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Abstract. We introduce negotiations, a model of concurrency close to
Petri nets, with multiparty negotiation as primitive. We study the prob-
lems of soundness of negotiations and of, given a negotiation with possi-
bly many steps, computing a summary, i.e., an equivalent one-step nego-
tiation. We provide a complete set of reduction rules for sound, acyclic,
weakly deterministic negotiations and show that, for deterministic nego-
tiations, the rules compute the summary in polynomial time.

1 Introduction

Many modern distributed systems consist of components whose behavior is only
partially known. Typical examples include open systems where programs (e.g.
Java applets) can enter or leave, multi-agent systems, business processes, or
protocols for conducting elections and auctions.

An interaction between a fixed set of components with not fully known be-
havior can be abstractly described as a negotiation in which several parties (the
components involved in the negotiation) nondeterministically agree on an out-
come, which results in a transformation of internal states of the parties. A more
technical but less suggestive term would be a synchronized nondeterministic
choice and, as the name suggests, these interactions can be modelled in any
standard process algebra as a combination of parallel composition and nonde-
terministic choice, or as small Petri nets. We argue that much can be gained
by studying formal models with negotiation atoms as concurrency primitive. In
particular, we show that the negotiation point of view reveals new classes of
systems with polynomial analysis algorithms.

Negotiation atoms can be combined into distributed negotiations. For in-
stance, a distributed negotiation between a buyer, a seller, and a broker, consists
of one or more rounds of atoms involving the buyer and the broker or the seller
and the broker, followed by a final atom between the buyer and the seller. We
introduce a formal model for distributed negotiations, close to a colored ver-
sion of van der Aalst’s workflow nets [1], and investigate two important analysis
problems. First, just like workflow nets, distributed negotiations can be unsound
because of deadlocks or livelocks (states from which no deadlock is reached, but
the negotiation cannot be completed). The soundness problem consists of decid-
ing if a given negotiation is sound. Second, a sound negotiation is equivalent to a
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negotiation with only one atom whose state transformation function determines
the possible final internal states of all parties as a function of their initial internal
states. We call this negotiation a summary. The summarization problem consists
of computing a summary of a distributed negotiation. Both problems will shown
to be PSPACE-hard for arbitrary negotiations, and NP-hard for acyclic ones.
They can be solved by means of well-known algorithms based on the exhaus-
tive exploration of the state space. However, this approach badly suffers from
the state-explosion problem: even the analysis of distributed negotiations with
a very simple structure requires exponential time.

In this paper we suggest reduction algorithms that avoid the construction of
the state space but exhaustively apply syntactic reduction rules that simplify
the system while preserving some aspects of the behavior, like absence of dead-
locks. This approach has been extensively applied to Petri nets or workflow nets,
but most of this work has been devoted to the liveness or soundness problems
[5,16,17,12,23]. For these problems many reduction rules are known, and some
sets of rules have been proved complete for certain classes of systems [15,10,11],
meaning that they reduce all live or sound systems in the class, and only those,
to a trivial system (in our case to a single negotiation atom). However, many
of these rules, like the linear dependency rule of [11], cannot be applied to the
summarization problem, because they preserve only the soundness property.

We present a complete set of reduction rules for the summarization problem
of acyclic negotiations that are either deterministic or weakly deterministic. The
rules are inspired by reduction rules used to transform finite automata into
regular expressions by eliminating states [19]. In deterministic negotiations all
involved agents are deterministic, meaning that they are never ready to engage
in more than one negotiation atom. Intuitively, nondeterministic agents may
be ready to engage in multiple atoms, and which one takes place is decided
by the deterministic parties, which play thus the role of negotiation leaders.
In weakly deterministic negotiations not every agent is deterministic, but some
deterministic party is involved in every negotiation atom an agent can engage in
next.

For deterministic negotiations we prove that a sound and acyclic negotiation
can be summarized by means of a polynomial number of application of the rules,
leading to a polynomial algorithm.

The paper is organized as follows. Section 2 introduces the syntax and se-
mantics of the model. Section 3 introduces the soundness and summarization
problems. Section 4 presents our reduction rules. Section 5 defines (weakly) de-
terministic negotiations. Section 6 proves the completeness and polynomial com-
plexity results announced above. Finally, Section 7 presents some conclusions,
open questions and related work.

This paper is an extended version of the conference paper [14].
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2 Negotiations: Syntax and Semantics

We fix a finite set A of agents representing potential parties of negotiations.
Each agent a ∈ A has a (possibly infinite) nonempty set Qa of internal states.
We denote by QA the cartesian product

∏
a∈AQa. A transformer is a left-total

relation τ ⊆ QA×QA, representing a nondeterministic state transforming func-
tion. Given S ⊆ A, we say that a transformer τ is an S-transformer if, for each

ai /∈ S,
(

(qa1 , . . . , qai , . . . , qa|A|), (q
′
a1 , . . . , q

′
ai , . . . , q

′
a|A|

)
)
∈ τ implies qai = q′ai .

So an S-transformer only transforms the internal states of agents in S.

Definition 1. A negotiation atom, or just an atom, is a triple n = (Pn, Rn, δn),
where Pn ⊆ A is a nonempty set of parties, Rn is a finite, nonempty set of out-
comes, and δn is a mapping assigning to each outcome r in Rn a Pn-transformer
δn(r). We denote the transformer δn(r) by 〈n, r〉, and, if there is no confusion,
by 〈r〉.

Intuitively, if the states of the agents before a negotiation n are given by a tuple
q and the outcome of the negotiation is r, then the agents change their states to
q′ for some (q, q′) ∈ 〈n, r〉. Only the parties of n can change their internal states.
Each outcome r ∈ Rn is possible, independent from the previous internal states
of the parties.

For a simple example, consider a negotiation atom nFD with parties F (Father)
and D (teenage Daughter). The goal of the negotiation is to determine whether
D can go to a party, and the time at which she must return home. The possible
outcomes are {yes, no, ask mother}. Both sets QF and QD contain a state angry
plus a state t for every time T1 ≤ t ≤ T2 in a given interval [T1, T2]. Initially, F
is in state tf and D in state td. The transformer δnFD

is given by

〈yes〉 = {((tf , td), (t, t)) | tf ≤ t ≤ td ∨ td ≤ t ≤ tf}
〈no〉 = {((tf , td), (angry , angry)) }

〈ask mother〉 = {((tf , td), (tf , td))}
That is, if the outcome is yes, then F and D agree on a time t which is not earlier
and not later than both suggested times. If it is no, then there is a quarrel and
both parties get angry. If the outcome is ask mother, then the parties keep their
previous times.

2.1 Combining negotiation atoms

If the outcome of the atom above is ask mother, then nFD should be followed
by a second atom nDM between D and M (Mother). The complete negotiation is
the composition of nFD and nDM, where the possible internal states of M are the
same as those of F and D, and nDM is a copy of nFD, but without the ask mother

outcome. In order to compose atoms, we add a transition function X that assigns
to every triple (n, a, r) consisting of an atom n, a party a of n, and an outcome
r of n a set X(n, a, r) of atoms. Intuitively, this is the set of atoms agent a is
ready to engage in after the atom n, if the outcome of n is r.
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Fig. 1. An acyclic negotiation and the ping-pong negotiation.

