Reachability Analysis Using Net Unfoldings*

Claus Schréter and Javier Esparza

Institut fiir Informatik, Technische Universitat Miinchen,
email: {schroete,esparza}@informatik.tu-muenchen.de

Abstract. We study four solutions to the reachability problem for 1-
safe Petri nets, all of them based on the unfolding technique. We define
the problem as follows: given a set of places of the net, determine if some
reachable marking puts a token in all of them. Three of the solutions to
the problem are taken from the literature [McM92,Mel98,Hel99], while
the fourth one is first introduced here. The new solution shows that the
problem can be solved in time O(n"), where n is the size of the prefix
of the unfolding containing all reachable states, and k is the number of
places which should hold a token. We compare all four solutions on a set
of examples, and extract a recommendation on which algorithms should
be used and which ones not.

1 Introduction

Reachability of states is one of the key problems in the area of automatic verifi-
cation. Most safety properties of systems can be reduced to simple reachability
properties; a typical example is the mutual exclusion property of mutual exclu-
sion algorithms [Ray86]. When systems are presented as automata communicat-
ing through rendez-vous or through bounded buffers, as synchronous products
of transition systems, or as 1-safe Petri nets (all of them models with the same
expressive power), the reachability problem is known to be PSPACE-complete.
In this paper we consider systems modelled by 1-safe Petri nets, and define the
reachability problem as follows: given a set of places of the net, decide if some
reachable marking puts a token in each of them. The problem remains PSPACE-
complete if the set contains only one place.

The unfolding technique, originally introduced by McMillan in his seminal
paper [McM92], has been very successfully applied to deadlock detection. The
1-safe Petri net is “unfolded” into an acyclic net (in a way similar to the un-
folding of a rooted graph into a tree) until a so called (finite) complete prefix is
generated. This is a finite acyclic net having exactly the same reachable mark-
ings as the original one. Once the complete prefix has been generated, three
different algorithms can be applied: a branch-and-bound algorithm by McMil-
lan [McM92], an algorithm based on linear programming by Melzer and Rémer
[MRY7], and an algorithm based on SAT solvers (with stable model semantics)
by Heljanko [Hel99]. These algorithms have been compared (see [MR97,Hel99]),

* Supported by the Sonderforschungsbereich SFB-342 A3 SAM

with the result that SAT algorithms have the edge in most cases. The goal of
this paper is to perform the same kind of analysis for the reachability problem.

First of all, we show that the reachability problem is NP-complete in the
size of the complete prefix. (This is also the complexity of deadlock detection
[McM92].) We then present four different algorithms. McMillan sketches an on-
the-fly solution in [McM92]. In [Mel98], Melzer extends the linear programming
approach of [MR97] for deadlock detection to reachability, and so does Heljanko
in [Hel99]. Both algorithms have exponential complexity in the size of the com-
plete prefix. The fourth algorithm was in a sense implicit in [Mel98], and even
in former papers, but to the best of our knowledge it has not been explicitely
formulated before. In particular, we do not know of any implementation. It re-
duces the reachability problem to CLIQUE, and has a better complexity than
the former two: it solves the reachability problem in time O(n*), where n is the
size of the complete prefix, and k is the number of places that should be simul-
taneously marked. Since n is usually much larger than k, this is a significant
improvement.

In the last part of the paper we present a comparison of the four algorithms
based on experiments conducted on a number of examples. The results show that,
even though it has a better theoretical complexity, the reduction to CLIQUE
cannot compete with the other algorithms. In fact, the two best algorithms are
the on-the-fly algorithm and the algorithm based on SAT.

The paper is structured as follows: In section 2 we give an introduction to
Petri nets and unfoldings following [ERV96,MR97,ER99]. Thereby we restrict
ourselves to 1-safe Petri nets. Section 3 briefly reviews the main ideas of the
methods suggested by McMillan, Melzer and Heljanko and introduces our new
graph theoretic method. In section 4 we compare the four algorithms and discuss
some results. In section 5 we finish with some conclusions.

2 Basic Notations

1-Safe Petri Nets A triple (P,T, F) is a net if P and T are disjoint sets and
F is a subset of (P x T) U (T x P). The elements of P are called places and the
elements of T transitions. Places and transitions are generally called nodes. We
identify F' with its characteristic function on the set (P x T) U (T x P). The
preset *z of a node z is the set {y € PUT | F(y,z) = 1}. The postset z* of a
node z is the set {y € PUT | F(z,y) = 1}.

