold in the j-th position of π. We denote the suffix πj , πj+1, . . . of π by πj . We write
π |= ψ to denote that the computation π satisfies the LTL formula ψ. The relation |= is inductively
defined as follows:

• For all π, we have π |= true and π 6|= false.

• For an atomic proposition p ∈ AP , we have π |= p iff p ∈ π0.

• π |= ¬ψ1 iff π 6|= ψ1.
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• π |= ψ1 ∧ ψ2 iff π |= ψ1 and π |= ψ2.

• π |= Xψ1 iff π1 |= ψ1.

• π |= ψ1Uψ2 iff there exists k ≥ 0 such that πk |= ψ2 and πi |= ψ1 for all 0 ≤ i < k.

Each LTL formula ψ over AP defines a language Lψ ⊆ (2AP )ω of the computations that satisfy ψ,
Formally,

Lψ = {π ∈ (2AP )ω|π |= ψ}.

We use the following abbreviations in writing formulas:

• ∨,→, and ↔, interpreted in the usual way.

• ψ1Rψ2 = ¬((¬ψ1)U(¬ψ2)). That is, ψ1Rψ2 is such that the operator R (“release”) dualizes the
operator U .

• Fψ = trueUψ (“eventually”, where “F” stands for “Future”).

• Gψ = ¬F¬ψ (“always”, where “G” stands for “Globally”). Equivalently, Gψ = falseRψ.

Example 2.1 We use LTL to formalize some desirable properties of a mutual exclusion algorithm for
two processes, Process 0 and Process 1. Let AP contain the atomic propositions (with i ∈ {0, 1}) csi
(Process i is in its critical section) and try i (Process i tries to enter its critical section).

• The mutual exclusion property states that Process 0 and Process 1 are never simultaneously in their
critical sections. We can express it using the LTL formula

ψme = G((¬cs0) ∨ (¬cs1)).

Note we could have used several equivalent formulas, like G(cs0 → ¬cs1) or ¬F (cs0 ∧ cs1). The
corresponding language Lme contains all computations having no occurrences of letters (elements
of 2AP ) containing both cs0 and cs1. Thus,

Lme = {π ∈ (2AP )ω | for all j ≥ 0, we have cs0 /∈ πj or cs1 /∈ πj}.

• The finite waiting property for Process i states that if Process i tries to access its critical section,
it eventually will. In LTL, we have

ψifw = G(try i → F csi).

The corresponding language Lifw contains all computations in which every occurrence of a letter
containing try i is followed later by an occurrence of some letter containing csi.

Lifw = {π ∈ (2AP )ω | for all j ≥ 0, if try i ∈ πj , then there is k > j such that csi ∈ πk)}.

• The access only after trying property for Process i states that Process i enters its critical section
only after it has tried to enter it. In LTL,

ψiat = ((¬csi)U try i) ∨G¬csi.

The corresponding language Liat contains all computations in which every occurrence of a letter
containing csi is preceded by an occurrence of some letter containing try i.

Liat = {π ∈ (2AP )ω | for all j ≥ 0, if csi ∈ πj , then there is k ≤ j such that try i ∈ πk}.
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2.2 Alternating Büchi word automata

For a finite alphabet Σ, a word w = σ0σ1 · · · is a (finite or infinite) sequence of letters from Σ. A property
of a system with a set AP of atomic propositions can be viewed as a language over the alphabet 2AP . We
have seen in Section 2.1 that LTL can be used to formalize properties. Another way to define properties
is to use automata.

A nondeterministic finite automaton is a tuple A = 〈Σ, Q,Q0, δ, α〉, where Σ is a finite nonempty
alphabet, Q is a finite nonempty set of states, Q0 ⊆ Q is a nonempty set of initial states, δ : Q×Σ→ 2Q

is a transition function, and α is an acceptance condition.
Intuitively, when an automaton A runs on an input word over Σ, it starts in one of the initial

states, and it proceeds along the word according the transition function. Thus, δ(q, σ) is the set of
states that A can move into when it is in state q and it reads the letter σ. Note that the automaton
may be nondeterministic, since it may have many initial states and the transition function may specify
many possible transitions for each state and letter. The automaton A is deterministic if |Q0| = 1 and
|δ(q, σ)| ≤ 1 for all states q ∈ Q and symbols σ ∈ Σ.

Formally, a run r of A on a finite word w = σ1 · · ·σn ∈ Σ∗ is a sequence q0, q1, . . . , qn of n+ 1 states
in Q such that q0 ∈ Q0, and qi+1 ∈ δ(qi, σi+1) for all 0 ≤ i < n. Note that a nondeterministic automaton
can have many runs on a given input word; in contrast, a deterministic automaton can have at most
one. If the input word is infinite, then a run of A on it is an infinite sequence of states. The acceptance
condition α determines which runs are accepting. For automata on finite words, α ⊆ Q and a run r is
accepting if qn ∈ α. Otherwise, r is rejecting. For automata on infinite words, one can consider several
acceptance conditions. In the Büchi acceptance condition, α ⊆ Q, and a run r is accepting if it visits
some state in α infinitely often. Formally, let inf (r) = {q : qi = q for infinitely many i’s }. Then, r is
accepting iff inf (r) ∩ α 6= ∅. A nondeterministic automaton A accepts a word w if there is an accepting
run of A on w. A universal automaton has the same components as a nondeterministic one, but it accepts
a word w if all its runs on w are accepting.

We now turn to define alternating automata. We first need some notations. For a given set X, let
B+(X) be the set of positive Boolean formulas over X (i.e., Boolean formulas built from elements in X
using ∧ and ∨), where we also allow the formulas true and false. For Y ⊆ X, we say that Y satisfies
a formula θ ∈ B+(X) iff the truth assignment that assigns true to the members of Y and assigns false
to the members of X \ Y satisfies θ. For example, the sets {q1, q3} and {q2, q3} both satisfy the formula
(q1 ∨ q2) ∧ q3, while the set {q1, q2} does not satisfy this formula.

Consider an automaton A = 〈Σ, Q,Q0, δ, α〉. We can represent δ using B+(Q). For example, a
transition δ(q, σ) = {q1, q2, q3} of a nondeterministic automaton A can be written as δ(q, σ) = q1 ∨
q2 ∨ q3. If A is universal, the transition can be written as δ(q, σ) = q1 ∧ q2 ∧ q3. While transitions
of nondeterministic and universal automata correspond to disjunctions and conjunctions, respectively,
transitions of alternating automata can be arbitrary formulas in B+(Q). We can have, for instance, a
transition δ(q, σ) = (q1 ∧ q2) ∨ (q3 ∧ q4), meaning that the automaton accepts a suffix wi of w from state
q, if it accepts wi+1 from both q1 and q2 or from both q3 and q4. Such a transition combines existential
and universal choices.

Formally, an alternating automaton on infinite words is a tuple A = 〈Σ, Q, qin, δ, α〉, where Σ, Q,
and α are as in nondeterministic automata, qin ∈ Q is an initial state (we will later explain why it is
technically easier to assume a single initial state), and δ : Q × Σ → B+(Q) is a transition function. In
order to define runs of alternating automata, we first have to define trees and labeled trees. Given a set
Υ of directions, an Υ-tree is a prefix-closed set T ⊆ Υ∗. Thus, if x · c ∈ T where x ∈ Υ∗ and c ∈ Υ, then
also x ∈ T . The elements of T are called nodes, and the empty word ε is the root of T . For every x ∈ T
and c ∈ Υ, the node x · c is a successor of x. The number of successors of x is called the degree of x and
is denoted by d(x). A node is a leaf if it has no successors. We sometimes refer to the length |x| of x as
its level in the tree. A path of an Υ-tree T is a set π ⊆ T such that ε ∈ π and for every x ∈ π, either x
is a leaf or there exists a unique c ∈ Υ such that x · c ∈ π. Given an alphabet Σ, a Σ-labeled Υ-tree is a
pair 〈T, V 〉 where T is an Υ-tree and V : T → Σ maps each node of T to a letter of Σ.
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While a run of a nondeterministic automaton on an infinite word is an infinite sequence of states, a
run of an alternating automaton is a Q-labeled IN-tree. Formally, given an infinite word w = σ0σ1 · · ·, a
run of A on w is a Q-labeled IN-tree 〈Tr, r〉 such that the following two conditions hold:

• ε ∈ Tr and r(ε) = qin.

• If x ∈ Tr, r(x) = q, and δ(q, σ|x|) = θ, then there is a (possibly empty) set S = {q1, . . . , qk} such
that S satisfies θ and for all 1 ≤ c ≤ k, we have x · c ∈ Tr and r(x · c) = qc.

For example, if δ(qin, σ0) = (q1∨q2)∧ (q3∨q4), then every run of A on w has a root labeled qin, a node in
level 1 labeled q1 or q2, and another node in level 1 labeled q3 or q4. Note that if θ = true, then x need
not have children. This is the reason why Tr may have leaves. Also, since no set S satisfies θ = false, no
run ever takes a transition with θ = false.

A run 〈Tr, r〉 is accepting iff all its infinite paths, which are labeled by words in Qω, satisfy the
acceptance condition. A word w is accepted iff there exists an accepting run on it. Note that while
conjunctions in the transition function of A are reflected in branches of 〈Tr, r〉, disjunctions are reflected
in the fact we can have many runs on the same word. The language of A, denoted L(A), is the set of
infinite words that A accepts.

We define the size |A| of an automaton A = 〈Σ, Q, δ, q0, α〉 as |Q| + |δ| + |F |, where |Q| and |α| are
the respective cardinalities of the sets Q and α, and where |δ| is the sum of the lengths of formulas that
appear as δ(q, σ) for some q ∈ Q and σ ∈ Σ.

Example 2.2 We describe an alternating Büchi automaton An over the alphabet Σn = {1, 2, . . . , n}
such that An accepts exactly all words containing the subword i3 for all letters i ∈ Σ.

Let An = 〈Σn, Qn, qin, δ, ∅〉, where

• Qn = {qin}∪ (Σ×{3, 2, 1}). Thus, in addition to an initial state, the automaton An contains three
states for each letter. Intuitively, the automaton is going to spawn into n different copies, with copy
i waiting for the subword i3 using the states 〈i, 3〉, 〈i, 2〉, and 〈i, 1〉.

• In its first transition, An spawn into n copies, taking the first letter into an account. Thus, for all
i ∈ Σ, we have δ(qin, i) = 〈i, 2〉 ∧

∧
j 6=i 〈j, 3〉. In addition, for all i ∈ Σ and c ∈ {3, 2, 1}, we have

δ(〈i, c〉, j) =

 〈i, c− 1〉 if j = i and c ∈ {3, 2},
true if j = i and c = 1,
〈i, 3〉 if j 6= i.

Observe that the number of states in a nondeterministic automaton for the language is exponential in n,
as it has to remember the subsets of letters for which the required subword has already appeared.

2.3 Alternation removal

The rich structure of alternating automata makes them exponentially more succinct than nondetermin-
istic automata. On the other hand, reasoning about alternating automata is complicated. For example,
while the nonemptiness of a nondeterministic automaton is independent of the labeling of its transitions,
this is no longer true for alternating automata, and this fact has important consequences: nonemptiness is
NLOGSPACE-complete for nondeterministic automata but PSPACE-complete for alternating automata.
Thus, many algorithms for alternating automata involve alternation removal – a translation to an equiv-
alent nondeterministic automaton. Below we describe such a translation for the case of Büchi automata.

Theorem 2.3 [MH84] Let A be an alternating Büchi automaton. There is a nondeterministic Büchi
automaton A′, with exponentially many states, such that L(A′) = L(A).
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Proof: The automaton A′ guesses a run tree of A and simultaneously, checks if the run tree contains
infinitely many “checkpoints”: levels between which every path in the run of A visits α at least once.
The first checkpoint is the first level. The states of A′ are pairs 〈S,O〉 ∈ 2Q × 2Q, where S is used to
store a whole level of the run tree of A, and O to identify the checkpoints: A′ keeps track in O of the
states that “owe” a visit to α; i.e., states that have not visited α since the last checkpoint. The next
checkpoint is reached when no state owes a visit.

Let A = 〈Σ, Q, qin, δ, α〉. Then, A′ = 〈Σ, 2Q × 2Q, 〈{qin}, ∅〉, δ′, 2Q × {∅}〉, where δ′ is defined, for all
〈S,O〉 ∈ 2Q × 2Q and σ ∈ Σ, as follows.