Definition 2. Given a finite set of atoms N , let T (N) denote the set of triples
(n, a, r) such that n ∈ N , a ∈ Pn, and r ∈ Rn. A negotiation is a tuple N =
(N,n0, nf ,X), where n0, nf ∈ N are the initial and final atoms, and X : T (N)→
2N is the transition function. Further, N satisfies the following properties:

(1) every agent of A participates in both n0 and nf ;
(2) for every (n, a, r) ∈ T (N): X(n, a, r) = ∅ iff n = nf .

We may have n0 = nf . Notice that nf has, as all other atoms, at least one
outcome r ∈ Rnf

.
Negotiations are graphically represented as shown in Figure 1. For each atom

n ∈ N we draw a black bar; for each party a of Pn we draw a white circle on the
bar, called a port. For each (n, a, r) ∈ T (N), we draw a hyperarc leading from
the port of a in n to all the ports of a in the atoms of X(n, a, r), and label it by r.
Figure 1 shows on the left the graphical representation of the Father-Daughter-
Mother negotiation sketched above. Instead of multiple (hyper)arcs connecting
the same input port to the same output ports we draw a single (hyper)arc with
multiple labels. In the figure, we write y for yes, n for no, and am for ask mother.
st stands for start, the only outcome of n0. Since nf has no outgoing arc, the
outcomes of nf do not appear in the graphical representation.

Definition 3. The graph associated to a negotiation N = (N,n0, nf ,X) is
the directed graph with vertices N and edges {(n, n′) ∈ N × N | ∃ (n, a, r) ∈
T (N) : n′ ∈ X(n, a, r)}. The negotiation N is acyclic if its graph has no cycles.

The negotiation on the left of Figure 1 is acyclic. The negotiation on the right
(ignore the black dots on the arcs for the moment) is the ping-pong negotiation,
well-known in every family. The nDM atom has now an extra outcome ask father

(af), and Daughter D can be sent back and forth between Mother and Father.
After each round, D “negotiates with herself” (atom nD) with possible outcomes
c (continue) and gu (give up). This negotiation is cyclic because, for instance,
we have X(nFD, D, am) = {nDM}, X(nDM, D, af) = {nD}, and X(nD, D, c) = {nFD}.
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2.2 Semantics

A marking of a negotiation N = (N,n0, nf ,X) is a mapping x : A → 2N . Intu-
itively, x(a) is the set of atoms that agent a is currently ready to engage in next.
The initial and final markings, denoted by x0 and xf respectively, are given by
x0(a) = {n0} and xf (a) = ∅ for every a ∈ A.

A marking x enables an atom n if n ∈ x(a) for every a ∈ Pn, i.e., if every
agent that parties in n is currently ready to engage in it. If x enables n, then n
can take place and its parties agree on an outcome r; we say that (n, r) occurs.
The occurrence of (n, r) produces a next marking x′ given by x′(a) = X(n, a, r)

for every a ∈ Pn, and x′(a) = x(a) for every a ∈ A \Pn. We write x
(n,r)−−−−→ x′

to denote this, and call it a small step.

By this definition, x(a) is always either {n0} or equals X(n, a, r) for some
atom n and outcome r. The marking xf can only be reached by the occurrence
of (nf , r) (r being a possible outcome of nf ), and it does not enable any atom.
Any other marking that does not enable any atom is considered a deadlock.

Reachable markings can be graphically represented by placing tokens (black
dots) on the forking points of the hyperarcs (or in the middle of an arc). Thus,
both the initial marking and the final marking are represented by no tokens, and
all other reachable markings are represented by exactly one token per agent.

Figure 1 shows on the right the marking in which Father (F) is ready to
engage in the atoms nFD and nf , Daughter (D) is only ready to engage in nFD,
and Mother (M) is ready to engage in both nDM and nf .

We write x1
σ−→ to denote that there is a sequence

x1
(n1,r1)−−−−−→ x2

(n2,r2)−−−−−→ · · · (nk−1,rk−1)−−−−−−−−→ xk
(nk,rk)−−−−−→ xk+1 · · ·

of small steps such that σ = (n1, r1) . . . (nk, rk) . . .. If x1
σ−→ , then σ is an

occurrence sequence from the marking x1, and x1 enables σ. If σ is finite, then
we write x1

σ−→ xk+1 and say that xk+1 is reachable from x1. If x1 is the initial
marking then we call σ initial occurrence sequence. If moreover xk+1 is the final
marking, then σ is a large step.

3 Analysis Problems

Correct negotiations should be deadlock-free and, in principle, they should not
have infinite occurrence sequences either. However, requiring the latter in our
negotiation model is too strong, because infinite occurrence sequences may be
excluded by fairness constraints. Following [1,2], we introduce a notion of partial
correctness independent of termination:

Definition 4. A negotiation is sound if (a) every atom is enabled at some reach-
able marking, and (b) every occurrence sequence from the initial marking is either
a large step or can be extended to a large step.
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The negotiations of Figure 1 are sound. However, if we set X(n0, M, st) =
{nDM} instead of X(n0, M, st) = {nDM, nf}, then the occurrence sequence
(n0, st)(nFD, yes) leads to a deadlock.

The final outcomes of a negotiation are the outcomes of its final atom. Intu-
itively, two sound negotiations over the same agents are equivalent if they have
the same final outcomes, and for each final outcome they transform the same
initial states into the same final states.

Definition 5. Given a negotiation N = (N,n0, nf ,X), we attach to each out-
come r of nf a summary transformer 〈N, r〉 as follows. Let Er be the set of
large steps of N that end with (nf , r). We define 〈N, r〉 =

⋃
σ∈Er

〈σ〉, where
for σ = (n1, r1) (n2, r2) . . . (nk, rk) we define 〈σ〉 = 〈n1, r1〉 〈n2, r2〉 · · · 〈nk, rk〉
(remember that each 〈ni, ri〉 is a relation on QA; concatenation is the usual
concatenation of relations).

〈N, r〉(q0) is the set of possible final states of the agents after the negotiation
concludes with outcome r, if their initial states are given by q0.

Definition 6. Two negotiations N1 and N2 over the same set of agents are
equivalent, denoted by N1 ≡ N2, if they are either both unsound, or if they are
both sound, have the same final outcomes, and 〈N1, r〉 = 〈N2, r〉 for every final
outcome r. If N1 ≡ N2 and N2 consists of a single atom, then N2 is a summary
of N1.

Notice that, according to this definition, all unsound negotiations are equiv-
alent. This amounts to considering soundness essential for a negotiation: if it
fails, we do not care about the rest.

3.1 Deciding soundness

The reachability graph of a negotiation N has all markings reachable from x0 as

vertices, and an arc leading from x to x′ whenever x
(n,r)−−−−→ x′.