A marking M of a net (P,T, F) is a mapping M: P — {0,1}. We identify a
marking M with the set P’ C P such that Vp € P:p € P' & M(p) = 1 holds.
A partial marking Mpa, of a net is a mapping Mpe.: (PL,,. U P%,.) — {0,1},

par par

where PI}M,IZSM C Pand Vp € Py,.: Mpor(p) = 1 and ¥p € PJ,.: Mpar(p) = 0
and PI}M N Pper = (. We identify a partial marking M,,, with the tuple P =
(PI}GT‘7 Pz())ar)'

A four-tuple X' = (P, T, F, My) is a net system if (P,T, F') is a net and M
is a marking of (P, T, F'). My is called the initial marking of the net system X.
A marking M enables a transition ¢ if Vp € *t: M(p) = 1 holds. If ¢ is enabled

at M, then t can occur, and its occurrence leads to a new marking M’ (denoted
M4 M"), defined by M'(p) = M(p) — F(p,t) + F(t,p) for every place p. A
sequence of transitions ¢ = t1ts...t, is an occurrence sequence if there exist
markings M;, Ms, ..., M, such that M, t# M, 2) oM, t4 M,. M, is the
marking reached by the occurrence of o, also denoted by My = M,. M is a
reachable marking if there exists an occurrence sequence o such that My = M.

Occurrence Nets Let (P,T, F) be a net and z,y € PUT. The nodes z and
y are in conflict (denoted z#ty) if there exist distinct transitions t1,t2 € T such
that *t; Nty # 0 and (t1,), (t2,9) belong to the reflexive and transitive closure
of F. The node x € PUT is in self-conflict if x#x. An occurence net is a net
N = (B, E, F'), such that:

—Vbe B:|°b| <1,

— F' is acyclic, i.e. the transitive closure of F’ is a partial order,

N is finitely preceded, i.e. for every £ € BUFE, the set of elements y € BUE
such that (y,z) belongs to the transitive closure of F’ is finite, and

— no element e € F is in self-conflict.

The elements of B and E are called conditions and events, respectively.
Min(N) denotes the initial marking of an occurrence net, in which the mini-
mal conditions carry exactly one token, and the other conditions no token. The
(irreflexive) transitive closure of F” is called the causal relation (denoted by <).
The reflexive and transitive closure of F’ is denoted by <. A node z is causally
related to y if there exists a path from z to y. The co-relation co C B x B is
defined in the following way: (b1,b2) € co < (b1 &£ ba A by £ by A —(b1#b2)),
i.e. two conditions are called concurrent, if they are not causally related and if
they are not in conflict. A set B’ C B of an occurrence net is called co-set if its
elements are pairwise in co-relation.

Branching Processes Branching processes of a net system ¥ = (N, M) are
labelled occurrence nets containing information about both concurrency and
conflicts. The conditions of these nets are labelled with places of N and their
events are labelled with transitions of N. A condition is denoted by (p, €), where
p € P is a place and e € E is its unique input event. The label of a condition
(p,€) is p. An event is denoted by (¢, X), where t € T is a transition and X C B
is the set of its input conditions. The label of an event (¢,X) is ¢. Minimal
conditions of the occurrence net are denoted by (p, L), where p carries a token
initially, i.e. p € Mp. In the following we write the labelling as a projection
h:(BUE) — (PUT), such that h((z,y)) = z. Since branching processes are
completely determined with this notation by their sets of conditions and events,
we represent them as a pair (B, E).

The set of finite branching processes of a net system (N, My) with My =
{p1,...,pn} is inductively defined as follows:

— ({(p1,4L),...,(Pn,L)},0) is a branching process of (IV, Mp).

— If (B, E) is a branching process, t is a transition, and X C B is a co-set
labelled by °t, then (BU{(p,e) | p € t*}, EU{e}) is also a branching process
of (N, My), where e = (t,X). If e ¢ E, then e is called a possible extension
of (B, E).

The set of all branching processes of (N, My) is obtained by declaring that
the union of any finite or infinite set of branching processes is also a branching
process, where union of branching processes is defined componentwise on con-
ditions and events. Since branching processes are closed under union, there is a
unique maximal branching process. We call it the unfolding of (N, My).

Configurations and Cuts A configuration C of an occurrence net is a set
of events satisfying the following two conditions: (i) C is causally closed, i.e.
ee C=>Ve <e:e € C and (ii) C is conflict-free, i.e. Ve,e' € C: —(e#e’).

A maximal co-set B’ with respect to set inclusion is called a cut. Let C be a
finite configuration and Cut(C) = (Min(N)U C®) \ *C. Then Cut(C) is a cut.
In particular, the set of places h(Cut(C)) is a reachable marking denoted by
Mark(C).

For an event e we define the local configuration [e] by the set of all events
e’ such that e’ < e. Then we call e a cut-off event of a branching process 3 if 8
contains a local configuration [e'] < [e] such that the corresponding markings are
equal, i.e. Mark([e]) = Mark([e']). < denotes a total order on the configurations
of 3. See [ERV96] for more details on total orders on configurations of prefixes.

A branching process 3 of a net system X' is called complete finite prefix if
and only if for every reachable marking M there exists a configuration C in 8
without any cut-off event such that (i) Mark(C) = M (i.e. M is represented
in B) and (ii) for every transition ¢ enabled by M there exists a configuration
C U {e} such that e ¢ C and e is labelled by ¢.