• If O 6= ∅, then

δ′(〈S,O〉, σ) = {〈S′, O′ \ α〉 |S′ satisfies
∧
q∈S

δ(q, σ), O′ ⊆ S′, and O′ satisfies
∧
q∈O

δ(q, σ)}.

• If O = ∅, then
δ′(〈S,O〉, σ) = {〈S′, S′ \ α〉 | S′ satisfies

∧
q∈S

δ(q, σ)}.

Note that all the states 〈S,O〉 inA′ that are reachable from the initial state satisfyO ⊆ S. Accordingly,
if the number of states in A is n, then the number of states in A′ is at most 3n.

Note that the construction has the flavor of the subset construction [RS59], but in a dual interpretation:
a set of states is interpreted conjunctively: the suffix of the word has to be accepted from all the states
in S. While such a dual subset construction is sufficient for automata on finite words, the case of Büchi
automata requires also the maintenance of a subset O of S, leading to a 3n, rather than a 2n, blow-up.
As shown in [BKR10], this additional blow up can not be avoided.

3 Applications

In Section 2 we have seen two formalisms for specifying properties of nonterminating systems: LTL and
automata. In this section we show that translate LTL formulas to alternating Büchi automata on infinite
words with no blow up.

3.1 Translating LTL to alternating Büchi word automata

Consider an LTL formula ψ. For simplicity, we assume that ψ is in positive normal form, in which
negation is applied only to atomic propositions. Formally, LTL formulas over AP in positive normal form
have the following syntax:

• true, false, p, or ¬p, for p ∈ AP .

• ψ1, ψ1∧ψ2, ψ1∨ψ2, Xψ1, ψ1Uψ2, or ψ1Rψ2, where ψ1 and ψ2 are LTL formulas in positive normal
form.

Note that restricting negation to atomic propositions requires to add not only the Boolean operator ∨
but also the temporal operator R. Still, it is easy to see that transforming an LTL formula into a formula
in positive normal form involves no blow up.

The closure of an LTL formula ψ in positive normal form, denoted cl(ψ), is the set of all its subformulas.
Formally, cl(ψ) is the smallest set of formulas that satisfy the following.

• ψ ∈ cl(ψ).
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• If ψ1 ∧ ψ2, ψ1 ∨ ψ2, ψ1Uψ2 or ψ1Rψ2 are in cl(ψ), then ψ1 ∈ cl(ψ) and ψ2 ∈ cl(ψ).

• If Xψ1 is in cl(ψ), then ψ1 ∈ cl(ψ).

For example, cl(p ∧ ((Xp)Uq)) is {p ∧ ((Xp)Uq), p, (Xp)Uq,Xp, q}. It is easy to see that the size of
cl(ψ) is linear in the length of ψ. Accordingly, we define the size of ψ, denoted |ψ|, as |cl(ψ)|. Note that
even though the number of elements in the closure of a formula can be logarithmic in the length of the
formula if there are multiple occurrences of identical subformulas, our definition of size is legitimate since
it corresponds to the number of nodes in a reduced DAG representation of the formula.

Theorem 3.1 [Var94] For every LTL formula ψ, there is an alternating Büchi automaton Aψ such that
L(Aψ) = L(ψ) and the number of states of Aψ is linear in |ψ|.

Proof: We assume that ψ is in positive normal form. We define Aψ = 〈2AP , cl(ψ), δ, Q0, α〉, where

• for a state ϕ ∈ cl(ψ) and letter σ ∈ 2AP , the transition δ(ϕ, σ) is defined according to the form of
ϕ as follows.

– δ(true, σ) = true and δ(false, σ) = false.

– δ(p, σ) =
[

true if p ∈ σ
false if p 6∈ σ.

– δ(¬p, σ) =
[

true if p 6∈ σ
false if p ∈ σ.

– δ(ϕ1 ∧ ϕ2, σ) = δ(ϕ1, σ) ∧ δ(ϕ2, σ).

– δ(ϕ1 ∨ ϕ2, σ) = δ(ϕ1, σ) ∨ δ(ϕ2, σ).

– δ(Xϕ, σ) = ϕ.

– δ(ϕ1Uϕ2, σ) = δ(ϕ2, σ) ∨ (δ(ϕ1, σ) ∧ ϕ1Uϕ2).

– δ(ϕ1Rϕ2, σ) = δ(ϕ2, σ) ∧ (δ(ϕ1, σ) ∨ ϕ1Rϕ2).

• the set α of accepting states consists of all the formulas in cl(ψ) of the form ϕ1Rϕ2.

Example 3.2 We describe an alternating Büchi automaton for the LTL formula ψ = p∧((Xp)Ur)). The
alphabet of the automaton consists of the four letters in 2{p,r}. The states and transitions are described
in the table below. No state is accepting.

state q δ(q, {p, r}) δ(q, {p}) δ(q, {r}) δ(q, ∅)
ψ true p ∧ ((Xp)Ur)) false false
p true true false false
(Xp)Ur true p ∧ ((Xp)Ur)) true p ∧ ((Xp)Ur))

Example 3.3 We describe an alternating Büchi automaton for the LTL formula ψ = GFp. Note that
ψ = falseR(trueUp). In the example, we use the F and G abbreviations. The alphabet of the automaton
consists of the two letters in 2{p}. The set of accepting states is {GFp}, and the states and transitions
are described in the table below.

state q δ(q, {p}) δ(q, ∅)
GFp GFp GFp ∧ Fp
Fp true Fp
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Combining Theorems 3.1 and 2.3, we get the following.

Theorem 3.4 [VW94] For every LTL formula ψ, there is a nondeterministic Büchi automaton Aψ such
that L(Aψ) = L(ψ) and the number of states of Aψ is exponential in |ψ|.

As will be discussed in Section 3.8, the exponential blow-up in the translation cannot in general be
avoided. Nevertheless, while the 3n blow-up in Theorem 2.3 refers to general alternating Büchi automata,
the automata obtained from LTL are of a special structure: all the cycles in the automata are self-loops
of size 1. For such automata (termed very-weak alternating automata), alternation can be removed with
only an n2n blow up [GO01, BKR10].

3.2 Automata-based satisfiability and model-checking procedures for LTL

Recall that the logic LTL is used for specifying properties of reactive systems. Two natural problems
arise in this setting.

• Satisfiability: given an LTL formula ψ, is there a computation π such that π |= ψ?

• Model Checking: given a Kripke structure K and an LTL formula ψ, do all computations of K
satisfy ψ?

In this section we describe the automata-theoretic approach to LTL satisfiability and model checking.
We show how, using the construction described in Theorem 3.4, these problems can be reduced to
problems about automata and their languages. We first describe the relevant problems from automata
theory and their decision procedures.

• The nonemptiness problem is to decide, given an automaton A, whether L(A) 6= ∅.

• The language-containment problem is to decide, given automata A1 and A2, whether L(A1) ⊆
L(A2).

Theorem 3.5 [VW94] The nonemptiness problem for NBWs is decidable in linear time and is NLOGSPACE-
complete.

Proof: An NBW A = 〈Σ, Q,Q0, δ, α〉 induces a graph GA = 〈Q,Eδ〉 in which Eδ(q, q′) iff there is a
letter σ ∈ Σ such that q′ ∈ δ(q, σ). We claim that L(A) is nonempty if and only if there are states q0 ∈ Q0

and q ∈ α such that the graph GA contains a path leading from q0 to q and a circuit going though q.
Suppose first that L(A) is nonempty. Then there is an accepting run r = q0, q1, . . . of A on some input
word, which corresponds to an infinite path of GA that starts in Q0. Since r is accepting, some q ∈ α
occurs in r infinitely often; in particular, there are i, j, where 0 < i < j, such that q = qi = qj . Thus,
q0, . . . , qi corresponds to a path from Q0 to q, and qi, . . . , qj to a circuit going through q.

Conversely, assume that GA contains a path leading from q0 to q and a circuit going though q. We
can then construct an infinite path of GA starting at q0 and visiting q infinitely often. This path defines
a run whose corresponding word is accepted by A.

To check emptiness in linear time, we use a depth-first-search algorithm to construct a decomposition
of GA into maximal strongly connected components [CLR90]. It is easy to see that A is nonempty iff from
a component that intersects Q0 nontrivially it is possible to reach a nontrivial component that intersects
α nontrivially. (A strongly connected component is nontrivial if it contains an edge, which means, since
it is strongly connected, that it contains a cycle).
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The algorithm proving membership in NLOGSPACE first guesses a state q0 ∈ Q0, then guesses a
state q1 that is directly connected to q0, then guesses a state q2 that is directly connected to q1, etc.,
until it reaches a state q ∈ α. At that point the algorithm remembers q and it continues to move
nondeterministically from a state qi to a state qi+1 that is directly connected to q until it reaches q again
or i exceeds |Q|. Clearly, the algorithm needs only logarithmic memory, since it needs to remember (a
description of) at most three states at each step and a counter that counts to |Q|.

NLOGSPACE-hardness follows from NLOGSPACE-hardness of graph reachability [Jon75].

The language-containment problem is PSPACE-complete [SVW87]. Membership in PSPACE follows
from the fact L(A1) ⊆ L(A2) iff L(A1) ∩ (Σω \ L(A2)) = ∅. Thus, solving the problem has a flavor
of complementation of A2, which involves an exponential blow-up. In the context of model checking,
however, we would like to check the containment of the language of a Kripke structure in the language
of an LTL formula. Since LTL is easy to complement, we can therefore trade the language-containment
problem by the following easier problem.

• The language-disjointness problem is to decide, given automata A1 and A2, whether L(A1) ∩
L(A2) = ∅. Since the intersection of nondeterministic Büchi automata can be defined on an aug-
mented product construction [Cho74], the language-disjointness problem is decidable in quadratic
time and is NLOGSPACE-complete.

Note that the construction of Aψ can proceed on-the-fly. That is, given a state S of Aψ and a letter
σ ∈ 2AP , it is possible to compute the set δ(S, σ) from the formulas in S. As we shall see below, this
fact is very helpful, as it implies that, when reasoning about Aψ, one need not construct the whole state
space of Aψ up front, but can rather proceed in an on-demand fashion.

Theorem 3.6 [SC85] The LTL satisfiability problem is PSPACE-complete.

Proof: An LTL formula ψ is satisfiable iff the automaton Aψ is not empty. Indeed, Aψ accepts exactly
all the computations that satisfy ψ. Recall that the nonemptiness problem for nondeterministic Büchi
automata is in NLOGSPACE. Since Aψ can be constructed on-the-fly, and its states can be encoded using
linear space, membership in PSPACE follows. Hardness in PSPACE is proved in [SC85] by a generic
reduction from a PSPACE Turing machine.

Theorem 3.7 [SC85] The LTL model-checking problem is PSPACE-complete.

Proof: Consider a Kripke structure K = 〈AP,W,R,W0, `〉. We can construct a nondeterministic Büchi
automaton AK that accepts a computation π ∈ (2AP )ω iff π is a computation of K. The construction of
AK essentially moves the labels of K from the states to the transitions and makes all states accepting.
Thus, AK = 〈2AP ,W,W0, δ,W 〉, where for all w ∈W and σ ∈ 2AP , we have

δ(w, σ) =
[
{w′ : R(w,w′)} if σ = `(w).
∅ if σ 6= `(w).

Now, K satisfies ψ iff all the computations of K satisfy ψ, and so iff L(AK) ⊆ L(Aψ). As discussed above,
we can use the fact that LTL formulas are easy to complement and check instead that no computation
of K violates ψ. Accordingly, the model-checking problem can be reduced to the language-disjointness
problem for AK and A¬ψ, where A¬ψ is the nondeterministic Büchi automaton for ¬ψ. Let AK,¬ψ be
a nondeterministic Büchi automaton accepting the intersection of the languages of AK and A¬ψ. Since
AK has no acceptance condition, the construction of AK,¬ψ can proceed by simply taking the product
of AK with A¬ψ. Then, K satisfies ψ iff AK,¬ψ is empty. By Theorem 3.4, the number of states of A¬ψ
is exponential in |ψ|. Also, the size of AK is linear in |K|. Thus, the size of AK,¬ψ is |K| · 2O(|ψ|). Since
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the construction of A¬ψ, and hence also of AK,¬ψ can be done on-the-fly, and the states of A¬ψ can be
encoded in linear space, membership in PSPACE follows from the membership in NLOGSPACE of the
nonemptiness problem for nondeterministic Büchi automata. Hardness in PSPACE is proved in [SC85].