The soundness problem consists of deciding if a given negotiation is sound.
It can be solved by (1) computing the reachability graph of N and (2a) checking
that every atom appears at some arc, and (2b) that, for every reachable marking

x, there is an occurrence sequence σ such that x
σ−→ xf .

Step (1) needs exponential time, and steps (2a) and (2b) are polynomial
in the size of the reachability graph. So the algorithm is single exponential in
the number of atoms. This cannot be easily avoided, because the problem is
PSPACE-complete, and NP-complete for acyclic negotiations.

Recall that a language L is in the class DP if there exist languages L1, L2 in
NP and co-NP, respectively, such that L = L1 ∩ L2 [21].

Theorem 1. The soundness problem is PSPACE-complete. For acyclic negotia-
tions, the problem is co-NP-hard and in DP (and so at level ∆P

2 of the polynomial
hierarchy).
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Proof. The soundness problem is in PSPACE.
Membership in PSPACE can be proved by observing that the soundness problem
can be formulated in CTL, and then applying the PSPACE algorithm for CTL
and 1-safe Petri nets of [13]. This algorithm only assumes that, given a marking,
one can compute a successor marking in polynomial time, which is the case both
for Petri nets and for negotiations. However, since we only need a very special
case of the CTL algorithm, we provide a self-contained proof.

We show that both conditions for soundness can be checked in nonde-
terministic polynomial space. The result then follows from Savitch’s theorem
(NPSPACE=PSPACE).

The first condition is: every atom is enabled at some reachable marking.
For this we consider each atom n in turn, and guess step by step an occurrence
sequence ending with an occurrence of n. This only requires to store the marking
reached by the sequence executed so far.

The second condition is: every occurrence sequence from the initial marking
is either a large step or can be extended to a large step. This case is a bit more
involved. Let S denote the problem of checking this second condition. We prove
S ∈ PSPACE.

(1) The following problem is in PSPACE: given some marking x, check that no
occurrence sequence starting at x ends with the final atom.
Let us call this problem NO-OCC. We have NO-OCC ∈ NPSPACE,
because we can nondeterministically guess an occurrence sequence starting
at x that ends with the final atom (we guess one step at a time). Since
NPSPACE=PSPACE=co-PSPACE, we get NO-OCC ∈ PSPACE.

(2) S ∈ NPSPACE.
S consists of checking the existence of a sequence σ, firable from the initial
marking, that is neither a large step nor can be extended to it. For this
we guess a sequence σ step by step that does not end with the final atom.
Then we consider the marking x reached by the occurrence of σ. Clearly,
we have σ ∈ S iff x ∈ NO-OCC. So it suffices to apply our deterministic
polynomial-space algorithm for NO-OCC (see (1)).

(3) S ∈ PSPACE.
Follows from (2) and NPSPACE=PSPACE=co-PSPACE.

The soundness problem is PSPACE-hard.
For PSPACE-hardness, we reduce the problem of deciding if a deterministic lin-
early bounded automaton (DLBA) recognizes an input to the soundness problem.
Let A = (Q,Σ, δ, q0, F ) be a DLBA, and consider an input w = a1 . . . ak ∈ Σ∗.
The construction is very similar to that of [13] for proving PSPACE -hardness of
the reachability problem for 1-safe Petri nets, and so we do not provide all de-
tails. The negotiation NA has a control agent C, a head agent H, and a cell agent
Ti for every tape cell (i.e., 1 ≤ i ≤ k). All agents have only one internal state, i.e.,
the internal states are irrelevant. The negotiation has an atom n[q, h, a] (with
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only one outcome) for every state q, every head position 1 ≤ h ≤ k, and every
a ∈ Σ, plus an initial atom n0 and a final atom nf . The parties of n[q, h, a] are
C, H, and Th. The transition function X is defined so that NA simulates A in the
following sense: if A is currently in state q with the head at position h, and the
contents of the tape are b1 . . . bk, then the current marking x of the negotiation
satisfies the following properties:

– if q 6= qf , then x(C) is the set of atoms n[h′, q′, a] such that q′ = q, and both
h′ and a are arbitrary; if q = qf , then x(C) = {nf};

– x(H) is the set of atoms n[h′, q′, a] such that h′ = h and q′, a are arbitrary,
plus the final atom;

– x(Ti) is the set of atoms n[h′, q′, a] such that h′ = i, q′ is arbitrary, and
a = bi, plus the final atom.

(Intuitively, agent C is only ready to engage in atoms for the state q; agent
H is only ready to engage in atoms for the position h; and Th is only ready
to engage in atoms for the letter bh.) These properties guarantee that the only
atom enabled by x is n[h, q, bh] if q 6= qf , or the atom nf if q = qf . So the
negotiation NA has only one initial occurrence sequence, which corresponds to
the execution of A on w.

It remains to define X so that it satisfies these properties. For the initial atom
we take (recall that the input of the DLBA A is the word w = a1 . . . ak):

X(n0, C, step) = {n[h′, q0, a
′] | 1 ≤ h′ ≤ k, a′ ∈ Σ}

X(n0, H, step) = {n[1, q′, a′] | q′ ∈ Q, a′ ∈ Σ}
X(n0, Ti, step) = {n[i, q0, ai]}

For the transition function of an atom n[q, h, a] we must consider the three
possible cases of the transition relation (head moves to the right, to the left, or
stays put). We only deal with the case in which the machine moves to the right,
the others being analogous. Assume δ(q, a) = (q̂, â, R). Then we take

X(n[h, q, a], C, step) = {n[h′, q̂, a′] | 1 ≤ h′ ≤ k, a′ ∈ Σ}
X(n[h, q, a], H, step) = {n[h+ 1, q′, a′] | q′ ∈ Q, a′ ∈ Σ}
X(n[h, q, a], Th, step) = {n[h, q′, â] | q′ ∈ Q}

Since A is deterministic, NA has only one maximal occurrence sequence,
which is a large step iff A accepts. So NA is sound iff A accepts.

The soundness problem for acyclic negotiations is in DP.
We first observe that no occurrence of an acyclic negotiation contains an atom
more than once (loosely speaking, once the tokens of the parties of the atom
have “passed” beyond it, they cannot return). It follows that the length of
an occurrence sequences is at most equal to the number of atoms. To check
soundness we must check that (1) every atom can be enabled, and that (2) every
occurrence sequence can be extended to a large step. Checking (1) can be done
by guessing in polynomial time enabling sequences for all atoms, and so (1) is
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in NP. Checking the negation of (2) can be done by guessing in polynomial time
an occurrence sequence that cannot be extended to a large step, and so (2) is
in coNP. So the conjunction of (1) and (2) is in DP.

The soundness problem for acyclic negotiations is co-NP-hard.