Figure 1 shows a 1-safe net system and its complete finite prefix, where es,
es, €7, eg, €19 and ejs are cut-off events.

3 Different methods for reachability checking

As mentioned in the introduction we investigate the reachability problem of
1-safe Petri nets using complete finite prefixes. We will now define our under-
standing of the reachability problem more precisely.

Definition 1. Reachability problem for 1-safe Petri nets using prefixes

The reachability problem is as follows: Given a net system (N, M), and a

partial marking P}, = (P),., PJ,.), is there a marking M reachable from

My (i.e. 30 : My = M) such that for every p € (PL,. U PO):M(p) =

par par

Mpqr(p) holds. ml

Theorem 1. NP-completeness of the reachability problem
The reachability problem for 1-safe Petri nets using prefixes is NP-complete.

The proof is presented in Appendix A. In the following we briefly review
methods based on linear programming [Mel98] and logic programs [Hel99], and
introduce a new method using a graph theoretic approach. Moreover, we present
an on-the-fly verification technique as mentioned by McMillan [McM92].

3.1 Using linear programming: CheckLin

Melzer [Mel98] has introduced a method for checking the reachability of a mark-
ing based on linear programming. The basic concept of this method is the so-
called marking equation that can be used as an algebraic representation of the
set of reachable markings of an acyclic net. Given a marking M reachable from
the initial marking My and a place p, the number of tokens of p in M can be
calculated as the number of tokens p carries in My plus the difference of to-
kens added by the input places and removed by the output places. This leads
to the following equation: M(p) = Mo(p) + ZicepF#t — Licpe #t, where #t de-
notes the number of occurrences of ¢ in ¢. Usually this equation is written in
the form M = My + N- ?, where o= t(#t1,. .., #ty,) is called the Parikh vec-
tor of o and N denotes the incidence matriz of N, a P x T matrix given by
N(p,t) = F(t,p) — F(p,t). Additionally we formulate a set of restrictions: for
each place p; € P,,, we add the restriction M(p;) > 1, and for each p; € Py,
we add the restriction M (p;) < 0. Usually the restriction for all places of the
marking is given in the matrix form A - M > b. With the knowledge that every
1-safe Petri net can be unfolded into an acyclic net and that the marking equa-
tion yields a sufficient condition for reachability in acyclic nets, the reachability
of a marking can be checked using the following result.

Theorem 2. Test schema on prefizes [Mel98]

Let (N, Myp) be a 1-safe net, A - M > b a restriction and B the prefiz of
(N, My). The restriction holds for a marking reachable from My iff the fol-
lowing system of linear inequalities has a solution for M' and X :
Variables: M', X binary

M'= Min(B) + N'- X

h(A)-M'>1b

We describe this method by means of an example. Consider the net in Fig-
ure 1 and the partial marking P}, = ({p2,ps,p6},0). To check if P}, is a
reachable marking, we formulate a corresponding restriction, i.e. M (p2) > 1 and
M(ps) > 1 and M (ps) > 1. Using the projection h this restriction can be trans-
ferred to markings M’ of the prefix. Knowing that h(b7) = pa, h(bs) = h(bio) =
ps and h(by) = h(bg) = h(bi2) = pe we get the restriction M'(b7) > 1 and
M'(bs) + M'(b1o) > 1 and M'(bs) + M'(bg) + M'(b12) > 1.

The system of linear inequalities looks like this:

M’(bl) =1- X(€4)

M'(b2) =1~ X(e2) M (b -
M'(b3) =1 - X(e1) M) 2
M'(bs) = X(ex) — X(e2) — X(es) (o) &+ M(bao) 21
M:(b5) = X(e2) — X(ea) — X(es) %(éb‘;) + M(bo) + M (b12) E (1)
Ml(bﬁ) = X(EZ) - X(eﬁ) X(Ez) -0
Ml(b7) = X(64) - X(67) X(e7) -0
M’ (bs) = X(es) — X(eo) X (es) —o
Ml(bg) = X(es) — X(es) — X (eg) X (e10) —0
M (blo) = Xgeg) b X(elo) X(612) =0

M’ (b12) = X(e11) — X(e12)

On the left side the marking equation of the prefix is shown, and on the
right side first the three inequalities of the restriction and below it the equalities
for the elimination of the cut-off events are shown. The cut-off events can be
eliminated because all reachable markings are reachable without firing cut-off
events. The elimination of cut-off events reduces the number of binary variables
and simplifies the inequality system. Therefore the complexity of this method is
exponential in the number of non-cut-off events.

It can easily be seen that M' = {br, b1g, b12} with X =¥(1,1,0,1,0,1,0,0,1,0,
1,0) yields the desired solution.