As described in the proof of Theorem 3.7, the PSPACE complexity of the LTL model-checking problem
follows from the exponential size of the product automaton AK,¬ψ. Note that AK,¬ψ is exponential only
in |ψ|, and is linear in |K|. Nevertheless, as K is typically much bigger than ψ, and the exponential
blow up of the translation of ψ to A¬ψ rarely appears in practice, it is the linear dependency in |K|,
rather than the exponential dependency in |ψ| that makes LTL model-checking so challenging in practice
[LP85].

3.3 Interesting special cases

3.3.1 From LTL to deterministic Büchi automata

Nondeterministic Büchi automata are more expressive than deterministic Büchi automata; for example,
the property FGp (“eventually always p”) can be specified by a nondeterministic Büchi automaton and
not by a deterministic one [Lan69]. In model checking, the standard algorithmic framework uses non-
deterministic Büchi automata [VW86a]. Many applications, however, require deterministic automata,
for example, synthesis [PR89], probabilistic verification [CY95], and runtime monitoring [TV10]. In gen-
eral, determinization of Büchi automata requires using more general acceptance conditions, e.g., Rabin
acceptance conditions [Rab69]. Furthermore, known determinization constructions are quite intricate
[Saf88, Pit06, KW08, Sch09b] and involve an exponential blow-up, implying that constructing determin-
istic automata for LTL formula involves a doubly exponential blow-up. In this section we show that even
the translation of LTL to deterministic Büchi automata, when possible, is tightly doubly exponential,
though the intricacy of general determinization can be avoided.

Theorem 3.8 [KV05] The translation of LTL to deterministic Büchi automata, when possible, is tightly
doubly exponential.

Proof: We start with the upper bound. We present both the traditional translation, which uses standard
determinization [KW08, Pit06, Saf88, Sch09a]. as well as a recent one [BK09], which avoids it. First,
we describe the traditional approach [KV05]. Let ψ be an LTL formula of length n and let Bψ be a
nondeterministic Büchi automaton that recognizes ψ. By Theorem 3.4, the automaton Bψ has 2O(n)

states. By determinizing Bψ, we get a deterministic Rabin automaton Rψ with 22O(n)
states [Saf88].

By [KPB94], if Rψ can be translated to a deterministic Büchi automaton, it can be translated to a
deterministic Büchi automaton with the same structure, that is, the same state space and transition
function, and hence with 22O(n)

states.
We now describe a more recent approach [BK09]. This approach uses automata with co-Büchi accep-

tance condition. A run r of a co-Büchi automaton with an acceptance condition α ⊆ Q is accepting iff
inf (r) ∩ α = ∅; that is, if the run visits the set α of accepting states only finitely many times. Let ψ be
an LTL formula of length n and let B¬ψ be a nondeterministic Büchi automaton that recognizes ¬ψ. By
Theorem 3.4, the automaton B¬ψ has 2O(n) states. By the duality between the Büchi and the co-Büchi
conditions, we know that ψ can be recognized by a deterministic Büchi automaton iff ¬ψ can be recog-
nized by a deterministic co-Büchi automaton. In particular, given a deterministic co-Büchi automaton for
¬ψ, viewing it as a Büchi automaton complements its language and hence results in a deterministic Büchi
automaton for ψ. It follows that in order to generate a deterministic Büchi automaton for ψ we only
have to translate B¬ψ to a deterministic co-Büchi automaton. By [BK09], such a translation can avoid
the Rabin acceptance condition and involves only a simple variant of the subset construction, resulting
in a deterministic co-Büchi automaton with at most 22O(n)

states.
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For the lower bound, described in [KV05], consider the regular language

Ln = {{0, 1,#}∗ ·# · w ·# · {0, 1,#}∗ · $ · w ·#ω : w ∈ {0, 1}n}.

A word τ is in Ln iff the word in {0, 1}n that comes after the single $ in τ appears somewhere before
the $ between #-s. By [CKS81], the smallest deterministic automaton on finite words that accepts Ln
has at least 22n

states. (The proof in [CKS81] considers the language of the finite words obtained from
Ln by omitting the #ω suffix. The proof, however, is independent of this technical detail: reaching the
$, the automaton should remember the possible set of words in {0, 1}n that have appeared before.) We
can specify Ln with an LTL formula ψn that makes sure that there is only one $ in the word and that
eventually there exists a position in which # is true and the i-th letter from this position, for 1 ≤ i ≤ n,
agrees with the i-th letter after the $. Formally,

ψn = [(¬$)U($ ∧X((0 ∨ 1) ∧ (X(0 ∨ 1)∧ n· · · X((0 ∨ 1) ∧XG#) · · ·)))] ∧
F [# ∧

∧
1≤i≤n((Xi0 ∧G($→ Xi0)) ∨ (Xi1 ∧G($→ Xi1)))].

Note that the length of ψn is quadratic in n. By encoding the positions of subwords starting with #,
it is possible to tighten the result to a language in which the LTL formula is of linear length [KR10].
Also note that while Ln refers to {0, 1,#, $} as an alphabet, the LTL formula ψn refers to them as
atomic propositions. It is easy, however, to add to ψn a conjunct that requires exactly one atomic
proposition to hold in each position. Finally, note that the argument about the number of states of the
smallest deterministic automaton that recognizes Ln is independent of the acceptance condition of the
automaton. Thus, the doubly-exponential lower bound is valid also for acceptance conditions.

Note that Theorem 3.8 also implies an exponential lower bound for the translation of LTL to nonde-
terministic Büchi automata.

3.3.2 Safety properties

Of special interest in formal verification are safety properties, which assert that the system always stays
within some allowed region. Thus, if a computation violates a safety property, then it has a finite prefix
after which the violation can be detected. Consider a language L ⊆ Σω of infinite words over the alphabet
Σ. A finite word x ∈ Σ∗ is a bad prefix for L iff for all y ∈ Σω, we have x · y 6∈ L. Thus, a bad prefix is a
finite word that cannot be extended to an infinite word in L. Note that if x is a bad prefix, then all the
finite extensions of x are also bad prefixes. A language L is a safety language iff every w 6∈ L has a finite
bad prefix. For a safety language L, we denote by pref (L) the set of all bad prefixes for L. For a Büchi
automaton A, we say that A is a safety automaton if L(A) is a safety language, and we use pref (A) to
denote the set of its bad prefixes. Similarly, a safety LTL formula ψ is one for which L(ψ) is safe, and
we use pref (ψ) to denote the set of its bad prefixes.

A safety LTL formula can be translated to a Büchi automaton all of whose states are accepting
(a.k.a. a looping automaton) [Sis94]. For the purpose of model checking, it is sufficient to translate
an LTL formula ψ to an automaton A¬ψ on finite words that accepts all its bad prefixes. Indeed, it
is easy to see that a Kripke structure K satisfies ψ iff no prefix of a computation of K is accepted by
A¬ψ. Also, the latter check involves reasoning about finite words and is simpler than reasoning about
Büchi automata. It turns out, however, that translating LTL formulas to automata for their bad prefixes
involves a doubly-exponential blow-up:

Theorem 3.9 [KV01] The translation of a safety LTL formula to a nondeterministic automaton for its
bad prefixes is tightly doubly exponential.

Proof: We start with the upper bound. We show that translating a safety nondeterministic Büchi
automaton A to an automaton for its bad prefixes can be done with an exponential blow up. The
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doubly-exponential bound then follows from the exponential translation of LTL to nondeterministic Büchi
automata. Let A = 〈Σ, Q, δ,Q0, α〉. Recall that pref (A) contains exactly all prefixes x ∈ Σ∗ such that
for all y ∈ Σω, we have x · y 6∈ L(A). Accordingly, the automaton for pref (A) accepts a prefix x iff the
set of states that A could be in after reading x contains only states whose language is empty. Formally,
we define the (deterministic) automaton A′ = 〈Σ, 2Q, δ′, {Q0}, α′〉, where δ′ and α′ are as follows.

• The transition function δ′ follows the subset construction induced by δ; that is, for every S ∈ 2Q

and σ ∈ Σ, we have δ′(S, σ) =
∨
s∈S δ(s, σ).

• For a state s, we say that s is empty if A with initial state s is empty. For a set S ∈ 2Q, we say
that S is null if all the states in S are empty. Now, α′ = {S : S is null}.

Note that while the construction is doubly exponential, it avoids the need to determinize A and only
applies the subset construction to it.

We now turn to prove the lower bound. The difficulty in proving the lower bound is that while the
automaton constructed in the upper bound is deterministic, no such requirement is made, and it may
seem like the (allowed) use of nondeterminism could save an exponent. We show that this is not the
case. We define, for n ≥ 1, the language L′n of infinite words over {0, 1,#, $} that contain at least one
$, and after the first $ either there is a word in {0, 1}n that has appeared before, or there is no word in
{0, 1}n (that is, there is at least one # or $ in the first n positions after the first $). The complement
of the language L′n, denoted comp(L′n), is a safety language. Consider a prefix of a word of the form x$
such that x ∈ {0, 1,#}∗ contains all the words in {0, 1}n, separated by #. Note that such a prefix is a
bad prefix for the complement of L′n. Indeed, no matter how the word continues, the first n bits in the
suffix either constitute a word in {0, 1}n, in which case it has appeared before, or they do not constitute
a word in {0, 1}n. In both cases, the obtained word is in L′n. Also, a nondeterministic automaton needs
22n

states to detect bad prefixes of this form. This makes the automaton for pref (comp(L′n)) doubly
exponential. On the other hand, we can specify L′n with an LTL formula ψn that is quadratic in n. The
formula is similar to the one for Ln from Theorem 3.8, only that it is satisfied also by computations in
which the first $ is not followed by a word in {0, 1}n. Now, the LTL formula ¬ψn is a safety formula
of size quadratic in n and the number of states of the smallest nondeterministic Büchi automaton for
pref (ψ) is 22n

.

The discouraging blow up in Theorem 3.9 suggests one should release the requirement on pref (ψ) and
seek, instead, a nondeterministic automaton on finite words that need not accept all the bad prefixes,
yet must accept at least one bad prefix of every infinite computation that does not satisfy ψ. Such an
automaton is said to be fine for ψ. For example, an automaton A that accepts all the finite words in
0∗ · 1 · (0 + 1) does not accept all the bad prefixes of the safety language {0ω}; in particular, it does not
accept the minimal bad prefixes in 0∗ · 1. Yet, A is fine for {0ω}. Indeed, every infinite word that is
different from 0ω has a prefix in 0∗ · 1 · (0 + 1). In practice, almost all the benefit that one obtains from
an automaton for pref (ψ) can also be obtained from a fine automaton. It is shown in [KL06] that the
translation of safety LTL formulas to finite automata involves only an exponential blow up. The key idea
behind the construction is that even though it is impossible to bound the length of a bad prefix, it is
possible to bound the number of bad “events” in a run on it.

4 Branching-time Logics

4.1 The logics CTL? and CTL

The logic CTL? combines both branching-time and linear-time operators [EH86]. A path quantifier,
either A (“for all paths”) or E (“for some path”), can prefix an assertion composed of an arbitrary
combination of the linear-time operators. A positive normal form CTL? formula is a CTL? formula in
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which negations are applied only to atomic propositions. It can be obtained by pushing negations inward
as far as possible, using De Morgan’s laws and dualities of quantifiers and temporal connectives. For
technical convenience, we write CTL? formulas in positive normal form.

There are two types of formulas in CTL?: state formulas, interpreted on states, and path formulas,
interpreted on paths. Formally, let AP be a set of atomic proposition names. A CTL? state formula is
either:

• true, false, p, or ¬p, for all p ∈ AP ;

• ϕ1 ∧ ϕ2 or ϕ1 ∨ ϕ2, where ϕ1 and ϕ2 are CTL? state formulas;

• Aψ or Eψ, where ψ is a CTL? path formula.

A CTL? path formula is either:

• A CTL? state formula;

• ψ1 ∧ ψ2, ψ1 ∨ ψ2, Xψ1, ψ1Uψ2, or ψ1Rψ2, where ψ1 and ψ2 are CTL? path formulas.

CTL? is the set of state formulas generated by the above rules.
The logic CTL is a restricted subset of CTL? in which the temporal operators must be immediately

preceded by a path quantifier. Formally, it is the subset of CTL? obtained by restricting the path formulas
to be Xϕ1, ϕ1Uϕ2, or ϕ1Rϕ2, where ϕ1 and ϕ2 are CTL state formulas. Note that LTL can also be
viewed as a restricted subset of CTL?, where only one outermost path quantifier is allowed.