We reduce 3-CNF-SAT to non-hardness. Given a boolean formula φ with vari-
ables xi, 1 ≤ i ≤ n and clauses cj , 1 ≤ j ≤ m, we construct a negotiation Nφ
with an agent Xi for each xi, and an agent J (for judge). W.l.o.g. we assume
that no clause of φ is a tautology. For each variable xi, Nφ has an atom Set x i
with Xi as only party and outcomes true and false. For each clause cj , the
negotiation Nφ has an atom Falsej whose parties are the variables appearing in
cj and the judge J . The atom has only one outcome false.

After the initial atom, agent Xi engages in Set x i and sets xi to a value
b ∈ {true, false} by choosing the appropriate outcome. After that, Xi is ready
to engage in the atoms Falsej satisfying the following condition: the clause cj is
not made true by setting xi to b; moreover, it is also ready to engage in the final
atom. As a consequence, Falsej becomes enabled iff the assignment chosen by
the Xi’s makes cj false. Finally, after the occurrence of a Falsej , its parties are
only ready to engage in the final atom.

After the initial atom, the judge J is ready to engage in all atoms Falsej ,
and then, if any of them occurs, in the final atom.

We argue that Nφ is sound iff φ is satisfiable. Notice first that, since by
assumption no clause is a tautology, every Falsej atom is enabled by some oc-
currence sequence. So all atoms but perhaps the final atom can be enabled by
some sequence. So Ni is sound iff every occurrence sequence can be extended
to a large step, and therefore it suffices to show that φ is satisfiable iff every
occurrence sequence of Nφ can be extended to a large step.

If φ is unsatisfiable then, whatever the assignment determined by the out-
comes of the Set x i’s, some clause is false, and so at least one of the Falsej atoms
is enabled. After some Falsej occurs, the final atom becomes enabled, and so
the computation can be extended to a large step.

If φ is satisfiable, then consider an initial occurrence sequence in which the
atoms Set x i occur, and they choose the outcomes corresponding to a satisfying
assignment. Then none of the Falsej atoms become enabled. Moreover the final
atom is not enabled either, because the judge J is not ready to engage in it. So
the occurrence sequence cannot be extended to a large step. ut

3.2 A summarization algorithm

The summarization problem consists of computing a summary of a given nego-
tiation, if it is sound. A straightforward solution follows these steps:

(1) Compute the reachability graph of N. Interpret it as a weighted finite au-
tomaton over the alphabet of transformers 〈n, r〉, with x0 as initial state,
and xf as final state.
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(2) Compute the sum over all paths σ leading from x0 to xf of the transformers
〈σ〉. We recall a well-known algorithm for this based on state elimination
(see e.g. [19]). The algorithm proceeds in phases consisting of the following
three steps:

(2.1) Exhaustively replace steps x
f1−−→ x′, x

f2−−→ x′ by one step

x
f1+f2−−−−→ x′.

(2.2) Pick a state x different from x0 and xf . If there is a self-loop x
f−→ x,

replace all steps x
g−→ x′, where x′ 6= x, by the step x

g∗f−−−→ x′, and
then remove the self-loop.

(2.3) For every two steps x1
f1−−→ x and x

f2−−→ x2, add a step x
f1f2−−−→ x2

and remove state x together with its incident steps.

Clearly, step (1) takes exponential time in the number of atoms. Steps (2.1)-
(2.3) can be seen as reduction rules that replace an automaton by a smaller
one with the same sum over all paths. In the next section we provide similar
rules, but at the syntactic level, i.e., rules which act directly on the negotiation
diagram, and not on the reachability graph. This avoids the construction of the
reachability graph. Two of the three rules are straightforward generalizations of
(2.1) and (2.3) above, while the third allows us to remove certain useless arcs
from a negotiation.

4 Reduction Rules

A reduction rule, or just a rule, is a binary relation on the set of negotiations.

Given a rule R, we write N1
R−−→ N2 for (N1,N2) ∈ R. A rule R is correct if

it preserves equivalence, i.e., if N1
R−−→ N2 implies N1 ≡ N2. Notice that, in

particular, this implies that N1 is sound if and only if N2 is sound.
Given a set of rules R = {R1, . . . , Rk}, we denote by R∗ the reflexive and

transitive closure of R1 ∪ . . . ∪ Rk. We say that R is complete with respect to a
class of negotiations if, for every negotiation N in the class, there is a negotiation

N′ consisting of a single atom such that N
R∗−−→ N′.

We describe rules as pairs of a guard and an action; N1
R−−→ N2 holds if N1

satisfies the guard and N2 is a possible result of applying the action to N1.

Merge rule. Intuitively, the merge rule merges two outcomes with identical
next enabled atoms into one single outcome. It corresponds to the rule of step
(2.1) in the previous section.

Definition 7. Merge rule
Guard: N contains an atom n with two distinct outcomes r1, r2 ∈ Rn, such

that X(n, a, r1) = X(n, a, r2) for every a ∈ An.

Action: (1) Rn ← (Rn \ {r1, r2}) ∪ {rf}, where rf is a fresh name.
(2) For all a ∈ Pn: X(n, a, rf )← X(n, a, r1).
(3) δ(n, rf )← δ(n, r1) ∪ δ(n, r2).
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It is easy to see that the merge rule is correct for arbitrary negotiations.

Shortcut rule. The shortcut rule corresponds to the rule of step (2.3) in the
previous section. We need a preliminary definition.

Definition 8. Given atoms n, n′, we say that (n, r) unconditionally enables n′

if Pn ⊇ Pn′ and X(n, a, r) = {n′} for every a ∈ Pn′ .

Observe that if (n, r) unconditionally enables n′ then, for every marking x that

enables n, the marking x′ given by x
(n,r)−−−−→ x′ enables n′. Moreover, n′ can

only be disabled by its own occurrence.

Loosely speaking, the shortcut rule merges the outcomes of two atoms that
can occur one after the other into one single outcome with the same effect.
Consider the negotiation fragment shown on the left of Figure 2. The guard of
the rule will state that n must unconditionally enable n′, which is the case. For
every outcome of n′, say r1, the action of the rule adds a fresh outcome r1f to
n, and modifies the negotiation so that the occurrence of (n, r1f ) has the same
effect as the occurrence of the sequence (n, r)(n′, r1). In the figure, shortcutting
the outcome (n, r) leaves n′ without any input arc, and in this case the rule also
removes n′. Otherwise we require that at least one input arc of a party ã of n′

is an arc (i.e., not a proper hyperarc) from some atom ñ 6= n, annotated by r̃.
This implies that after the occurrence of (ñ, r̃), n′ is the only atom agent ã is
ready to engage in.

Definition 9. Shortcut rule

Guard: N contains an atom n with an outcome r, and an atom n′, n′ 6= n,
such that (n, r) unconditionally enables n′. Moreover, if n′ ∈ X(ñ, ã, r̃) for at
least one ñ 6= n with ã ∈ Pñ and r̃ ∈ Rñ, then {n′} = X(ñ, ã, r̃) for some ñ 6= n,
ã ∈ Pñ, r̃ ∈ Rñ.