3.2 Using logic programming: Mcsmodels

Heljanko [Hel99] presented a method for reachability checking of complete finite
prefixes using logic programs with stable model semantics. The main idea of this
approach is to translate the problem into a rule based logic program and to check
if there exists a stable model. This method reduces the reachability problem to
SAT. The algorithm uses the Smodels tool which is an implementation of a
constraint based logic programming framework developed to find stable models
of alogic program. We show an example to give an idea of the reduction to SAT,
but due to space limitations we refer the reader to [Hel99] for more details.
Consider the net in Figure 1 and the partial marking Py, = ({p2,ps,Ps},0)-
We show, how we can reduce the reachability problem to SAT for this example.
First define a variable for each condition and for every non-cut-off event of the
prefix, e.g. by,...,b12 and eq,...,e11. The cut-off events es, es, e7, e, €19 and
e12 can be omitted because each reachable marking can be reached without firing
cut-off events. b; means that the corresponding condition holds a token, otherwise
we write —b;. e; means that the corresponding event has fired, otherwise we write
—e;. For each condition there is a rule stating when it holds a token. For example,
b4 holds a token iff e; has fired and e has not fired. Then we need rules describing
the causal relation. Finally we need one rule for each place in P,,,., i.e. one rule
for pa, ps and pg. For example, the rule for pg is by V bg V b12, because pg holds
a token whenever one of these conditions holds a token. Altogether, the partial

marking P, is reachable iff the rules are satisfiable.

b1 > —eqa|bs <> e1 A —ea|by <> ea bi1g <> €9 ex — e1leg — ea Aeg|by
ba > —ea|bs <> ea A —ea|bg <> ea A —eg|bi1 > eg A —ei11les — eale1r — eg bs V big
bz <> —e1|bg <> ea A —eg|bg <> es A —eg|bi2 > e11 e — ea ba V bg V bia

Fig. 1. A net system and its complete finite prefix

3.3 A new graph theoretic algorithm: CheckCo

Basically, our algorithm uses the co-relation, which is defined on the set of con-
ditions of a prefix. Generally, two conditions are in co-relation iff they are not
causally related and not in conflict. In the implementation of Rémer [R6m00]
the co-relation is calculated while generating the prefix and can directly be used
as input for our algorithm. Proposition 1 states that co-sets are reachable.

Proposition 1. Reachability of co-sets [BF88]

Let § = (B,E) be a prefiz and B' C B (B, = (B,,,,0)) be a marking
(partial marking). B' (Bj,,,) is reachable from Min(B) iff B' (B},,) is a
co-set.

In [Mel98] it is shown that the result of Proposition 1 together with the fact
that all reachable markings of a 1-safe net are coded in its prefix can be combined
to derive the following theorem.

Theorem 3. Reachability of partial markings [Mel98]

Let (N, Mo) be a I-safe net, § its prefiz, and Py, = (PI}M,@) a partial
marking. P,,,. is reachable iff there exists a co-set B' C B such that for

every p € Pl there exists a b € B' with h(b) = p.
par

By means of the previous example we show, how we can use the co-relation
to decide the reachability of partial markings. Consider the net system and its
prefix depicted in Figure 1.

In this case the co-relation of the prefix is the symmetrical closure of the set

{(b1:b2)7 (b1:b3)a (b17b4): (blab5): (blabﬁ)a (blabg)a (b2:b3)a (b2: b4): (b5a bG):
(bs,bg), (b, br), (bs, bg), (br, bs), (br,bg), (bz, b10), (br, b11), (b7, b12), (bs, be),

Fig. 2. 3-partite graph Gs

(b10,b11), (b10,b12)}

Suppose we want to know if the partial marking ({ps, ps, e}, 0) is reachable. Ac-
cording to Theorem 3 the marking is reachable if there exist conditions mapped
onto po, py and pg by the projection h that are all pairwise in co-relation. Con-
sidering {b7,b10,b12} it can easily be seen that the above marking is reach-
able because (br,b19) € co, (by,b12) € co, and (big,b12) € co with h(b7) = po,
h(blo) = P4 and h(blz) = Pe6-

The search for a possible solution corresponds to the graph theoretic problem
of finding a k-clique in a k-partite graph. We will explain this in more detail
below. Let us construct a k-partite graph in the following way:

Algorithm 1: Construction of the k-partite graph Gy = (V, E)
Let N = (P,T,F)beanet and P, = ({p1,p2,---,Dr},?) a partial marking. Let

par

B = (B, E) be a complete finite prefix of N and co C B x B be the co-relation.

(i) For each p; € {p1,p2,-..,pr} calculate the set of conditions B; = {b;,, b;,,
I ;bz'm} with]’L(bz]) =Di for all 1 S] <m.

(ii) Let V == U, <<y, Bi-

(ii) Draw an arc between b;,, b;, € V with ¢ # j if (b;,,,b;,) € co, i.e. draw an
arc between two nodes, if they are in co-relation and belong to different par-
titions. (This means that each B; forms one partition since no two elements
in B; are connected by an arc).