We say that a CTL formula ϕ is an U -formula if it is of the form Aϕ1Uϕ2 or Eϕ1Uϕ2. The subformula
ϕ2 is then called the eventuality of ϕ. Similarly, ϕ is a R-formula if it is of the form Aϕ1Rϕ2 or Eϕ1Rϕ2.
The closure cl(ϕ) of a CTL? (CTL) formula ϕ is the set of all CTL? (CTL) state subformulas of ϕ
(including ϕ, but excluding true and false).

As in LTL, we define the size |ϕ| of ϕ as the number of elements in cl(ϕ). The semantics of CTL? is
defined with respect to a Kripke structure K = 〈AP,W,R,w0, `〉. Note that, for simplicity, we assume
that the Kripke structure has a single initial state. The notation K,w |= ϕ indicates that the state w of
the Kripke structure K satisfies the CTL? state formula ϕ. Similarly, K,π |= ψ indicates that the path
π of the Kripke structure K satisfies the CTL? path formula ψ. When K is clear from the context, we
write w |= ϕ and π |= ψ. Also, K |= ϕ if and only if K,w0 |= ϕ.

The relation |= is inductively defined as follows.

• For all w, we have w |= true and w 6|= false.

• w |= p for p ∈ AP iff p ∈ `(w).

• w |= ¬p for p ∈ AP iff p 6∈ `(w).

• w |= ϕ1 ∧ ϕ2 iff w |= ϕ1 and w |= ϕ2.

• w |= ϕ1 ∨ ϕ2 iff w |= ϕ1 or w |= ϕ2.

• w |= Aψ iff for every path π = w0, w1, . . ., with w0 = w, we have π |= ψ.

• w |= Eψ iff there exists a path π = w0, w1, . . ., with w0 = w, such that π |= ψ.

• π |= ϕ for a state formula ϕ, iff w0 |= ϕ where π = w0, w1, . . .

• π |= ψ1 ∧ ψ2 iff π |= ψ1 and π |= ψ2.

• π |= ψ1 ∨ ψ2 iff π |= ψ1 or π |= ψ2.
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• π |= Xψ iff π1 |= ψ.

• π |= ψ1Uψ2 iff there exists i ≥ 0 such that πi |= ψ2 and for all 0 ≤ j < i, we have πj |= ψ1.

• π |= ψ1Rψ2 iff for all i ≥ 0 such that πi 6|= ψ2, there exists 0 ≤ j < i such that πj |= ψ1.

For example, the CTL? formula A(GFp→ GFq) states that in all computations, if the computation
has infinitely many positions in which p holds, then it also has infinitely many positions in which q
holds. The formula is not a CTL formula, and in fact has no equivalent CTL formula. The formula
AG(req → EF grant) states that in all computations, from every position in which a request is issued,
there exists a path in in which a grant is eventually issued. This formula is in CTL.

In Section 2.2, we defined trees and labeled trees, and defined runs of alternating word automata as
Q-labeled trees. In this section we define automata whose input are Σ-labeled trees. Such automata
recognize languages like “the set of all {a, b}-labeled trees all of whose paths have infinitely many a’s”.
Note that an infinite word in Σω can be viewed as a Σ-labeled tree in which the degree of all nodes is 1.

Of special interest to us are Σ-labeled trees in which Σ = 2AP for some set AP of atomic propositions.
We call such Σ-labeled trees computation trees. A Kripke structure K = 〈AP,W,R,w0, `〉 can be viewed
as a tree 〈TK , VK〉 that corresponds to the unwinding of K from w0. Formally, for every node w, let d(w)
denote the degree of w (i.e., the number of successors of w, and note that for all w we have d(w) ≥ 1),
and let succR(w) = 〈w0, . . . , wd(w)−1〉 be an ordered list of w’s R-successors (we assume that the nodes
of W are ordered). We define TK and VK inductively as follows:

1. ε ∈ TK and VK(ε) = w0.

2. For y ∈ TK with succR(VK(y)) = 〈w0, . . . , wm〉 and for 0 ≤ i ≤ m, we have y · i ∈ TK and
VK(y · i) = wi.

We sometimes view 〈TK , VK〉 as a computation tree over 2AP , taking the label of a node to be
L(VK(x)) instead of VK(x). Which interpretation is intended will be clear from the context.

We sometimes refer to satisfaction of temporal logic formulas in computation trees, meaning their
satisfaction in this Kripke structure. In particular, we use L(ψ) to denote the set of 2AP -labeled trees
that satisfy ψ. Since satisfaction of CTL? formulas is preserved under unwinding, the identification of K
with 〈TK , VK〉 is sound.

4.2 The propositional µ-calculus

The propositional µ-calculus is a propositional modal logic augmented with least and greatest fixed-point
operators [Koz83]. Specifically, we consider a µ-calculus where formulas are constructed from Boolean
propositions with Boolean connectives, the temporal operators EX and AX, as well as least (µ) and
greatest (ν) fixed-point operators. We assume that µ-calculus formulas are written in positive normal
form (negation only applied to atomic propositions constants and variables). Formally, given a set AP
of atomic proposition constants and a set APV of atomic proposition variables, a µ-calculus formula is
either:

• true, false, p or ¬p for all p ∈ AP ;

• y for all y ∈ APV ;

• ϕ1 ∧ ϕ2 or ϕ1 ∨ ϕ2, where ϕ1 and ϕ2 are µ-calculus formulas;

• AXϕ or EXϕ, where ϕ is a µ-calculus formula;

• µy.f(y) or νy.f(y), where y ∈ APV and f(y) is a µ-calculus formula containing y.
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We say that an atomic proposition variable y ∈ APV is free in a formula ψ if y is not in the scope of
a fixed-point operator. A sentence is a formula that contains no free atomic proposition variables. We
call AX and EX next modalities, and we call µ and ν fixed-point modalities. We say that a µ-calculus
formula is a µ-formula (ν-formula), if it is of the form µy.f(y) (νy.f(y)). We use λ to denote a fixed-point
modality µ or ν. For a λ-formula λy.f(y), the formula f(λy.f(y)) is obtained from f(y) by replacing
each free occurrence of y with λy.f(y).

The closure, cl(ϕ), of a µ-calculus sentence ϕ is the smallest set of µ-calculus sentences that satisfies
the following:

• ϕ ∈ cl(ϕ).

• If ϕ1 ∧ ϕ2 ∈ cl(ϕ) or ϕ1 ∨ ϕ2 ∈ cl(ϕ), then ϕ1 ∈ cl(ϕ) and ϕ2 ∈ cl(ϕ).

• If AXϕ ∈ cl(ϕ) or EXϕ ∈ cl(ϕ), then ϕ ∈ cl(ϕ).

• If µy.f(y) ∈ cl(ϕ), then f(µy.f(y)) ∈ cl(ϕ).

• If νy.f(y) ∈ cl(ϕ), then f(νy.f(y)) ∈ cl(ϕ).

For example, for ϕ = µy.(q ∨ (p∧EXy)), cl(ϕ) = {ϕ, q ∨ (p∧EXϕ), q, p∧EXϕ, p,EXϕ}. It follows
from a result of [Koz83] that for every µ-calculus formula ϕ, the number of elements in cl(ϕ) is linear
with respect to a reduced DAG representation of ϕ. Accordingly, as with CTL?, we define the size |ϕ| of
ϕ as the number of elements in cl(ϕ).

Given a Kripke structure K = 〈AP,W,R,w0, `〉, and a set {y1, . . . , yn} of atomic proposition variables,
a valuation V : {y1, . . . , yn} → 2W is an assignment of subsets of W to the variables {y1, . . . , yn}. For a
valuation V, a variable y, and a set W ′ ⊆ W , we denote by V[y ← W ′] the valuation that assigns W ′

to y and otherwise coincides with V. A formula ϕ with free variables {y1, . . . , yn} is interpreted over the
structure K as a mapping ϕK from valuations to 2W . Thus, ϕK(V) denotes the set of states that satisfy
ϕ with the valuation V. The mapping ϕK is defined inductively as follows:

• trueK(V) = W and falseK(V) = ∅;

• For p ∈ AP , we have pK(V) = {w ∈W : p ∈ `(w)} and (¬p)K(V) = {w ∈W : p 6∈ `(w)};

• For yi ∈ APV , we have yKi (V) = V(yi);

• (ϕ1 ∧ ϕ2)K(V) = ϕK1 (V) ∩ ϕK2 (V);

• (ϕ1 ∨ ϕ2)K(V) = ϕK1 (V) ∪ ϕK2 (V);

• (AXϕ)K(V) = {w ∈W : ∀w′ such that 〈w,w′〉 ∈ R, we have w′ ∈ ϕK(V)};

• (EXϕ)K(V) = {w ∈W : ∃w′ such that 〈w,w′〉 ∈ R and w′ ∈ ϕK(V)};

• (µy.f(y))K(V) =
⋂
{W ′ ⊆W : fK(V[y ←W ′]) ⊆W ′};

• (νy.f(y))K(V) =
⋃
{W ′ ⊆W : W ′ ⊆ fK(V[y ←W ′])}.

Note that no valuation is required for a sentence. Thus, a sentence is interpreted over K as a predicate
defining a subset of W . For a state w ∈W and a sentence ϕ, we say that w |= ϕ iff w ∈ ϕK . For example,
the µ-calculus formula µy.(q∨(p∧EXy)) is equivalent to the CTL formula EpUq. Finally, as with CTL?,
we use the fact that satisfaction of µ-calculus formulas is preserved under unwinding, and interpret them
with respect to both Kripke structures and their computation trees. In particular, we use L(ϕ), for a
sentence ϕ, to denote the language of computation trees that correspond to Kripke structures whose
initial state satisfies ϕ.

A µ-calculus formula is alternation free if, for all y ∈ APV , there are no occurrences of ν (µ) on
any syntactic path from an occurrence of µy (νy) to an occurrence of y. For example, the formula
µx.(p ∨ µy.(x ∨EXy)) is alternation free and the formula νx.µy.((p ∧ x) ∨EXy) is not alternation free.
The alternation-free µ-calculus is a subset of µ-calculus containing only alternation-free formulas.
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4.3 Symmetric alternating tree automata

Automata over infinite trees (tree automata) run over labeled trees that have no leaves [Tho90]. Al-
ternating automata generalize nondeterministic tree automata and were first introduced in [MS87] (see
[Slu85] for alternating automata on finite trees). We define here symmetric alternating tree automata
[JW95, Wil99]. Let Ω = {ε,2,3}. A symmetric alternating tree automaton is an automaton in which
the transition function δ maps a state q and a letter σ to a formula in B+(Ω × Q). Atoms of the form
〈ε, q〉 are called ε-transitions. Intuitively, an atom 〈ε, q〉 corresponds to a copy of the automaton in state
q sent to the current node of the input tree. An atom 〈2, q〉 corresponds to copies of the automaton
in state q sent to all the successors of the current node. An atom 〈3, q〉 corresponds to a copy of the
automaton in state q, sent to some successor of the current node.

When, for instance, the automaton is in state q, reads a node x with successors x · υ1, . . . , x · υn, and

δ(q, V (x)) = ((2, q1) ∧ (ε, q2)) ∨ ((3, q2) ∧ (3, q3)),

it can either send n copies in state q1 to the nodes x · υ1, . . . , x · υn and send a copy in state q2 to x, or
send one copy in state q2 to some node in x · υ1, . . . , x · υn and send one copy in state q3 to some node in
x · υ1, . . . , x · υn. Thus, symmetric automata can send several copies to the same successor, and can also
have ε-transitions. On the other hand, symmetric automata cannot distinguish between left and right
and can send copies to successor nodes only in either a universal or an existential manner.

Formally, a symmetric automaton is a tuple A = 〈Σ, Q, δ, q0, α〉 where Σ is the input alphabet, Q is
a finite set of states, δ : Q × Σ → B+(Ω × Q) is a transition function, q0 ∈ Q is an initial state, and α
specifies the acceptance condition (a condition that defines a subset of Qω). The automaton A is ε-free
iff δ contains no ε-transitions. Let Υ be a finite set of directions. In Section 2.2 we defined Σ-labeled
Υ-trees. For simplicity, we assume that automata run on full Σ-labeled Υ-trees 〈T, V 〉, thus T = Υ∗.
A run of a symmetric automaton A on an input Σ-labeled Υ-tree 〈T, V 〉 is a (Υ∗ × Q)-labeled IN-tree
〈Tr, r〉. Unlike T , in which each node has exactly |Υ| children, the branching degree of the nodes in Tr
may vary, and Tr may also have leaves (nodes with no children). Thus, Tr ⊂ IN∗ and a path in Tr may
be either finite, in which case it ends in a leaf, or infinite. Each node of Tr corresponds to a node of T .
A node in Tr, labeled by (x, q), describes a copy of the automaton that reads the node x of T and visits
the state q. Note that many nodes of Tr can correspond to the same node of T ; in contrast, in a run of a
nondeterministic automaton on 〈T, V 〉 there is a one-to-one correspondence between the nodes of the run
and the nodes of the tree. The labels of a node and its children have to satisfy the transition function.
Formally, the run 〈Tr, r〉 is an (Υ∗ ×Q)-labeled tree that satisfies the following:

1. ε ∈ Tr and r(ε) = (ε, q0).