Action: (1) Rn ← (Rn \ {r}) ∪ {r′f | r′ ∈ Rn′}, where r′f are fresh names.

(2) For all a ∈ Pn′ , r′ ∈ Rn′ : X(n, a, r′f )← X(n′, a, r′).

For all a ∈ P \ Pn′ , r′ ∈ Rn′ : X(n, a, r′f )← X(n, a, r).

(3) For all r′ ∈ Rn′ : 〈n, r′f 〉 ← 〈n, r〉〈n′, r′〉.
(4) If X−1(n′) = ∅ after (1)-(3), then remove n′ from N , where

X−1(n′) = {(ñ, ã, r̃) ∈ T (N) | n′ ∈ X(ñ, ã, r̃)}.

Theorem 2. The shortcut rule is correct.

Proof. Let N2 be the result of applying the shortcut rule to N1. Assume atoms
n and n′ and r ∈ Rn of n as in Definition 9. We say that an atom n occurs
in an occurrence sequence σ if (n, r) occurs in σ for some r ∈ Rn. We call an
occurrence sequence initial if it starts with the initial marking.

Claim 1. For each initial occurrence sequence σ of N2, replacing all occurrences
of (n, r′f ) by (n, r), (n′, r′) in σ yields an initial occurrence sequence of N1 that
leads to the same marking as σ in N2.
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Fig. 2. An application of the shortcut rule

Claim 2. Each initial occurrence sequence σ of N1 can be uniquely divided into
σ1(n, r)σ′1(n′, r1)σ2(n, r)σ′2(n′, r2) . . . such that (n, r) does not occur in the se-
quences σ1, σ2, . . . and n′ does not occur in σ′1, σ

′
2, . . ..

Claim 3. If σ = σ1(n, r)σ′1(n′, r1)σ2(n, r)σ′2(n′, r2) . . . (n′, rk)σk+1 (notation as
in Claim 2) then σ1(n, rf1)σ′1σ2(n, rf2)σ′2 . . . σ

′
kσk+1 is an initial occurrence se-

quence of N2 leading to the same marking as σ in N1. If there is an occurrence
of n′ in σi then a party ã of n′ must have been enabled by a previous occurrence
of some (ñ, ã, r̃) with n 6= ñ. In this case n′ still exists in N2.
Proof: For i = 1, . . . k we have that σ′i contains no atom with a party a of Pn′

because n′ is the only atom with party a enabled after the occurrence of (n, r).
So σ′i and (n′, ri) can occur in arbitrary order. The sequence (n, r)(n′, ri) can be
replaced by the step (n, rfi) of N2.
Claim 4. If σ = σ1(n, r)σ′1(n′, r1)σ2(n, r)σ′2(n′, r2) . . . (n, r)σ′k (as in Claim 2)
then σ1(n, rf1)σ′1σ2(n, rf2)σ′2 . . . σk(n, rfk)σ′k is an initial occurrence sequence
of N2 leading to the same marking as σ(n′, rk) in N1 for an arbitrary rk ∈ Rn′ .
Proof: Since (n, r) unconditionally enables n′, n′ is enabled after the last (n, r) in
σ, and it remains enabled because σ′k contains no occurrence of n′. So σ(n′, rk)
is also an initial occurrence sequence of N1. The claim follows using Claim 3
with σk+1 being empty.
Claim 5. If N2 is sound then every atom n ∈ N1 appears in some initial occur-
rence sequence of N1.
Proof: If n 6= n′ then this claim follows immediately from soundness of N2 and
Claim 1. Otherwise, again by its soundness, N2 has an initial occurrence sequence
with an occurrence of n. Clearly, the marking before the occurrence of n also
enables some (n, r′f ), whence there is also a sequence including a step (n, r′f ).
Claim 1 achieves the result.
Claim 6. If N2 is sound then every initial occurrence sequence σ of N1 can be
extended to a large step.
Proof: By Claim 3 and Claim 4, the marking reached by σ or the marking reached
by σ(n, rfi) (for some ri ∈ Rni

) is also reachable in N2. Since N2 is sound, this
sequence can be extended to a large step. By Claim 1, there is a corresponding
occurrence sequence σ′ of N1. So either σ′ or (n, rfi)σ

′ extends σ to a large step.
Claim 7. If N1 is sound then every atom n ∈ N2 appears in some initial occur-
rence sequence of N2.
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Proof: If n 6= n′ then this follows immediately from Claim 3 and Claim 4. So
we only have to consider the case n = n′. Then, in particular n′ still exists
in N2. So X−1(n′) contains some (ñ, ã, r̃) where (ñ, r̃) 6= (n, r). By the guard
of the shortcut rule, we have {n′} = X(ñ, ã, r̃) for some ñ, ã and r̃, i.e., after
the occurrence of (ñ, r̃) only the occurrence of n′ can remove the token of ã.
Since N1 is sound, there is an initial occurrence sequence that enables ñ. This
sequence can be extended to a large step, whence n′ occurs after ñ. Call the
entire sequence σ.

Taking the division of σ as in Claim 2, both the occurrence of ñ and the
subsequent occurrence of n′ appear in some subsequence σi, because the agent
ã is ready to engage only in n′ during all σ′i and can thus not participate in ñ.
The transformation of Claim 3 (Claim 4, respectively) leads to an occurrence
sequence of N2 that still includes all subsequences σ′i and therefore also includes
an occurrence of n′.
Claim 8. If N1 is sound then every initial occurrence sequence σ of N2 can be
extended to a large step.
Proof: By Claim 1, the marking reached by σ is also reachable in N1. Moreover,
the translated sequence has an occurrence of n′ after its last occurrence of (n, r).
By soundness of N1, σ can be extended by some σ′ to a large step. Since this
sequence ends with the empty marking, there is some occurrence of n′ after the
last occurrence of (n, r). So the entire sequence σσ′ can be divided into

σ1(n, r), (n′, r1)σ2(n, r)(n′, r2) . . . σlσl+1(n, r)σ′l+1(n′, rl+2) . . . (n′, rk)σk+1

(notations as in Claim 2) where σ comprises everything up to σl. We apply
Claim 3 and obtain the large step of N2:

σ1(n, rf1)σ2(n, rf2) . . . σlσl+1(n, rfl+1)σ′l+1 . . . σk(n, rfk)σ′kσk+1.
Since the subsequence until σl reaches the same marking as σ, the result follows.

The proof of the theorem follows immediately from Claims 5 to 8.
ut

Useless arc rule. Consider the negotiation on the left of Figure 3, in which
all atoms have one outcome r. We have X(n0, a, r) = {n1, nf}, i.e., after the
occurrence of (n0, r) agent a is ready to engage in both n1 and nf . However, a
always engages in n1, because the only large step is (n0, r)(n1, r)(n2, r)(nf , r).
In other words, we can set X(n0, a, nf ) = {n1} without changing the behavior.
Intuitively, we say that the arc (more precisely, the leg of the hyperarc) leading
to the a-port of nf is useless. The useless arc rule identifies and removes some
useless arcs.