We show the construction of G}, for the net and the prefix shown in Figure 1 and
the partial marking P, = ({p2,p4,p6},0)- The sets B; of conditions can be de-
duced directly from the preﬁx: Bl = {b7}, B2 = {b5, blO} and B3 = {b4,b9, b12}.
The elements of By, By and Bs form the three partitions of the graph. We draw
arcs only between nodes which are in co-relation belonging to different parti-
tions: (b7, blO), (b7, bg), (b7, blg), (b5, bg), (blo, blg). Figure 2 shows the graph G3.
It can easily be seen that b7, bigp and bi2 build a 3-clique, and therefore we can
conclude that the partial marking P}, = ({p2,ps,P6},0) is reachable.

The following theorem states that we can use the k-partite graph Gy for
checking the reachability of a partial marking.

Theorem 4. Reachability of partial markings

Let (N, My) be a 1-safe net, and P, = (P,,,,0) a partial marking. P}, is

par> par

reachable iff the k-partite graph Gy has a k-cligue.

?} p1 Ps P1 p§ 3 5
I%l t1 ta 131 iy
O P2 P4 P2 2 P4 Ps

Fig. 3. A net system extended with complementary places and its prefix

Concept of complementary places The method explained above does not
work if the partial marking under consideration includes places that should not
be marked. For example, in Figure 3 one might want to know whether there is a
reachable marking in which the place p» carries a token and the place p4 carries
no token. For this task it is not sufficient to consider only the co-relation.
There exist co-related conditions in the prefix belonging to the places po
and p, and therefore we can conclude that the partial marking ({p2,ps},0)
is reachable. However we cannot decide if the partial marking ({p2},{ps}) is
reachable. To cope with this problem we introduce complementary places.

Definition 2. Complementary place

Let (N, My) with (P,T,F) be a net and p € P a place. A place p® € P is
called complement of p iff

(pt)€EF:(t,p°) e F& (t,p) ¢ F
(t,p) e F:(p°t) e F & (p,t) € F
(p°,t) e F:(t,p) e F & (t,p°) ¢ F
(t,p°) e F:(pt) e F& (p°t) ¢ F
(U Mo(pc)zl—Mo(p) H2

Using this concept, the problem of checking the reachability of the partial
marking ({p2}, {p4}) can be reduced to constructing a net with complementary
places and checking the reachability of the partial marking ({p2,p§},®) which
is possible using only the co-relation. Figure 3 shows a net, its modification
with complementary places and the corresponding prefix. Using the prefix of the
modified net it can be seen that the partial marking ({p2}, {ps}) is reachable
because the conditions b5 with h(bs) = po2 and by with h(by) = p§ are in co-
relation.

Proposition 2. Reachability of partial markings

Let (N, Mo) be a net and P),. = ({p1,...,Pk},{Pk+1, --.,Pn}) a partial
marking. P, . is reachable iff P}, = ({p1,- -, Pk, Piy1s - D5}, D) is reach-
able.

The complement p° of a place p can be added as follows: the preset of p°
is the postset of p and the postset of p° is the preset of p. But this may lead
into trouble in the special case that place p has a side-loop, i.e. a transition that
is both in the preset and in the postset. Figure 4 (left side) illustrates such a

P
i
P2 ta
ts
p3

Fig. 4. A net system with side-loop, a net system with complementary places

situation. The central part of Figure 4 shows the construction of p§ according
to the fashion described above. It can be seen that transition ¢5 can never fire.
This is an undesired behaviour and therefore the arcs between transition t5 and
place p§ have to be deleted. Figure 4 (right side) shows the corrected system.
Generally speaking, we only connect a complementary place with a transition if
the transition is not part of a side-loop.

Outline of our algorithm In this section we give an outline of our algorithm.
Algorithm 2:
Input: Net (N, My) and a partial marking P’f” = {p1,.- s} {Prt1s- - 5P }).

QOutput: NO or YES
proc Check(int count)

begin ji=1;
- A b
Read(N); while j < |Beoun:| do
InsertAllComplements(N); L:=LU{b ¥
Unfold(N); = count; b
Read(P.,); if all elementsof L are pairwise in
2 c c co — relation then
poplace Ppaz by ({p1, - Pu, Phy, oo}, 0) if L] = Pl UPY, | then
forall p; € {p1,... 1y Pl Prgrs- - ,pn} do out 1:;1‘:‘ (Yéés
Calculate(B;); exit? >
/ Vbi; € Bi: h(bii) =pix/ else Check(count 4 1); endif;
zd? o endif;
=Y L:=L\{b 3}
Check(1); ey +\1{ count; }
output (NO); od . ’
end end Check

Our algorithm works as follows: First we read the original Petri net into an
internal net structure and insert all complementary places. Then we unfold the
modified net into a complete finite prefix. The co-relation is constructed while
generating the prefix. We read the partial marking and replace all places p; with
Mpar(pi) = 0 by their complements p;. Then for each place p; in Py,,,., we find B;,
i.e. the set of conditions which are mapped to p; by h. The marking is reachable
if there exists a clique of conditions, one for each place in P;’M, such that these
conditions are pairwise in co-relation. This part is implemented in the procedure
Check. The set L yields the desired clique if there is one.