2. Let y ∈ Tr with r(y) = (x, q) and δ(q, V (x)) = θ. Then there is a (possibly empty) set S ⊆ Ω×Q,
such that S satisfies θ, and for all (c, s) ∈ S, the following hold:

• If c = ε, then there is j ∈ IN such that y · j ∈ Tr and r(y · j) = (x, s).

• If c = 2, then for each υ ∈ Υ, there is j ∈ IN such that y · j ∈ Tr and r(y · j) = (x · υ, s).
• If c = 3, then for some υ ∈ Υ, there is j ∈ IN such that y · j ∈ Tr and r(y · j) = (x · υ, s).

For example, if 〈T, V 〉 is a {1, 2}-tree with V (ε) = a and δ(q0, a) = 3q1 ∧ 2q2, then level 1 of 〈Tr, r〉
includes a node labeled (1, q1) or (2, q1), and include two nodes labeled (1, q2) and (2, q2). Note that if
θ = true, then y need not have children. This is the reason why Tr may have leaves. Also, since there
exists no set S as required for θ = false, we cannot have a run that takes a transition with θ = false.

Each infinite path ρ in 〈Tr, r〉 is labeled by a word in Qω. Let inf (ρ) denote the set of states in Q that
appear in r(ρ) infinitely often. A run 〈Tr, r〉 is accepting iff all its infinite paths satisfy the acceptance
condition (in particular, if Tr is finite, then 〈Tr, r〉 is accepting). In Büchi automata, α ⊆ Q, and an
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infinite path ρ satisfies α iff inf (ρ) ∩ α 6= ∅. In parity automata, α is a partition {F1, F2, . . . , Fk} of Q
and an infinite path ρ satisfies α iff the minimal index i for which inf (ρ) ∩ Fi 6= ∅ is even.

An automaton accepts a tree iff there exists an accepting run on it. We denote by L(A) the language
of the automaton A; i.e., the set of all labeled trees that A accepts. We say that A is nonempty iff
L(A) 6= ∅. We denote by Aq the automaton obtained from A by making q the initial state.

Example 4.1 Consider the language of all {a, b}-labeled trees in which all paths have infinitely many
nodes labeled a and there exists a path in which all nodes at odd positions in the path are labeled b. A
symmetric alternating Büchi automaton for the language is A = 〈{a, b}, {q0, q1, q2, q3, q4}, q0, {q1, q3, q4}〉,
where δ is described in the following table.

state q δ(q, a) δ(q, b)
q0 (2, q1) ∧ (3, q3) (2, q2) ∧ (3, q3)
q1 (2, q1) (2, q2)
q2 (2, q1) (2, q2)
q3 false (3, q4)
q4 (3, q3) (3, q3)

In the states q1 and q2, the automaton checks that all paths have infinitely many nodes labeled by a.
It does so by going, in all directions, to q1 whenever it reads an a, and to q2 whenever it reads a b. The
acceptance condition than requires infinitely many visits in q1. In the states q3 and q4, the automaton
checks that there exists a path in which all nodes at odd positions are labeled b. It does so by alternating,
in some direction, between these two states, and allowing state q3, which is visited along the guessed path
in exactly all odd positions, to read b only. Finally, in state q0, the automaton sends copies that check
both requirements.

In [MSS86], Muller et al. introduce weak alternating automata (WAAs). In a WAA, we have a Büchi
acceptance condition α ⊆ Q and there exists a partition of Q into disjoint sets, Q1, . . . , Qm, such that
for each set Qi, either Qi ⊆ α, in which case Qi is an accepting set, or Qi ∩ α = ∅, in which case Qi is a
rejecting set. In addition, there exists a partial order ≤ on the collection of the Qi’s such that Qj ≤ Qi
if q occurs in δ(q, σ) for some q ∈ Qi, q′ ∈ Qj , and σ ∈ Σ. Thus, transitions from a state in Qi lead
to states in either the same Qi or a lower one. It follows that every infinite path of a run of a WAA
ultimately gets “trapped” within some Qi. The path then satisfies the acceptance condition if and only
if Qi is an accepting set. Indeed, a run visits infinitely many states in α if and only if it gets trapped
in an accepting set. We sometimes refer to the type of an automaton, meaning its acceptance condition,
and its being weak or not weak.

We call the partition of Q into sets the weakness partition and we call the partial order over the sets of
the weakness partition the weakness order. Often (in particular, in all the cases we consider in this work)
a WAA is given together with its weakness partition and order. Otherwise, as we claim below, these
can be induced by the partition of the graph of the WAA into maximal strongly connected components
(MSCCs). Formally, given A, let GA be a directed graph induced by A; that is, the vertices of GA are
the states of A and there is an edge from vertex q to vertex q′ iff there is a transition in A from the state
q that involves the state q′. Let C1, . . . , Cn be a partition of GA into MSCCs. That is, for every Ci and
for every two vertices q and q′ in Ci, there is a path from q to q′ and from q′ to q, and for every vertex
q′′ 6∈ Ci, the set Ci ∪ {q′′} no longer satisfies this condition. Since the partition into MSCCs is maximal,
there is a partial order ≤ between them so that Ci ≤ Cj iff Ci is reachable from Cj .

A hesitant alternating automaton (HAA) is an alternating automaton A = 〈Σ, Q, δ, q0, α〉, where
α = 〈G,B〉 with G ⊆ Q and B ⊆ Q, and the following condition on the structure of the transitions hold.
As in WAAs, there exists a partition of Q into disjoint sets and a partial order ≤ such that transitions
from a state in Qi lead to states in either the same Qi or a lower one. In addition, each set Qi is classified
as either transient, existential, or universal, and for each set Qi and for all q ∈ Qi and σ ∈ Σ, the following
hold:
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1. If Qi is a transient set, then δ(q, σ) contains no elements of Qi.

2. If Qi is an existential set, then δ(q, σ) only contains disjunctively related elements of Qi.

3. If Qi is a universal set, then δ(q, σ) only contains conjunctively related elements of Qi.

It follows that every infinite path π of a run r gets trapped within some existential or universal set Qi.
The path then satisfies an acceptance condition 〈G,B〉 if and only if either Qi is an existential set and
inf (π)∩G 6= ∅, or Qi is a universal set and inf (π)∩B = ∅. Note that the acceptance condition of HAAs
combines the Büchi and the co-Büchi acceptance conditions: existential sets refer to a Büchi condition
G whereas universal sets refer to a co-Büchi condition B. Note also that while the transition function of
HAAs is more restricted than the one of WAAs, their acceptance condition is more expressive. We will
need the stronger acceptance condition to handle CTL? formulas. We call the partition of Q into sets
the hesitation partition and we call the partial order over the sets the hesitation order. The length of the
longest descending chain in the hesitation order is defined as the depth of the HAA.

4.4 Nonemptiness and 1-letter nonemptiness for alternating tree automata

In this section we study both the nonemptiness and the 1-letter nonemptiness problems for alternating
tree automata (that it, the nonemptiness problem for automata with |Σ| = 1). As we shall see in the
sequel, the differences between these problems are analogous to the differences between the satisfiability
and the model-checking problems for branching temporal logics.

For nondeterministic automata, the solution to the nonemptiness problem can ignore the alphabet
of the automaton. For example, a nondeterministic automaton on finite words is not empty iff there is
a path from an initial state to a final state. For alternating automata, the alphabet cannot be ignored
as the nonemptiness algorithm has to make sure that different copies of the automaton follow the same
input. For example, if one copy is sent in order to check that the input word has a suffix 0ω and a second
copy is sent in order to check that the input word has a suffix 1ω, then the language of the automaton is
empty, but ignoring the alphabet would cause the nonemptiness algorithm to check the nonemptiness of
each copy independently, leading to a wrong answer.

We first consider the general nonemptiness problem. Its solution involves alternation removal – a
translation of the automaton into an equivalent nondeterministic tree automaton. For weak automata,
the translation is similar to the one described for word automata in Section 2.3. For parity and hesitant
automata, the translation is more complicated and is described in [MS95]. Another issue that has to
be addressed in the context of the nonemptiness problem is the sufficient branching degree property
for branching temporal logics and tree automata. According to this property, if a branching-temporal
logic formula is satisfiable, then there is a Kripke structure whose branching degree is bounded (and
depends on the size of the formula) that satisfies it. A similar property holds for symmetric alternating
tree automata. Here, we assume that the nonemptiness problem gets as input both the automaton
and a branching degree. Applying the nonemptiness algorithm in order to check the satisfiability of
branching temporal logics, we will then use the known branching degree property for the corresponding
logics. Finally, for nondeterministic automata and a fixed branching degree, the non-emptiness problem
is equivalent to the problem of deciding two-player games in which the winning condition corresponds to
the acceptance condition of the automaton [GH82].

Theorem 4.2 [MSS86, MS95, FL79, Sei90] Consider a symmetric alternating tree automaton A (weak,
hesitant, or parity) and a branching degree d given in unary. The problem of deciding whether A accepts
some tree of degree d is EXPTIME-complete.

We now turn to study the 1-letter nonemptiness problem. Note that the 1-letter nonemptiness problem
is really a membership problem, asking whether the tree all of whose nodes are labeled by the single letter
is accepted by the alternating automaton. In fact, once we move to the 1-letter setting, the “directions”
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2,3, and ε coincide, and one can check instead the 1-letter nonemptiness of a word automaton. We
will discuss this point further in Section 5.2. As with nondeterministic tree automata, the nonemptiness
problem for alternating word automata over a singleton alphabet is equivalent to the problem of deciding
two-player games.

Theorem 4.3 [KVW00] Consider an alternating word automaton A over a singleton alphabet. The
problem of deciding whether A is not empty:

• can be solved in linear time for weak or hesitant automata.

• is in NP ∩ co-NP for parity automata.

• can be solved in space O(m log2 n) for hesitant automata of size n and depth m.

Proof: We describe the linear-time algorithm for weak automata. The other algorithms can be found
in [KVW00]. Consider a WAA A = 〈{a}, Q, δ, q0, α〉. The algorithm labels the states of A with either
‘T’, standing for “not empty”, or ‘F’, standing for “empty”. The language of A is thus nonempty if and
only if the initial state q0 is labeled with ‘T’.

As A is weak, there exists a partition of Q into disjoint sets Qi such that there exists a partial order
≤ on the collection of the Qi’s and such that for every q ∈ Qi and q′ ∈ Qj for which q′ occurs in δ(q, a),
we have that Qj ≤ Qi. Thus, transitions from a state in Qi lead to states in either the same Qi or a
lower one. In addition, each set Qi is classified as accepting, if Qi ⊆ α, or rejecting, if Qi ∩ α = ∅. Note
that if the partition of Q is not given, one can find such a partition in linear time. The algorithm works
in phases and proceeds up the partial order. We regard true and false as states with a self loop. The
state true constitutes an accepting set and the state false constitutes a rejecting set, both minimal in
the partial order. Let Q1 ≤ . . . ≤ Qn be an extension of the partial order to a total order. In each phase
i, the algorithm handles states from the minimal set Qi that still has not been labeled.

States that belong to the set Q1 are labeled according to the classification of Q1. Thus, they are
labeled with ‘T’ if Q1 is an accepting set and they are labeled with ‘F’ if it is a rejecting set. Once a state
q ∈ Qi is labeled with ‘T’ or ‘F’, transition functions in which q occurs are simplified accordingly; i.e., a
conjunction with a conjunct ‘F’ is simplified to ‘F’ and a disjunction with a disjunct ‘T’ is simplified to
‘T’. Consequently, a transition function δ(q′, σ) for some q′ (not necessarily from Qi) can be simplified
to true or false. The state q′ is then labeled, and simplification propagates further.