Definition 10. Useless arc rule.
Guard: There are (n, a, r), (n, b, r) ∈ T (N) and two distinct atoms n′, n′′ ∈ N
such that a, b ∈ Pn′ ∩ Pn′′ , n′, n′′ ∈ X(n, a, r) and X(n, b, r) = {n′}.
Action: X(n, a, r)← X(n, a, r) \ {n′′}.

The rule can be applied to the negotiation on the left of Figure 3 by instan-
tiating n := n0, n′ := n1, and n′′ := nf . It cannot be applied to the negotiation
on the right. If we set n := n0, n′ := n1, and n′′ := n2, then a /∈ Pn2 .
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Fig. 3. The useless arc rule can only be applied to the left negotiation

Theorem 3. The useless arc rule is correct.

Proof. Let N2 be the result of applying the rule to N1. We adopt all notations
from Definition 10 and claim that N1 and N2 have the same occurrence se-
quences. Let X1,X2 be the transition functions of N1 and N2, respectively. Since
X2(n, a, r) ⊆ X1(n, a, r) for every (n, a, r) ∈ T (N), every occurrence sequence of
N2 is also an occurrence sequence of N1. It remains to prove that every initial
occurrence sequence σ of N1 is also an initial occurrence sequence of N2.

Assume the contrary, i.e., σ = σ1σ2 such that σ1 is an initial occurrence
sequence of both N1 and N2 whereas the first step of σ2 is only possible in N1.
Since both negotiations only differ w.r.t. X(n, a, r), this step must be an occur-
rence of agent n′′ occurring after an occurrence of (n, r) such that no other atom
of X(n, a, r) occurred in between. This holds in particular for n′ ∈ X(n, a, r).
But, since X(n, b, r) = {n′} and b participates both in n′ and in n′′, n′ must
occur before n′′ after (n, r) – a contradiction. This concludes the proof showing
that N and N′ have the same occurrence sequences.

A first immediate consequence is that an atom can occur in N1 iff it can occur
in N2. It remains to show that every occurrence sequence of N1 can be extended
to a large step iff the same holds for N2. To this end, since both negotiations
have the same occurrence sequences, we only have to show that an occurrence
sequence is a large step of N1 iff it is a large step of N2. Respective markings in
N1 and N2 reached by the same occurrence sequence differ only with respect to
agent a: after the occurrence of (n, r), x(a) contains n′ and n′′ in N1 and x(a)
contains n′ in N2. Large steps, however, lead to the marking satisfying x(a) = ∅
and are hence identical for both negotiations.

ut

5 (Weakly) Deterministic Negotiations

We introduce weakly deterministic and deterministic negotiations.

Definition 11. An agent a ∈ A is deterministic if for every (n, a, r) ∈ T (N)
such that n 6= nf there exists one atom n′ such that X(n, a, r) = {n′}.
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The negotiation N is weakly deterministic if for every (n, a, r) ∈ T (N) there
is a deterministic agent b that is a party of every atom in X(n, a, r), i.e., b ∈ Pn′
for every n′ ∈ X(n, a, r). It is deterministic if all its agents are deterministic.

Graphically, an agent a is deterministic if no proper hyperarc leaves any port of
a. Consider the negotiations of Figure 1. In the acyclic negotiation both Father
and Daughter are deterministic, while Mother is not. In the ping-pong negotia-
tion only Daughter is deterministic. Both negotiations are weakly deterministic,
because Daughter participates in all atoms, and so can be always chosen as
the party b required by the definition. Observe that the notion of deterministic
agent does not refer to the behavior of atoms, which is intrinsically nondetermin-
istic with respect to its possible outcomes and even to its state transformations.
Rather, it refers to the composition of negotiations: For each atom n, the next
atom of a deterministic agent is completely determined by the outcome of n.

Weakly deterministic negotiations have a natural semantic justification. Con-
sider a negotiation with two agents a, b and three atoms {n0, n1, nf}. All atoms
have the same parties a, b and one outcome r, such that X(n0, a, r) = {n1, nf} =
X(n0, b, r) and X(n1, a, r) = {nf} = X(n1, b, r). After the occurrence of (n0, r)
the parties a and b are ready to engage in both n1 and nf , and so which of them
occurs requires a “meta-negotiation” between a and b. This meta-negotiation,
however, is not part of the model and, more importantly, it can be difficult
to implement, since it requires to break a symmetry. In a weakly deterministic
negotiation this situation cannot happen. If X(n, a, r) contains more than one
atom, then some deterministic agent b is a part of all atoms in X(n, a, r). If some
atom of X(n, a, r) becomes enabled, say n′, then because agent b is ready to
engage in it, and, since b is deterministic, b is not ready to engage in any other
atom. So n′ is the only enabled atom of X(n, a, r), and n′ is the negotiation that
a will engage in next. This is very easy to implement: b just sends a message to
a telling her that she should commit to n′.

Notice that, for deterministic negotiations, the second part of the guard of
the shortcut rule is always satisfied. Using the notation of the shortcut rule, this
condition requires that the atom n′ is the only atom in X(ñ, ã, r̃) for some (ñ, r̃),
provided n′ is not only in X(n, a, r) for some a ∈ Pn (i.e., provided n′ is not
removed by the application of the rule). This clearly holds if ñ is deterministic,
as all agents are deterministic in deterministic negotiations.

In the next section we show that, on top of their semantic justification, weakly
deterministic and deterministic negotiations are also interesting from an analysis
point of view. We prove that the shortcut and useless arc rules are complete for
acyclic, weakly deterministic negotiations, which of course implies that the same
rules plus the merge are complete, too. A second result proves that a polynomial
number of applications of the merge and shortcut rules suffices to summarize
any sound deterministic acyclic negotiation (the useless arc rule is irrelevant for
deterministic negotiations).
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6 Completeness and complexity

We start with the completeness result for the weakly deterministic case.

Theorem 4. The shortcut and useless arc rules are complete for acyclic, weakly
deterministic negotiations.

Proof. Let N be a sound, acyclic, and weakly deterministic negotiation.
The proof has two parts:

(1) If N has more than one atom, then the shortcut rule or the useless arc rule
can be applied to it.

Since N is acyclic, its graph generates a partial order on atoms in the obvious
way (n < n′ if there is a path from n to n′). Clearly n0 is the unique minimal
element. We choose an arbitrary linearisation of this partial order. Since N has
more than one atom, this linearisation begins with n0 and has some second
element, say n1. Since N is sound, some occurrence sequence begins with an
occurrence of n0 and a subsequent occurrence of n1. So n0 has an outcome r0
such that n1 ∈ X(n0, a, r0) for every party a of n1.

Consider two cases:

– {n1} = X(n0, a, r0) for every party a of n1.
Then (n0, r0) unconditionally enables n1. Moreover, there are no ñ, ã and r̃
such that ñ 6= n0 and X(ñ, ã, r̃) = {n1} because otherwise, according to the
above defined partial order, n0 < ñ < n1 and so ñ would be between n0 and
n1 in every linearisation. So the shortcut rule can be applied.