Let us consider again the net system of Figure 1. We want to check if the
partial marking P, = ({p2,ps},{ps}) is reachable. First we have to insert com-
plementary places, but it can be seen that ps, ps and pg are the complements
of p1, p3 and ps. So we can check if the partial marking Py, = ({p2,ps,p6},0)

is reachable. For that, we have to calculate the sets B; (1 < i < 3). We ob-

tain Bl = {b7} with h(b7) = P2, BQ = {b5,b10} with h(bs) = h(blo) = P4 and
Bg = {b4,b9,b12} with h(b4) = h(bg) = h(b12) = De¢- Now we can invoke the
procedure Check(1). In the first step we set L = {b7} and call Check(2). Now
we have to test if all elements of L = {b;,bs} are in co-relation. Apparently
this is not the case and so we try L = {b7,bi0}. These elements are co-related
and we can call Check(3). L = {br,bi0,bs} is no solution because (bz,bs) & co,
L = {b7,b10,b9} is no solution because (big,bg) & co, but L = {br,b1o,b12}
yields the desired clique (see Figure 2). Then according to Theorem 3 the par-
tial marking P! = ({p2,p4,p6},0) is reachable and hence (with Proposition

ar
2) the partial ﬁlarking Pl.r = ({P2,pa},{ps}) is reachable. Note that at first
it might appear unnecessary to insert all complementary places (as apposed to
just the complements of those places p; for which Mpe-(p;) = 0). But in this
way we avoid having to re-calculate the prefix for each new marking. Inserting
all complementary places allows us to calculate the prefix only once for each net

and then to reuse it for checking further markings.

Complexity of CheckCo We briefly analyze the complexity of CheckCo. Let
(P, T, F) be a net, § = (B, E) its corresponding prefix, co the co-relation and
Pl = (P gar) a partial marking. There exists a parameterized function
Mpar (PI}M Pp.) = {0,1} that maps the places of the partial marking onto
0 (not marked) and 1 (marked). Each place of P par U PI?M corresponds to at
most |B| conditions in the preﬁx which leads to |B |‘ »arUFpar| possible solutions.
Then we need at most | P, U PY,.|> comparisons for checking if the conditions
of one p0531ble solutlon are in pairwise co-relation. This leads to a complexity

of O(|B|/FrerFrar| - | Bl U PS,,).

3.4 On-the-fly verification: OnTheFly

In [ERV96] the authors present an efficient algorithm for constructing a com-
plete finite prefix of 1-safe Petri nets. Knowing that all reachable markings of
the net are coded in its prefix [McM92] we can verify the reachability of a par-
tial marking during calculation of the prefix in the following way: Let P,,, =
({p1,---,0t}, {Pk+1,-- -, Pn}) be the partial marking to be checked. As shown in
the previous section we insert the complements of the places pg41, - - -, pn, into the
net and check the partial marking P\, = ({p1,-- -, Pk, Pjy1, - - -, 5}, 0). This can
be done in a way first suggested by McMillan [McM92]. We insert a new transi-
tion e, into the original net in such a way that *tyew = {P1,- -, Pk, Pig1s- - > P}
Then we start the unfolding algorithm described in [ERV96]. The algorithm stops
if an event e with h(e) = tpew can be inserted into the prefix. At this point we
can conclude that the marking P,,, is reachable, otherwise the prefix will be
generated completely. We explain this method by means of an example. Con-
sider the net in Figure 1 and the partial marking P, = ({p2,p3,ps},). Figure
1 (consider the dotted lines) illustrates the modified net system and its prefix.
The algorithm stops at the dotted line, because the next event that can be in-
serted has the places pa, ps and pg in its preset. Therefore the reachability of

Py, is proven.

4 Comparison of the algorithms

In this section we compare the four approaches and try to deduce a rule describ-
ing the situations in which one algorithm is more suitable than the others. We
confirm our statements by practical results. For our tests we used a representa-
tive subset of Corbett’s examples [Cor94] on randomly generated “meaningful”
markings. These examples are also used in [MR97,Hel99]. In the following we
briefly explain how “meaningful” markings were generated.

Originally, Corbett’s examples are modelled as communicating finite au-
tomata and they are translated from these into Petri nets. The translation pro-
cedure yields a division of the nets into components where each component can
carry at most one token. For this reason, it would be useless to test markings
which include two or more places belonging to the same component because such
markings are not reachable. To avoid the generation of such markings, our mark-
ing generator works as follows: First we determine the number of components
and for each component the number of its places. Then we randomly choose &
of the components (where k is the size of the generated marking). For each of
the chosen components we randomly select one of its places. Note that the size
of the markings is bounded by the number of components of the net system, but
this is not a big restriction.