Since the algorithm proceeds up the total order, when it reaches a state q ∈ Qi that is still not labeled,
it is guaranteed that all the states in all Qj for which Qj < Qi, have already been labeled. Hence, all
the states that occur in δ(q, σ) have the same status as q. That is, they belong to Qi and are still not
labeled. The algorithm then labels q and all the states in δ(q, σ) according to the classification of Qi.
They are labeled ‘T’ if Qi is accepting and are labeled ‘F’ otherwise.

Correct operation of the algorithm can be understood as follows. As A is weak, it is guaranteed that
once the automaton visits a state that belongs to Q1, it visits only states from Q1 thereafter. Similarly,
when the automaton visits a state q whose labeling cannot be decided according to labeling of states in
lower sets, this state leads to a cycle or belongs to a cycle of states of the same status. Hence the labeling
of states according to the classification of the set to which they belong.

Formally, we prove that for all 1 ≤ i ≤ n, all the states in Qi are labeled correctly. The proof proceeds
by induction on i. The case i = 1 is immediate. Assume that we have already labeled correctly all the
states in all Qj with j < i and let q ∈ Qi. We consider the case where Qi is an accepting set. The proof is
symmetric for the case where Qi is a rejecting set. We distinguish between three possibilities of labeling
q:

1. The state q is labeled ‘T’ before the phase i. Then, the value of δ(q, a), simplified according to the
labeling already done, is true. Therefore, there exists a run of Aq in which every copy created in
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the first step (i.e., every copy that is created in order to satisfy δ(q, a)) reaches a state q′ for which,
by the induction hypothesis, the language of Aq′ is not empty. Hence, the language of Aq is also
not empty.

2. The state q is labeled ‘F’ before the phase i. The correctness proof is symmetric to the one of
the previous case: The value of δ(q, a), simplified according to the labeling already done, is false.
Therefore, every run of Aq has at least one copy created in the first step and reaches a state q′ for
which, by the induction hypothesis, the language of Aq′ is empty. Hence, the language of Aq is also
empty.

3. The state q is labeled ‘T’ during the phase i. Then, it must be the case that the simplification of
δ(q, a) contains states of Qi. Moreover, it contains only states of Qi and they all have not been
labeled before the phase i. Thus, there exists a run of Aq in which every copy created in the first
step either reaches a state q′ for which the language of Aq′ is not empty, or stays forever in Qi.
Hence, the language of Aq is not empty.

Note that these are indeed the only possibilities of labeling q: a state in an accepting set Qi cannot be
labeled after the phase i and it cannot be labeled with ‘F’ during the phase i since we are dealing with
an accepting Qi.

As suggested in [BB79, Bee80, DG84], the algorithm can be implemented in linear running time using
a data structure that corresponds to an and/or graph.

5 Applications

5.1 Translating branching temporal logics to alternating tree automata

In this section we present translations of CTL and the alternation-free µ-calculus to alternating weak tree
automata, of µ-calculus formulas to alternating parity automata, and of CTL? formulas to alternating
hesitant automata.

Theorem 5.1 [KVW00] For every CTL formula ψ, there is a symmetric alternating weak tree automaton
Aψ such that L(Aψ) = L(ψ) and the number of states of Aψ is linear in |ψ|.

Proof: We define Aψ = 〈2AP , cl(ψ), δ, ψ, α〉, where the set α of accepting states consists of all the
R-formulas in cl(ψ), and the transition function δ is defined, for all σ ∈ 2AP , as follows.

• δ(true, σ) = true and δ(false, σ) = false.

• δ(p, σ) =
[

true if p ∈ σ
false if p 6∈ σ.

• δ(¬p, σ) =
[

true if p 6∈ σ
false if p ∈ σ.

• δ(ϕ1 ∧ ϕ2, σ) = δ(ϕ1, σ) ∧ δ(ϕ2, σ).

• δ(ϕ1 ∨ ϕ2, σ) = δ(ϕ1, σ) ∨ δ(ϕ2, σ).

• δ(AXϕ, σ) = (2, ϕ).

• δ(EXϕ, σ) = (3, ϕ).

• δ(Aϕ1Uϕ2, σ) = δ(ϕ2, σ) ∨ (δ(ϕ1, σ) ∧ (2, Aϕ1Uϕ2)).
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• δ(Eϕ1Uϕ2, σ) = δ(ϕ2, σ) ∨ (δ(ϕ1, σ) ∧ (3, Eϕ1Uϕ2)).

• δ(Aϕ1Rϕ2, σ) = δ(ϕ2, σ) ∧ (δ(ϕ1, σ) ∨ (2, Aϕ1Rϕ2)).

• δ(Eϕ1Rϕ2, σ) = δ(ϕ2, σ) ∧ (δ(ϕ1, σ) ∨ (3, Eϕ1Rϕ2)).

The weakness partition and order of Aψ are defined as follows. Each formula ϕ ∈ cl(ψ) constitutes
a (singleton) set {ϕ} in the partition. The partial order is then defined by {ϕ1} ≤ {ϕ2} iff ϕ1 ∈ cl(ϕ2).
Since each transition of the automaton from a state ϕ leads to states associated with formulas in cl(ϕ),
the weakness conditions hold. In particular, each set is either contained in α or disjoint from α.

Example 5.2 Consider the CTL formula ψ = A(trueU(A(falseRp))). Note that ψ = AFAGp. The
WAA associated with ψ is Aψ = 〈{{p}, ∅}, {ψ,A(falseRp)}, δ, ψ, {A(falseRp)}〉, where δ is described
in the following table (we restrict Aψ to the reachable states; in particular, the state p is not reachable
from the state ψ).

state q δ(q, {p}) δ(q, ∅)
ψ (2, A(falseRp)) ∨ (2, ψ) (2, ψ)
AfalseRp (2, A(falseRp)) false

In the state ψ, if p holds in the present, then Aψ may either guess that A(falseRp), the eventuality
of ψ, is satisfied in the present, or proceed with (2, ψ), which means that the requirement for fulfilling
the eventuality of ψ is postponed to the future. The crucial point is that since ψ 6∈ α, infinite postponing
is impossible. In the state A(falseRp), Aψ expects a tree in which p is always true in all paths. Then,
it keeps visiting A(falseRp) forever. Since A(falseRp) ∈ α, this is permitted.

Example 5.3 Consider the CTL formula ψ = A((EX¬p)Ur). The WAA associated with ψ is Aψ =
〈2{p,r}, {ψ,¬p}, δ, ψ, ∅〉, where δ is described in the following table (we restrict Aψ to its reachable states).

state q δ(q, {p, r}) δ(q, {p}) δ(q, {r}) δ(q, ∅)
ψ true (3,¬p) ∧ (2, ψ) true (3,¬p) ∧ (2, ψ)
¬p false false true true

In the state ψ, if b does not hold on the present, then Aψ requires both EX¬p to be satisfied in the
present (that is, ¬p to be satisfied in some successor), and ψ to be satisfied by all the successors. As
ψ 6∈ α, the WAA Aψ should eventually reach a node that satisfies r.

We now present a similar translation for the alternation-free µ-calculus. The WAA we construct
use ε-transitions. As we explain below when we handle µ-calculus formulas, ε-transitions enable us to
decompose a formula into its subformulas before we read the next letter in the input. In the case of
µ-calculus formulas, this is essential for a sound definition of the acceptance condition of the automaton.
In the case of alternation-free µ-calculus, this guarantees that the transitions from µ and ν formulas are
well defined. We will elaborate on this point in Remark 5.6.

Theorem 5.4 [KVW00] For every alternation-free µ-calculus formula ψ, there is a symmetric alter-
nating weak tree automaton Aψ such that L(Aψ) = L(ψ) and the number of states of Aψ is linear in
|ψ|.

Proof: We define Aψ = 〈2AP , cl(ψ), δ, ψ, α〉. For atomic proposition constants and for formulas of the
forms AXϕ or EXϕ, the transition function δ is equal to the one described for CTL. For formulas of the
form ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, as well as for µ and ν formulas, we use ε-transitions and define, for all σ ∈ 2AP ,
the transition function as follows. Note that while the transitions are independent of σ, the fact they are
ε-transitions imply that σ is eventually read.
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• δ(ϕ1 ∧ ϕ2, σ) = (ε, ϕ1) ∧ (ε, ϕ2).

• δ(ϕ1 ∨ ϕ2, σ) = (ε, ϕ1) ∨ (ε, ϕ2).

• δ(µy.f(y), σ) = (ε, f(µy.f(y))).

• δ(νy.f(y), σ) = (ε, f(νy.f(y))).

In order to define α, we introduce an equivalence relation R over cl(ϕ) given by

ϕ1Rϕ2 iff ϕ1 ∈ cl(ϕ2) and ϕ2 ∈ cl(ϕ1).

Since ψ is alternation free, it is guaranteed that an equivalence class of R cannot contain both a ν-formula
and a µ-formula. A state ϕ ∈ cl(ψ) belongs to α if and only if it belongs to an equivalence class that
contains a ν-formula.

The weakness partition and order of Aψ are induced by R as follows. Each equivalence class of R
constitutes a set Qi. The partial order is defined by Q1 ≤ Q2 if ϕ1 ∈ cl(ϕ2) for some ϕ1 ∈ Q1 and
ϕ2 ∈ Q2. As in CTL, since each transition of the automaton from a state ϕ leads to states associated
with formulas in cl(ϕ), the weakness conditions hold. In particular, each set is either contained in α or
disjoint from α.

Example 5.5 Consider the formula ψ = µy.(p ∨ EXAXy). The WAA associated with ψ is Aψ =
〈{{p}, ∅}, {ψ, p ∨ EXAXψ, p,EXAXψ,AXψ}, δ, ψ, ∅〉, where δ is described below.

state q δ(q, {p}) δ(q, ∅)
ψ (ε, p ∨ EXAXψ) (ε, p ∨ EXAXψ)
p ∨ EXAXψ (ε, p) ∨ (ε, EXAXψ) (ε, p) ∨ (ε, EXAXψ)
p true false
EXAXψ (3, AXψ) (3, AXψ)
AXψ (2, ψ) (2, ψ)

In the state ψ, we take an ε-transition and decompose ψ to a disjunction. In the decomposed state
p∨EXAXψ, we again take ε-transitions and decompose it further to the state p and the state EXAXψ
Since the state set of Aψ constitutes a single rejecting set, the proposition p should eventually hold.

Remark 5.6 Recall that WAAs for CTL formulas do not have ε-transitions. A natural definition of
a transition function that does not use ε-transitions in WAAs for the alternation-free µ-calculus would
have the same transitions as in the case of CTL for states associated with Boolean assertions, and the
following transitions for states associated with µ and ν formulas.

• δ(µy.f(y), σ) = δ(f(µy.f(y)), σ).

• δ(νy.f(y), σ) = δ(f(νy.f(y)), σ).

For example, giving up ε-transitions in the WAA for the formula ψ = µy.(p∨EXAXy) from Example 5.5,
we would have obtained the two-state WAAAψ = 〈{{p}, ∅}, {ψ,AXψ}, δ, ψ, ∅〉, where δ is described below
(we restrict Aψ to its reachable states).

state q δ(q, {p}) δ(q, ∅)
ψ true (3, AXψ)
AXψ (2, ψ) (2, ψ)
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While this simplifies the automaton, a transition function without ε-tranistions may result in a circular
definition. For example, if ψ = µy.(p ∨ y), then δ(ψ, σ) = δ(p ∨ ψ, σ) = δ(p, σ) ∨ δ(ψ, σ). A µ-calculus
formula is guarded if for all y ∈ APV , all the occurrences of y that are in a scope of a fixed-point modality
λ are also in a scope of a next modality which is itself in the scope of λ. Thus, a µ-calculus sentence is
guarded if for all y ∈ APV , all the occurrences of y are in the scope of a next modality. For example, the
formula µy.(p∨EXy) is guarded and the formula EXµy.(p∨ y) is not guarded. The above circularity in
the definition occurs only with formulas are not guarded. This, for guarded formulas, one can simplify
the state space of the WAA and proceed without ε-transitions. In [KVW00], the translation to AWWs
assumes that the formulas are guarded, and no ε-transitions are used. Since a translation to guarded
normal form may involve a blow-up, it is sometimes better to use a translation that involves ε-transitions.