– {n1} 6= X(n0, a, r0) for some party a of n1.
Then n1, n2 ∈ X(n0, a, r0) for some atom n2 6= n1. Since N is weakly de-
terministic, there is a deterministic agent b that is a party of every atom
in X(n0, a, r0), in particular of both n1 and n2. Since b is deterministic and
n1 ∈ X(n0, b, r), we have X(n0, b, r0) = {n1}, and so the useless arc rule is
applicable.

(2) The shortcut and useless arc rules cannot be applied infinitely often.
Let N2 be the result of applying any of the two rules to a negotiation N1. For
every large step σ′ of N2, let φ′(σ′) be defined similarly to Theorem 2: if the
useless arc rule has been applied, then φ′(σ′) = σ′; if the shortcut rule has been
applied to atoms n, n′, then let φ′(σ′) be the result of replacing every occurrence
of (n, r′f ) by the sequence (n, r)(n′, r′). We have |σ′| ≤ |φ(σ′)|. Moreover, if the
shortcut rule is applied, then |σ′| < |σ| for at least one large step σ′, indeed
for all large steps containing (n′, r′f ). Since the set of large steps of an acyclic
negotiation is finite, and the length of every large step is not negative, no infinite
sequence of applications of the rules can contain infinitely many applications of
the shortcut rule. So any infinite sequence of applications must, from some point
on, only apply the useless arc rule. But this is also not possible, since the rule
reduces the number of arcs.

By (2) every maximal sequence of applications of the rule terminates. By (1)
it terminates with a negotiation containing one single atom. ut
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Next we prove that a polynomial number of applications of the merge and
shortcut rules suffice to summarize any sound deterministic acyclic negotiation
(SDAN). For this we have to follow a strategy in the application of the shortcut
rule.

Definition 12. The deterministic shortcut rule, or d-shortcut rule, is the result
of adding to the guard of the shortcut rule a new condition: (3) n′ has at most
one outcome (the actions of the shortcut and d-shortcut rules coincide).

We say that a SDAN is irreducible if neither the merge nor the d-shortcut rule
can be applied to it. In the rest of the section we prove that irreducible SDANs
are necessarily atomic, i.e., consist of a single atom. The proof, which is rather
involved, proceeds in three steps. First, we prove a technical lemma showing that
SDANs can be reduced so that all agents participate in every atom with more
than one outcome. Then we use this result to prove that, loosely speaking, every
SDAN can be reduced to a “replication” of a negotiation with only one agent:
if X(n, a, r) = {n′} for some agent a, then X(n, a, r) = {n′} for every agent a. In
the third step, we show that replications can be reduced to atomic negotiations.
Finally, we analyze the number of rule applications needed in each of these three
steps, and conclude.

Lemma 1. Let N be an irreducible SDAN and let n 6= nf be an atom of N with
more than one outcome. Then every agent participates in n.

Proof. We proceed in two steps.

(a) The atom n has an outcome r such that: either (n, r) unconditionally enables
nf , or (n, r) unconditionally enables some atom with more than one outcome.

This is the core of the proof. We first claim: if some outcome (n, r) uncon-
ditionally enables some atom, then (a) holds. Indeed: if (n, r) unconditionally
enables some atom n′, then either n′ = nf or n′ has more than one outcome,
because otherwise the d-shortcut rule can be applied to n and n′, contradicting
the irreducibility of N. This proves the claim.

It remains to prove that some outcome (n, r) unconditionally enables some
atom. For this, we assume the contrary, and prove that N contains a cycle,
contradicting the hypothesis.

Since the merge rule is not applicable to N, n has two outcomes r1, r2 such
that X(n, a, r1) 6= X(n, a, r2) for some agent a. We proceed in three steps.

(a1) For every reachable marking x that enables n there is a sequence σ such

that x
(n,r1)σ−−−−−→ x1 and x

(n,r2)σ−−−−−→ x2 for some markings x1,x2, and the sets
N1 and N2 of atoms enabled by x1,x2 are nonempty and disjoint.

Let σ be a longest occurrence sequence such that x
(n,r1)σ−−−−−→ x1 and

x
(n,r2)σ−−−−−→ x2 for some markings x1,x2 (notice that σ exists, because all oc-

currence sequences of N are finite by acyclicity). We have N1 ∩N2 = ∅, because
otherwise we can extend σ with the occurrence of any atom enabled by both
markings. We prove that, furthermore, N1 6= ∅ 6= N2. Assume w.l.o.g. N1 = ∅.
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Then, since N is sound, we have x1 = xf , which means that the last step of σ
is of the form (nf , rf ). So x2 is also a marking obtained after the occurrence
of (nf , rf ). Since every agent participates in nf and X(nf , a, rf ) = ∅ for every

agent a and outcome rf , we also have x2 = xf . So x
(n,r1)−−−−→ x′1

σ−→ xf and

x
(n,r1)−−−−→ x′2

σ−→ xf , which implies x′1 = x′2. Since N is deterministic, we
then have X(n, a, r1) = X(n, a, r2), contradicting the hypothesis.

(a2) For every n1 ∈ N1 there is a path leading from some n2 ∈ N2 to n1, and
for every n2 ∈ N2 there is a path leading from some n1 ∈ N1 to n2.
By symmetry it suffices to prove the first part. Since N1 and N2 are disjoint, n1
is enabled at x1 but not at x2. Moreover, since N is acyclic, every atom can occur
at most once in an occurrence sequence, and so neither n1 nor n2 appear in σ.
Since, furthermore, the sequences (n, r1)σ and (n, r2)σ only differ in their first
element, there is an agent a such that X(n, a, r1) = {n1} and X(n, a, r2) = {n′2}
for some n′2 6= n1 (n′2 is not necessarily the n2 ∈ N2 we are looking for). So we
have x1(a) = {n1} and x2(a) = {n′2} (see Figure 4).

n

r1 r2

n1 n′2

n2

Marking x1

Marking x2

r2

b a

a

a

Fig. 4. Illustration of the proof of Lemma 1.

We first show that there is a path from n′2 to n1. By assumption, no outcome
of n unconditionally enables any atom, and so (n, r1) does not unconditionally
enable n1. So n1 has a party b 6= a such that either b is not a party of n or
X(n, b, r1) 6= n1. Since x1 enables n1 we have x1(b) = {n1}, and since b is not a
party of n or X(n, b, r1) 6= n1, we have x2(b) = {n1} as well. Since x2(b) = n1,

and N is a SDAN, there is an occurrence sequence τ such that x2
τ−→ x′2 and

x′2 enables n1 (intuitively, the white token on the arc to the b-port can only leave
the arc through the occurrence of n1). Since x2(a) = {n′2} 6= {n1}, there is a
path from n′2 to n1 (intuitively, the white token on the arc leading to the a-port
of n′2 has to travel to some arc leading to the a-port of n1, and by determinism
it can only do so through a path of a-ports that crosses n′2).
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We now prove that there is a path from some n2 ∈ N2 to n′2. If n′2 is enabled
at x2, then n′2 ∈ N2 and we are done. If n′2 is not enabled at x2 (as in the
figure) then, since x2(a) = {n′2} and N is a SDAN, there is a sequence τ such

that x2
τ−→ x′2 and x′2 enables n′2 (again, by soundness the white token on the

arc to the a-port of n′2 can eventually leave the arc to move towards nf , and by
determinacy it can only leave the arc through the occurrence of n′2). Since N2 is
the set of transitions enabled at x2, we have τ = (n2, r) τ

′ for some n2 ∈ N2. So
some subword of τ is a path from some transition of N2 to n′2.