We present results for par- [[OnThcFly| Mcsmodels] CheckLin] CheckCol 1 |
tial markings with 2, 4 and 6 t Uy [1564] 15.64] 166.89] -
. . R2 3.13 1.14 15.98 5.04] 8
places. The average verification |kev®» |, R4 29| _T.16] Ti00] 570/ 5
times are all based on at least 15 N4[1605 103] 837 5211
. . - 3.69 3.69 56.29| -
different markings. All compu- 27 N N] R . T
tations were carried out on the clevator(3) |y, R4l 194 o.45] ©530L .58 5
same machine, a SUN SPARC20 Nl ST8[035] 2.20] S3.19] 1
. . t Unf - 93.79 03.79(668.90 | -l
with 96 MByte RAM. CheckLin . R2[335 L TR M
. rw(12 R4 11.47 1.94 9.76 14.23[1
uses CPLEXTM (vers10n 65]_) tavy R 14.64 1.06 071 14.556] 8
. . N4 97.72 1.83 6.95 14.03[1
as its underlying MIP-solver, T - T e
R2 0.18 0.45 29.59 3.71
and Mcsmodels uses Smodels as aacr) |, M40 ORI aROr 5T
3 3 w9 R6 0.37 0.54| 29.34 3.76] -
constraint programming frame- N4 8.18 2.66] 28.74] 3.00] 2
work. t Unf - 14.75] 14.75] 110.36
. R2 0.33 0.84 30.29 6.17
First we compare the three dph(6) tang B2 0.43 0.94] 37.00] 6.30
. w9 R6 0.86 1.39] 45.53 6.38] -
methods Mcsmodels, CheckLin N4 17.87 1.62] 24.37] 6.29] 1
and CheckCo because they all o L o STeel STl il
need a prefix as input. The pre- [wmees |, NIl meom
fix construction takes the same N4] 6476 946] 30.34] 10.96] 2
. T Un E 5.52 5.52] 98.95
time for Mcsmodels and Check- U 0.25 0.35] 16.06] 4.40] -
. . 5 R4 0.31 0.38 16.35 125 -|
Lin, but takes more time for v aw To 0.31 0.40] 17.35] 4.33] -
N4 7.36 0.68 13.90 4.38] 1
CheckCo. All these methods use

the same optimized unfolding procedure and therefore the difference between
the unfolding times of Mcsmodels/ CheckLin and CheckCo is only caused by the
additional complementary places. The unfolding times ¢y in the table con-
firm this. The prefixes have to be constructed only once and can be reused for
checking further markings. The times ¢,,, in the table show the average time

needed for verification without the unfolding time. The rows R2, R4, R6 show
tests with reachable markings of size 2, 4, and 6. The row N4 shows the results
for unreachable markings with 4 places. Apparently, the table shows that the
algorithm Mcsmodels yields the fastest verification times for all markings inde-
pendently of the marking size and independently of whether the markings are
reachable or not. So, in a second step, we only need to compare Mcsmodels with
the on-the-fly method OnTheFly. The OnTheFly algorithm stops the unfold-
ing process if a cut is found which represents the marking under consideration,
otherwise it calculates the prefix completely. Therefore it needs for reachable
markings at most the unfolding time of the complete prefix. In the case that
the markings are unreachable, OnTheFly takes at least the complete unfolding
time. With this knowledge we guess that on-the-fly verification is more suitable
than Mcsmodels for checking reachable markings. On the other hand it seems
useful to prefer Mcsmodels for unreachable markings. Indeed, the results seem
to confirm this suspicion. If we look at the results for reachable markings, the
OnTheFly algorithm is always faster than Mcsmodels for the systems dpd(7),
dph(6) and over(5). However, for systems like key(3), elevator(3) and rw(12) the
opposite holds. In these cases we can compute the smallest integer n such that
n-OnTheFly,,, > tyns +(n-Mcsmodels,,,,). Then n denotes a breakpoint from
which it is more efficient to use Mcsmodels instead of OnTheFly. More precisely,
if we test n or more markings the total time of Mcsmodels (also including the
unfolding time) is smaller than the total time of OnTheFly. The values for n are
listed in the last column of the table. A look at the times for unreachable mark-
ings (rows N4) confirms our assumption that one should prefer Mcsmodels as
verification technique because for most systems the breakpoint n is 1 (meaning
that Mcsmodels is faster than OnTheFly even for only one marking).

Figure 5 summarizes the results. At any not
rate, if one guesses that the markings to be reachable reachable
checked are unreachable, Mcsmodels should
be preferred. OnTheFly is an efficient tech- Mesmodels

nique for the verification of reachable mark-
ings, but there may exist a breakpoint from
which on it is better to use Mcsmodels. This
breakpoint, if any exists, is very different for Fig. 5. Suggestion

the considered systems and depends on the

size of the marking. Our tests have shown that the greater the size of the mark-
ing the smaller the breakpoint where it is appropriate to switch from OnTheFly
to Mcsmodels.

OnTheFly Mesmodels

5 Conclusions

We have presented a new algorithm for reachability checking based on net unfold-
ings using a graph theoretic technique. Moreover, we have reviewed an on-the-
fly verification technique and two methods for reachability checking using linear
programming and logic programming with stable model semantics. By means

of Corbett’s examples we have discussed the different algorithms and suggested
which algorithms are most suitable for various reachability checking tasks.