We now continue to full µ-calculus formulas. Here, unlike the case of CTL or guarded alternation-free
µ-calculus formulas, the translation must include ε-transitions. The problem with a transition function
that does not use ε-tranistion is that it does not allow the necessary acceptance conditions to be defined.
Indeed, if one looks carefully at the transition relation obtained for a CTL or a guarded alternation-
free µ-calculus formula ψ (see Remark 5.6), not all elements of cl(ψ) are reachable from the initial state.
Specifically, a Boolean combination can be reachable without its constituents being reachable. This makes
it impossible to express an acceptance condition involving a formula appearing only as a constituent of
a Boolean state. In the case of CTL this was of no consequence since the acceptance condition involves
exclusively R formulas and these do by construction appear as states. Similarly, for the alternation-free µ
calculus, the problem was worked around by using the absence of alternation to define equivalence classes
of formulas in such a way that each class contains at least one formula that is a state of the automaton.
For the full µ-calculus, such short cuts are not possible and we thus need to decompose states that are
Boolean combinations of formulas of the form p,¬p,AXϕ,EXϕ, µy.f(y), or νy.f(y) to states associated
with formulas of these forms. In order to achieve this, we need both the richer parity condition and
ε-transitions. Formally, we have the following result.

Theorem 5.7 [EJ91, BC96b, KVW00] For every µ-calculus formula ψ, there is a symmetric alternating
parity tree automaton Aψ such that L(Aψ) = L(ψ) and the number of states of Aψ is linear in |ψ|.

Proof: For a µ-calculus sentence ψ and a subformula ϕ = λy.f(y) of ψ, we define the alternation level
of ϕ in ψ, denoted alψ(ϕ), as follows [BC96a].

• If ϕ is a sentence, then alψ(ϕ) = 1.

• Otherwise, let ξ = λ′x.g(x) be the innermost µ or ν subformula of ψ that has ϕ as a strict
subformula. Then, if x is free in ϕ and λ′ 6= λ, we have alψ(ϕ) = alψ(ξ) + 1. Otherwise, we have
alψ(ϕ) = alψ(ξ).

Intuitively, the alternation level of ϕ in ψ is the number of alternating fixed-point operators we have to
“wrap ϕ with” in order to reach a sub-sentence of ψ. For example, the alternation level of the subformula
µy.((p ∨AXy) ∧AXz) in the formula νz.µy.((p ∨AXy) ∧AXz) is 2.

Now, given ψ, we define the parity automaton Aψ = 〈2AP , cl(ψ), δ, ψ, α〉, where

• The transition function δ is exactly as in the automata for the alternation-free µ-calculus. We
describe it here for completeness.

– δ(true, σ) = true and δ(false, σ) = false.

– δ(p, σ) =
[

true if p ∈ σ
false if p 6∈ σ.
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– δ(¬p, σ) =
[

true if p 6∈ σ
false if p ∈ σ.

– δ(ϕ1 ∧ ϕ2, σ) = (ε, ϕ1) ∧ (ε, ϕ2).

– δ(ϕ1 ∨ ϕ2, σ) = (ε, ϕ1) ∨ (ε, ϕ2).

– δ(AXϕ, σ) = (2, ϕ).

– δ(EXϕ, σ) = (3, ϕ).

– δ(µy.f(y), σ) = (ε, f(µy.f(y))).

– δ(νy.f(y), σ) = (ε, f(νy.f(y))).

• Let d be the maximal alternation level of subformulas of ψ. Denote by Gi the set of all the ν-
formulas in cl(ψ) of alternation level i in ψ. Denote by Bi the set of all µ-formulas in cl(ψ) whose
alternation level in ψ is less than or equal to i. The parity acceptance condition forces each path
in the run of Aψ to visit some ν-formula infinitely often and visit µ-formulas of smaller alternation
levels only finitely often. Formally, let F0 = ∅, and for every 1 ≤ i ≤ d, let F2i−1 = Bi and F2i = Gi.

In Theorem 5.1 we presented a translation of CTL formulas to WAAs. Since the size of each set in the
weakness partition is 1, it is easy to see that the resulting WAAs have the restricted structure of HAAs,
and that we can redefine their acceptance condition to be 〈G,B〉, where G is the set of all ER-formulas
in cl(ψ) and B is the set of all AU -formulas in cl(ψ). Also, since each set in the HAA corresponds to a
single formula in cl(ψ), the depth of the HAA is at most |ψ|.

We now present a translation of CTL? formulas to HAAs. Weak alternating automata define exactly
the set of weakly definable languages [Rab70, MSS86]. The logic CTL? can define languages that are
not weakly definable. For example, the set of trees that satisfy the CTL? formula AFGp is not weakly
definable [Rab70]. Therefore, a stronger acceptance condition is required for automata corresponding to
formulas of CTL?, which is why hesitant alternating automata need a combination of Büchi and co-Büchi
conditions.

For two HAAs A1 and A2 over the same alphabet Σ, we say that A1 is the complement of A2 iff
L(A1) includes exactly all the Σ-labeled trees that are not in L(A2).

Given a transition function δ, let δ̃ denote the dual function of δ. That is, for every q and σ with
δ(q, σ) = θ, let δ̃(q, σ) = θ̃, where θ̃ is obtained from θ by swapping ∨ and ∧, switching 2 and 3, and
switching true and false. If, for example, θ = (2, p) ∨ (true ∧ (3, q)) then θ̃ = (3, p) ∧ (false ∨ (2, q)).
Since A has a single initial state, dualizing the transition function and the acceptance condition amounts
to complementing the automaton. Formally, we have the following result.

Lemma 5.8 [MS87, KVW00] Given an HAA A = 〈Σ, Q, δ, q0, 〈G,B〉〉, the alternating automaton
Ã = 〈Σ, Q, δ̃, q0, 〈B,G〉〉 is an HAA that complements A.

For an HAA A, we say that Ã is the dual HAA of A.

Theorem 5.9 For every CTL? formula ψ, there is a symmetric alternating hesitant tree automaton Aψ
such that L(Aψ) = L(ψ), the number of states of Aψ is exponential in |ψ|, and its depth is linear in |ψ|.

Proof: Before defining Aψ we need the following definitions and notations. For two CTL? formulas
θ and ϕ, we say that θ is maximal in ϕ, if and only if θ is a strict state subformula of ϕ and there
exists no state formula “between them”, namely, there exists no strict subformula ξ of ϕ such that θ
is a strict subformula of ξ. We denote by max(ϕ) the set of all formulas maximal in ϕ. For example,
max(A((Xp)U(EXq))) = {p,EXq}.
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We construct Aψ by induction on the structure of ψ. With each formula ϕ ∈ cl(ψ), we associate
an HAA Aϕ composed from HAAs associated with formulas maximal in ϕ. We assume that the state
sets of composed HAAs are disjoint (otherwise, we rename states) and that for all the HAAs we have
Σ = 2AP (that is, an HAA associated with a subformula that does not involve all of AP is extended
in a straightforward way). For ϕ with max(ϕ) = {ϕ1, . . . , ϕn} and for all 1 ≤ i ≤ n, let Aϕi =
〈Σ, Qi, δi, qi0, 〈Gi, Bi〉〉 be the HAA associated with ϕi and let Ãϕi = 〈Σ, Q̃i, δ̃i, q̃i0, 〈G̃i, B̃i〉〉 be its dual
HAA. We define Aϕ as follows.

• If ϕ = p or ϕ = ¬p for some p ∈ AP , then Aϕ is a one-state HAA.

• If ϕ = ϕ1 ∧ ϕ2, then Aϕ = 〈Σ, Q1 ∪Q2 ∪ {q0}, δ, q0, 〈G1 ∪G2, B1 ∪B2〉〉, where q0 is a new state
and δ is defined as follows. For states in Q1 and Q2, the transition function δ agrees with δ1 and
δ2. For the state q0 and for all σ ∈ Σ, we have δ(q0, σ) = δ(q1

0 , σ) ∧ δ(q2
0 , σ). Thus, in the state q0,

Aϕ sends all the copies sent by both Aϕ1 and Aϕ2 . The singleton {q0} constitutes a transient set,
with the ordering {q0} > Qi for all the sets Qi in Q1 and Q2.

The construction for ϕ = ϕ1 ∨ ϕ2 is similar, with δ(q0, σ) = δ(q1
0 , σ) ∨ δ(q2

0 , σ).

• If ϕ = Eξ, where ξ is a CTL? path formula, we first build an HAA A′ϕ over the alphabet
Σ′ = 2max(ϕ). That is, A′ϕ regards the formulas maximal in ϕ as atomic propositions. Let
Uξ = 〈Σ′, Q, η, q0, α〉 be a nondeterministic Büchi automaton on infinite words such that Uξ accepts
exactly all the word models of ξ (see Theorem 3.4) where the maximal subformulas are regarded as
atomic propositions. Then, A′ϕ = 〈Σ′, Q, δ′, q0, 〈α, ∅〉〉 extends Uξ to trees by simulating it along a
single branch. That is, for all q ∈ Q and σ′ ∈ Σ′, we have

δ′(q, σ′) =
∨

q′∈η(q,σ′)

(3, q′).

If η(q, σ′) = ∅, then δ′(q, σ′) = false. Note that Q constitutes a single existential set. The HAA
A′ϕ accepts exactly all the Σ′-labeled tree models of ϕ.

We now adjust A′ϕ to the alphabet Σ. The resulting automaton is Aϕ. Intuitively, Aϕ starts
additional copies of the HAAs associated with formulas in max(ϕ). These copies guarantee that
whenever A′ϕ assumes that a formula in max(ϕ) holds, then it indeed holds, and that whenever
A′ϕ assumes that a formula does not hold, then the negation of the formula holds. Formally,
Aϕ = 〈Σ, Q ∪

⋃
i(Q

i ∪ Q̃i), δ, q0, 〈α ∪
⋃
i(G

i ∪ G̃i),
⋃
i(B

i ∪ B̃i)〉〉, where δ is defined as follows. For
states in

⋃
i(Q

i ∪ Q̃i), the transition function δ agrees with the corresponding δi and δ̃i. For q ∈ Q
and for all σ ∈ Σ, we have

δ(q, σ) =
∨
σ′∈Σ′

(δ′(q, σ′) ∧ (
∧
ϕi∈σ′

δi(qi0, σ)) ∧ (
∧
ϕi 6∈σ′

δ̃i(q̃i0, σ))).

Each conjunction in δ corresponds to a label σ′ ∈ Σ′. Some copies of Aϕ (these originated from
δ′(q, σ′)) proceed as A′ϕ when it reads σ′. Other copies guarantee that σ′ indeed holds in the
current node. The set Q constitutes an existential set, with the ordering Q > Q′ for all the sets Q′

in
⋃
i({Qi} ∪ {Q̃i}).

• If ϕ = Aξ, we construct and dualize the HAA of E¬ξ.

We prove the correctness of the construction by induction on the structure of ϕ. The proof is immediate
for the case ϕ is of the form p, ¬p, ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, or Aξ. We consider here the case where ϕ = Eξ.
If a tree 〈TK , VK〉 satisfies ϕ, then there exists a path π in it such that π |= ξ. Thus, there exists an
accepting run r of Uξ on a word that agrees with π on the formulas in max(ϕ). It is easy to see that a
run of Aϕ that proceeds on π according to r can accept 〈TK , VK〉. Indeed, by the definition of A′ϕ, the
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copies that proceed according to δ′ satisfy the acceptance condition. In addition, by the adjustment of
A′ϕ to the alphabet 2AP and by the induction hypothesis, copies that take care of the maximal formulas
can fulfill the acceptance condition. Now, if a run r of Aϕ accepts a tree 〈TK , VK〉, then there must be
a path π in this tree such that Aϕ proceeds according to an accepting run of Uξ on a word that agrees
with π on the formulas in max(ϕ). Thus, π |= ξ and 〈TK , VK〉 satisfies ϕ.

We now consider the size of Aψ. For every ϕ, we prove, by induction on the structure of ϕ, that the
size of Aϕ is exponential in |ϕ|.

• Clearly, for ϕ = p or ϕ = ¬p for some p ∈ AP , the size of Aϕ is constant.

• For ϕ = ϕ1 ∧ ϕ2 or ϕ = ϕ1 ∨ ϕ2, we have |Aϕ| = O(|Aϕ1 | + |Aϕ2 |). By the induction hypothesis,
|Aϕ1 | is exponential in |ϕ1| and |Aϕ2 | is exponential in |ϕ2|. Thus, |Aϕ| is surely exponential in |ϕ|.

• For ϕ = Eξ, we know, by Theorem 3.4, that the number of states of the word automaton Uξ is
exponential in |ξ|. Therefore, A′ϕ is exponential in |ϕ|. Also, |Σ′| is exponential in |max(ϕ)| and,
by the induction hypothesis, for all ϕi ∈ max(ϕ), the size of Aϕi

is exponential in |ϕi|. Therefore,
Aϕ is also exponential in |ϕ|.