(a3) N contains a cycle.
Follows immediately from (a2) and the finiteness of N1 and N2.

(b) Every agent participates in n.
By repeated application of (a) we find a chain (n1, r1) . . . (nk, rk) such that n1 =
n, nk = nf , and (ni, ri) unconditionally enables ni+1 for every 1 ≤ i ≤ k − 1.
By the definition of unconditionally enabled we have P1 ⊇ P2 ⊇ · · · ⊇ Pk = Pf .
Since Pf = A, we obtain P1 = A.

Lemma 2. Let N be an irreducible SDAN. Every agent participates in every
atom, and for every atom n 6= nf and every outcome r there is an atom n′

satisfying X(n, a, r) = {n′} for every agent a.

Proof. We first show that every agent participates in every atom. By Lemma 1,
it suffices to prove that every atom n 6= nf has more than one outcome.
Assume the contrary, i.e., some atom different from nf has only one out-
come. Since, by soundness, every atom can occur, there is an occurrence se-
quence (n0, r0)(n1, r1) · · · (nk, rk) such that nk has only one outcome and all of
n0, . . . , nk−1 have more than one outcome. By Lemma 1, all agents participate in
all of n0, n1, nk−1. It follows that (ni, ri) unconditionally enables (ni+1, ri+1) for
every 0 ≤ i ≤ k− 1. In particular, (nk−1, rk−1) unconditionally enables (nk, rk).
But then, since nk only has one outcome, the d-shortcut rule can be applied to
nk−1, n, contradicting the hypothesis that N is irreducible.

For the second part, assume there is an atom n 6= nf , an outcome r of n, and
two distinct agents a1, a2 such that X(n, a1, r) = {n1} 6= {n2} = X(n, a2, r). By
the first part, every agent participates in n, n1 and n2. Since N is sound, some
reachable marking x enables n. Moreover, since all agents participate in n, and
N is deterministic, the marking x only enables n. Let x′ be the marking given

by x
(n,r)−−−−→ x′. Since a1 participates in all atoms, no atom different from n1

can be enabled at x′. Symmetrically, no atom different from n2 can be enabled
at x′. So x′ does not enable any atom, contradicting that N is sound. ut

Theorem 5. Let N be an irreducible SDAN. Then N contains only one atom.

Proof. (Sketch) Assume N contains more than one atom. Fore every atom n 6=
nf , let l(n) be the length of the longest path from n to nf in the graph of N. Let
nmin be any atom such that l(nmin) is minimal, and let r be an arbitrary outcome
of nmin. By Lemma 2 there is an atom n′ such that X(nmin, a, r) = {n′} for every
agent a. If n′ 6= nf then by acyclicity we have l(n′) < l(nmin), contradicting the
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minimality of nmin. So we have X(nmin, a, r) = {n′} for every outcome r of nmin

and every agent a. If nmin has more than one outcome, then the merge rule
is applicable. If nmin has one outcome, then, since it unconditionally enables
nf , the d-shortcut rule is applicable. In both cases we get a contradiction to
irreducibility. ut

Definition 13. For every atom n and outcome r, let shoc(n, r) be the length
of a shortest maximal occurrence sequence containing (n, r) minus 1, and let
Shoc(N) =

∑
n∈N,r∈R shoc(n, r). Finally, let Out(N) =

∑
(P,R,δ)∈N\{nf} |R| be

the total number of outcomes of N, excluding those of the final atom.

Notice that if N has K atoms then shoc(n, r) ≤ K − 1 holds for every atom
n and outcome r. Further, if K = 1 then Shoc(N) = 0 = Out(N).

Theorem 6. Every SDAN N can be completely reduced by means of Out(N)
applications of the merge rule and Shoc(N) applications of the d-shortcut rule.

Proof. Let N and N′ be negotiations such that N′ is obtained from N by means of
the merge or the d-shortcut rule. For the merge rule we have Out(N′) < Out(N)
and Shoc(N′) ≤ Out(N) because the rule reduces the number of outcomes by
one. For the d-shortcut rule we have Out(N′) = Out(N) because if it is applied
to pairs n, n′ such that n′ has one single outcome, and Shoc(N′) < Shoc(N),
because Shoc(n, r′f ) < Shoc(n, r). ut

7 Conclusions

We have introduced negotiations, a formal model of concurrency with negoti-
ation atoms as primitive. We have defined and studied two important analysis
problems: soundness, which coincides with the soundness notion for workflow
nets, and the new summarization problem. We have provided a complete set of
rules for sound acyclic, weakly deterministic negotiations, and we have shown
that the rules allow one to compute a summary of a sound deterministic nego-
tiations in polynomial time.

Several open questions deserve further study. Our results show that summa-
rization can be solved in polynomial time for deterministic, acyclic negotiations,
and is co-NP-hard for arbitrary acyclic negotiations. The precise complexity
of the weak deterministic case is still open. We are currently working on a
generalization of Rule 2.2. of Section 3.2, such that we can completely reduce in
polynomial time arbitrary deterministic negotiations, even if they contain cycles.

Related work. Previous work on Petri net analysis by means of reductions has
already been discussed in the Introduction.

A number of papers have modelled specific distributed negotiation protocols
with the help of Petri nets or process calculi (see [22,20,3]). However, these
papers do not address the issue of negotiation as concurrency primitive.

The feature of summarizing parts of a negotiation to single negotiation atoms
has several analogies in Petri net theory, among these the concept of zero-safe



21

Petri nets. By abstracting from reachable markings which mark distinguished
“zero-places”, transactions can be modelled by zero-safe Petri nets [8]. Reference
[7] extends this concept to reconfigurable, dynamic high-level Petri nets.

A related line of research studies global types and session types to model
multi-party sessions [18]. See [9] for an overview that also covers choreography-
based approaches for web services. This research emphasises communication as-
pects in the formal setting of mobile processes. Thus, the aim differs from our
aim. However, it might be worth trying to combine the two approaches.

Finally, the graphical representation of negotiations was partly inspired by
the BIP component framework [4,6], where a set of sequential components (i.e.,
the agents) interact by synchronizing on certain actions (i.e., the atoms).

Acknowledgement. We thank the reviewers, in particular for their hints to
related papers. We also thank Stephan Barth, Eike Best, and Jan Kretinsky for
very helpful discussions.
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