Acknowledgements We would like to thank Stefan Rémer for valuable com-
ments and suggestions to this work.

References

[BF88] E. Best and C. Ferndndez. Nonsequential Processes - A Petri Net View.
EATCS Monographs on Theoretical Computer Science, volume 13, 1988.

[Cor94] J. C. Corbett. Evaluating Deadlock Detection Methods, 1994.

[Eng91] J. Engelfriet. Branching Processes of Petri Nets. Acta Informatica, (28):575
— 591, 1991.

[ER99] J. Esparza and S. Romer. An Unfolding Algorithm for Synchronous Products
of Transition Systems. In Concur’99, pages 2 — 20. Springer-Verlag, 1999.

[ERV96] J. Esparza, S. Romer, and W. Vogler. An Improvement of McMillan’s Unfold-
ing Algorithm. In TACAS’96, LNCS 1055, pages 87 — 106. Springer-Verlag,
1996.

[Hel99] K. Heljanko. Using Logic Programs with Stable Model Semantics to Solve
Deadlock and Reachability Problems for 1-Safe Petri Nets. In TACAS’99,
LNCS 1579, pages 240-254. Springer-Verlag, 1999.

[McM92] K. L. McMillan. Using Unfoldings to Avoid the State Explosion Problem in
the Verification of Asynchronous Circuits. In CAV’92, LNCS 663, pages 164
— 174. Springer-Verlag, 1992.

[Mel98] S. Melzer. Verifikation verteilter Systeme mittels linearer - und Constraint-
Programmierung. PhD thesis, Technische Universitdt Miinchen, 1998.

[MR97] S. Melzer and S. Romer. Deadlock Checking Using Net Unfoldings. In
CAV’97, LNCS 1254, pages 352 — 363. Springer-Verlag, 1997.

[Ray86] M. Raynal. Algorithms For Mutual Exclusion, 1986.

[R6mO00] S. Romer. Theorie und Prazis der Netzentfaltungen als Grundlage fir die
Verifikation nebenlaufiger Systeme. PhD thesis, Tech. Univ. Miinchen, 2000.

A Proof of NP-completeness of the reachability problem

First we prove NP-hardness of the reachability problem by reducing from the
SAT-problem for boolean formulae in conjunctive normal form to the reachability
problem in polynomial time. Let ¢ be a formula in conjunctive normal form with
variables 21, ..., 2, and clauses ¢y, ..., cn. We construct a Petri net (Ng, Mo,)
in the following way: Ny contains

— a place p,, for each variable z; such that *p,; = 0 and p}, = {ts;,tz:};

— a place p;, for each clause ¢; and each literal ! of ¢; such that *pj;, = {#;}
and p}, = {t; };

— a place p, for each clause c; such that *p.; = UIECJ- {tj} and p2, = 0.

Fig. 6. Net (Ny, Mo,) with ¢ = (21 V 22 VT3) A (ZT1V 22)

Moy, puts one token on each place p;,, and no token elsewhere. However, one
problem arises from this construction. The generated net is not 1-safe because it
may happen that two transitions ¢;, and ¢;,, fire independently, and both of them
put a token on the place p.;. This undesired behaviour can be repaired with a
new place which ensures that only one of the transitions can fire. Therefore

— add a place py, for each clause c; such that *p,, = 0 and p;. = Uiee, {ti}-

Moy, puts one token on each place p,;. Now we have constructed a 1-safe net
with the property that the formula ¢ is satisfiable iff the net (Ny, Mp,) has a
reachable marking which puts one token on each place p,. Figure 6 shows an
example for the net (Ng, Mo,) with ¢ = (x1 V2 VT3) A (Z1V22). Now we have to
show how we can construct the prefix 84 from the net (Ng, My,) in polynomial
time. But this is an easy task because we only have to do minor changes to
transform (Ng, Mg,) into B4. Recalling the definition of occurrence nets we see
that the net (Ng, My,) only violates the property that all conditions must not
have more than one event in their preset. It can be seen that only the places
Pc; have more than one transition in their presets. This can be changed if we
duplicate these places. More precisely:

— replace each place p.; by k = |*p,| places, i.e. a place Pe;, for each literal
I € ¢; such that *pc;, = {t;,} and p, = 0.

The dotted lines in Figure 6 show the modified net. Surely, this net is the desired
prefix and consequently the formula ¢ is satisfiable iff the prefix has a reachable
marking such that for each place p.; in the original net there is a token on exactly
one of its corresponding places p;, -

We have successfully proven NP-hardness for the reachability problem. The
second step consists of proving that the problem is in NP. This can be done
by reduction from the reachability problem to SAT or another NP-complete
problem. In sections 3.1 and 3.2 we have presented two methods which reduce
the reachability problem to the problem of solving a linear inequation system
[Mel98] and to SAT [Hel99].