• For ϕ = Aξ, we know, by the above, that |AE¬ξ| is exponential in |ϕ|. Since complementing an
HAA does not change its size, the result for ϕ follows.

Finally, since each subformula of ψ induces exactly one set, the depth of Aψ is linear in |ψ|.

Example 5.10 Consider the CTL? formula ψ = AGF (p ∨ AXp). We describe the construction of Aψ
step by step. Since ψ is of the form Aξ, we need to construct and dualize the HAA of EFG((¬p)∧EX¬p).
We start with the HAAs Aϕ and Ãϕ for ϕ = (¬p) ∧ EX¬p.
Aϕ = 〈{{p}, ∅}, {q2, q3}, δ, q2, 〈∅, ∅〉〉, with

state q δ(q, {p}) δ(q, ∅)
q2 false (3, q3)
q3 false true

Ãϕ = 〈{{p}, ∅}, {q̃2, q̃3}, δ̃, q̃2, 〈∅, ∅〉〉, with

state q δ̃(q, {p}) δ̃(q, ∅)
q̃2 true (2, q̃3)
q̃3 true false

Starting with a Büchi word automaton Uξ for ξ = FGϕ, we construct A′Eξ.
Uξ = 〈{{ϕ}, ∅}, {q0, q1}, η, q0, {q1}〉, with

• η(q0, {ϕ}) = {q0, q1} • η(q0, ∅) = {q0}

• η(q1, {ϕ}) = {q1} • η(q1, ∅) = ∅

Hence, A′Eξ = 〈{{ϕ}, ∅}, {q0, q1}, δ′, q0, 〈{q1}, ∅〉〉, with

state q δ′(q, {ϕ}) δ′(q, ∅)
q0 (3, q0) ∨ (3, q1)) (3, q0)
q1 (3, q1) false

We are now ready to compose the automata into an automaton AEξ over the alphabet {{p}, ∅}.
We define AEξ = 〈{{p}, ∅}, {q0, q1, q3, q̃3}, δ, q0, 〈{q1}, ∅〉〉, with (note that we simplify the transitions,

replacing true ∧ θ or false ∨ θ by θ, replacing true ∨ θ by true, and replacing false ∧ θ by false).
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state q δ(q, {p}) δ(q, ∅)
q0 (3, q0) [((3, q0) ∨ (3, q1)) ∧ (3, q3)] ∨ [(3, q0) ∧ (2, q̃3)]
q1 false (3, q1) ∧ (3, q3)
q3 false true
q̃3 true false

Consider δ(q0, ∅). The first disjunct corresponds to the case where A′Eξ guesses that ϕ holds in the
present. Then, AEξ proceeds with δ′(q0, {ϕ}) = (3, q0) ∨ (3, q1) conjuncted with δ(q2, ∅) = (3, q3).
The later guarantees that ϕ indeed holds in the present. The second disjunct corresponds to the case
where ϕ does not hold in the present. Then, AEξ proceeds with δ′(q0, ∅) = (3, q0) conjuncted with
δ(q̃2, ∅) = (2, q̃3).

We obtain Aψ by dualizing AEξ. Hence, Aψ = 〈{{p}, ∅}, {q̃0, q̃1, q̃3, q3}, δ̃, q̃0, 〈∅, {q̃1}〉〉, with

state q δ̃(q, {p}) δ̃(q, ∅)
q̃0 (2, q̃0) ((2, q̃0) ∧ (2, q̃1)) ∨ (2, q̃3)) ∧ ((2, q̃0) ∨ (3, q3))
q̃1 true (2, q̃1) ∨ (2, q̃3)
q̃3 true false
q3 false true

Consider the state q̃1. A copy of Aψ that visits q̃1 keeps creating new copies of Aψ, all visiting q̃1, unless
it reaches a node that satisfies p or AXp. Since q̃1 ∈ B, all the copies should eventually reach such a
node. So, by sending a copy that visits the state q̃1 to a node x, the HAA Aψ guarantees that all the
paths in the subtree with x as root eventually reach a node satisfying p ∨ AXp. Hence, in the state
q̃0, unless Aψ gets convinced that p ∨ AXp holds in the present, it sends copies that visit q̃1 to all the
successors. In addition, it always send copies visiting q̃0 to all the successors.

5.2 Automata-based satisfiability and model-checking procedures for branch-
ing temporal logics

In Section 3.2 we have seen how the satisfiability and model-checking problems for LTL can be reduced to
the nonemptiness and the language-disjointness problems for nondeterministic Büchi word automata. In
this section we reduce the satisfiability and model-checking problems for branching-time temporal logics
to the nonemptiness and 1-letter nonemptiness problems for alternating tree automata. The type of the
automaton depends on the logic considered.

We start with the satisfiability problem.

Theorem 5.11 The satisfiability problem is

• EXPTIME-complete for CTL, alternation-free µ-calculus, and µ-calculus.

• 2EXPTIME-complete for CTL?.

Proof: By [ES84], all the logics considered in the theorem satisfy the linear sufficient branching degree
property. More specifically, is ψ is satisfiable, then there is Kripke structure of branching degree |ψ| +
1 that satisfies ψ. The upper bounds then follow from the translations described in Section 5.1 and
the complexities of the nonemptiness problem specified in Theorem 4.2, applied to the corresponding
symmetric alternating automata and branching degree. The lower bounds are proven in [FL79, SV89].
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We continue with the model-checking problem. Given the alternating tree automaton Aψ and a Kripke
structure K, we define their product AK,ψ as a 1-letter alternating word automaton (see below). Thus,
the product with K takes us from a tree automaton to a word automaton, and from an automaton over
an alphabet 2AP to a 1-letter automaton. Obviously, the nonemptiness problem for tree automata can
not, in general, be reduced to the nonemptiness problem of word automata. Also, as discussed above,
the nonemptiness problem for alternating word automata cannot, in general, be reduced to the 1-letter
nonemptiness problem. It is taking the product with K that makes both reductions valid here. Since each
state in AK,ψ is associated with a state w of K, then each state has the exact information as to which
subtree of 〈TK , VK〉 it is responsible for (i.e., which subtree it would have run over if AK,ψ had not been a
1-letter word automaton). The branching structure of 〈TK , VK〉 and its 2AP -labeling are thus embodied
in the states of AK,ψ. In particular, it is guaranteed that all the copies of the product automaton that
start in a certain state, say one associated with w, follow the same labeling: the one that corresponds to
computations of K that start in w.

Let Aψ = 〈2AP , Qψ, δψ, q0, αψ〉 be a symmetric alternating tree automaton for L(ψ) and let K =
〈AP,W,R,w0, `〉 be a Kripke structure. The product automaton of Aψ and K is an alternating word
automaton AK,ψ = 〈{a},W ×Qψ, δ, 〈w0, q0〉, α〉 where δ and α are defined as follows:

• Let q ∈ Qψ, w ∈ W , and δψ(q, `(w)) = θ. Then δ(〈w, q〉, a) = θ′, where θ′ is obtained from θ by
replacing:

– each atom (ε, q′) in θ by the atom 〈w, q′〉,
– each atom (2, q′) in θ by the conjunction

∧
w′:R(w,w′) 〈w′, q′〉, and

– each atom (3, q′) in θ by the disjunction
∨
w′:R(w,w′) 〈w′, q′〉.

• The acceptance condition α is defined according to the acceptance condition αψ of Aψ: each set F
in αψ is replaced by the set W × F .

It is easy to see that AK,ψ is of the same type as Aψ. In particular, if Aψ is a WAA (with a partition
{Q1, Q2, . . . , Qn}), then so is AK,ψ (with a partition {W ×Q1,W ×Q2, . . . ,W ×Qn}).

Proposition 5.12 [KVW00] Consider a Kripke structure K and a branching temporal logic ψ.

• |AK,ψ| = O(|K| · |Aψ|).

• L(AK,ψ) is nonempty if and only if K |= ψ.

Proof: The claim about the size of AK,ψ follows easily from the definition of AK,ψ. Indeed, |W×Qψ| =
|W | · |Qψ|, |δ| = |W | · |δψ|, and |α| = |W | · |αψ|.

To prove the correctness of the reduction, we show that L(AK,ψ) is nonempty if and only if Aψ
accepts 〈TK , VK〉. Since Aψ accepts L(ψ), the latter holds if and only if K |= ψ. Given an accepting run
of Aψ over 〈TK , VK〉, we construct an accepting run of AK,ψ. Also, given an accepting run of AK,ψ, we
construct an accepting run of Aψ over 〈TK , VK〉.

Assume first that Aψ accepts 〈TK , VK〉. Thus, there exists an accepting run 〈Tr, r〉 of Aψ over
〈TK , VK〉. Recall that Tr is labeled with IN∗ × Qψ. A node y ∈ Tr with r(y) = (x, q) corresponds to a
copy of Aψ that is in the state q and reads the tree obtained by unwinding K from VK(x). Consider
the tree 〈Tr, r′〉 where Tr is labeled with 0∗ ×W ×Qψ and for every y ∈ Tr with r(y) = (x, q), we have
r′(y) = (0|x|, VK(x), q). We show that 〈Tr, r′〉 is an accepting run of AK,ψ. In fact, since α = W × αψ,
we only need to show that 〈Tr, r′〉 is a run of AK,ψ; acceptance follows from the fact that 〈Tr, r〉 is
accepting. Intuitively, 〈Tr, r′〉 is a “legal” run, since the W -component in r′ always agrees with VK .
This agreement is the only additional requirement of δ with respect to δψ. Consider a node y ∈ Tr
with r(y) = (x, q), VK(x) = w. Let δψ(q, w) = θ. Since 〈Tr, r〉 is a run of Aψ, there exists a set
{(c0, q0), (c1, q1), . . . , (cn, qn)} satisfying θ, such that the successors of y in Tr are y · i, for 1 ≤ i ≤ n, each
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labeled with (x · ci, qi). In 〈Tr, r′〉, by its definition, r′(y) = (0|x|, w, q) and the successors of y are y · i,
each labeled with (0|x+1|, wci

, qi), where {w0, . . . , wn} is the set of successors of w in K. Let δ(q, a) = θ′.
By the definition of δ, the set {(wc0 , q0), (wc1 , q1), . . . , (wcn

, qn)} satisfies θ′. Thus, 〈Tr, r′〉 is a run of
AK,ψ.

Assume now that AK,ψ accepts aω. Thus, there exists an accepting run 〈Tr, r〉 of AK,ψ. Recall that
Tr is labeled with 0∗×W ×Qψ. Consider the tree 〈Tr, r′〉 labeled with IN∗×Qψ, where r′(ε) = (ε, q0) and
for every y · c ∈ Tr with r′(y) ∈ {x}×Qψ and r(y · c) = (0|x+1|, w, q), we have r′(y · c) = (x · i, q), where i
is such that VK(x · i) = w. As in the previous direction, it is easy to see that 〈Tr, r′〉 is an accepting run
of Aψ over 〈TK , VK〉.

Proposition 5.12 can be viewed as an automata-theoretic generalization of Theorem 4.1 in [EJS93].
Theorems 5.1, 5.4, 5.7, and 5.9, together with Theorem 4.3, then imply the following.

Theorem 5.13 [KVW00] The model-checking problem

• for CTL can be solved in linear time and in space O(m log2(mn)), where m is the length of the
formula and n is the size of the Kripke structure.

• for the alternation-free µ-calculus can be solved in linear time.

• for the µ-calculus is in NP ∩ co-NP.

• for CTL? can be solved in space O(m(m + log n)2), where m is the length of the formula and n is
the size of the Kripke structure.

Now, let us define the program complexity [VW86a] of model checking as the complexity of this
problem in terms of the size of the input Kripke structure; i.e., assuming the formula fixed. Consider
the translation of CTL? formulas to HAA. Fixing the formula, we get an HAA of a fixed depth, making
their nonemptiness test in NLOGSPACE. On the other hand, the 1-letter nonemptiness problem for
weak alternating word automata is PTIME-complete [KVW00]. Thus, the restricted structure of HAAs
is essential for a space-efficient nonemptiness test, inducing the following complexities for the program
complexity of model checking.

Theorem 5.14 [KVW00] The program complexity of the model-checking problem is

• NLOGSPACE-complete for CTL and CTL?.

• PTIME-complete for the alternation-free µ-calculus.
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