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Abstract. The decidability of the model checking problem for several
p-calculi and Petri nets is analysed. The linear time u-calculus without
atomic sentences is decidable; if simple atomic sentences are added, it
becomes undecidable. A very simple subset of the modal p-calculus is
undecidable.

1 Introduction

Research on decidability issues for Petri nets (or vector addition systems, a
closely related model) has a long tradition. Two milestones are the introduction
by Karp and Miller of coverability graphs [9] — which can be used to prove,
among other properties, the decidability of boundedness — and the proof by
Mayr and Kosaraju of the decidability of the reachability problem [12, 10]. A
natural next step is to examine the decidability of the model checking problem
for temporal logics able to express a large class of properties. This problem was
first studied by Howell and Rosier in [6]; they observed that a simple linear
time temporal logic is undecidable even for conflict-free Petri nets, a fairly small
class. This logic is interpreted on the infinite occurrence sequences of the net, and
consists of atomic sentences, the usual boolean connectives, and the operator F
(eventually). The atomic sentences are of type ge(s,c) (with intended meaning
‘at the current marking, the number of tokens on place s is greater than or equal
to ¢’) or of type fi(t) (with intended meaning ‘transition ¢ is the next one in the
sequence’). In a subsequent paper [7], Howell, Rosier and Yen showed that the
model checking problem for the positive fragment of this logic (in which negations
are only applied to atomic sentences) can be reduced to the reachability problem,
and is thus decidable. Janéar showed in [8] that the positive fragment with GF
(always eventually) as operator, instead of F', is decidable as well.

We analyse in this paper the decidability of several u-calculi, logics with
fixpoint operators [15]. Our three results are:

— The lin(;‘rar‘ time p;calcu_ius without atomic sentences is decidable.
~ The linear time y-calculus with atomic sentences of the form s = 0 — meaning
‘at the current marking, the place s contains 0 tokens’ - is undecidable,
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even for formulas with one single fixpoint, and for Petri nets in which every
transition has at most one input place and at most one output place.

— The modal p-calculus is undecidable, even for formulas with one single fix-
point and for the same class of Petri nets.

The third result (which is a small modification of Theorem 5.4 in [1]) is not
very surprising, because the modal p-calculus is known to be a extremely power-
ful logic, which properly contains many branching time logics such as PDL, CTL
or CTL*. Since the decidability of branching time logics seems not to have been
explored so far, we complement the paper with a fourth result, unfortunately
negative:

— a weak branching time subset of the modal p-calculus, which extends pro-
positional logic with possibility operators, is undecidable.

The note is organised as follows: sections 2 and 3 contain basic definitions
about Petri nets and the linear time p-calculus, respectively. Sections 4 and 5
prove the first and second results above. Section 6 proves the other two.

2 Petri Nets

A labelled net N is a fourtuple (S, T, F',I), where

— S and T are two disjoint, finite sets,

— F is arelation on SUT such that F N (S x S) = FN(T'xT)=10, and

— lis a surjective mapping T — Act, where Act is a set of actions (surjectivity
1s assumed for convenience).

The elements of S and T are called places and transitions, respectively. Places
and transitions are genericaly called nodes.
Given anode z of N, *z = {y | (y,2) € F} is the preset of  and z* = {y |
(z,y) € F} is the postset of z.
Given a set of nodes X of N, we define *X = Usex *z and X* =, 5 2*.
A marking of N is a mapping M: S — IN. A marking M enables a transition
t if it marks every place in *¢. If ¢ is enabled at M, then it can occur, and its
occurrence leads to the successor marking M’ which is defined for every place s
by
M(s) if s¢* ands¢gt® or s€*tandsct®
M'(s)=q M(s) =1 if s€*tand s ¢t*
M(s)+1 if s¢*tandset®

(a token is removed from each place in the preset of ¢t and a token is added to
each place in the postset of t).

A marking M is called dead if it enables no transition of V.

A labelled Petri netis a pair ¥ = (N, My) where N is a labelled net and My is
a marking of N. The expression M; —%» M, where M;, M, are markings of NV,
denotes that M; enables some transition ¢ labelled by a, and that the marking
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. a a a .
reached by the occurrence of t is M. A sequence Mg —= My -5 --- — M, is
31...Gqn
a finite occurrence sequence leading from M to M, and we wrlte My — M,.

The empty sequence ¢ is an occurrence sequence: we have M —+ M for every

marking M. A sequence My 2% M; 22 ... is an infinite occurrence sequence.
“w3.
We write M ——.

We assume that if two transitions have the same label, then they do not have
the same preset and postset. Under this assumption, every label of an occurrence
sequence can be uniquely mapped to its underlying transition. Making implicit
use of this property, we sometimes speak about the transitions that occur in an
occurrence sequence.

A sequence of actions o is enabled at a marking M if M —=» M’ for some
marking M’ (if ¢ is finite) or M — (if o is infinite).

An occurrence sequence is mazimal if either it is infinite or it leads to a dead
marking. The language of X, denoted by L(X), is the set of words obtained by
dropping the intermediate markings in the maximal occurrence sequences of 2.

Unlabelled Petri nets are obtained from labelled ones by dropping the la-
belling function. Equivalently, one can think of unlabelled Petri nets as labelled
Petri nets in which the labelling function assigns to-a transition its own name.
With this convention, the definition of language carries over to unlabelled Petri
nets.

3 The Linear Time p-calculus
The linear time p-calculus without atomic sentences has the folloWing syntg:.x:

6:=2|~¢|6Ad|0ah|v2.8

where a ranges over a set Act of actions, and Z over propositional variables.
Free and bound occurrences of variables are defined as usual. A formula is closed
if no variable occurs free in it.

Formulas are built out of this grammar, subject to the monotonicity condition
that all free occurrences of X lie in the scope of an even number of negations.

Let Act*, Act” be the set of finite and infinite words on Act, and let Act™ =
Act*U Act” . A valuation V of the logic assigns to each variable X a set of words

V(X) in Act™. We denote by V[W/Z] the valuation V' which agrees with V

except on Z, where V'(Z) = W. Given a word o = ay az... on Act™, o(1)
denotes the first action of o, i.e., a;, and o' denotes the word as az.... With
these notations, the denotation ||¢||v of a formula ¢ is the set of words of Act®
inductively defined by the following rules:

ClzZlv=va)
ldlly = Act® ~ ldlly
6 Adlly = Il Nliglly
10a8lly = fo € Act™ | o(1) =ana’ € 4llv}
I Z.6llv = V(W € 4t | W C ll8llvw/)
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Therefore, ||[vZ.4||v is the greatest fixpoint of the function which assigns to
a set W of words the set ||#]|lviwyz)-

The denotation of a closed formula ¢ is independent of the valuation; we
then use the symbol ||4||. We also use the following abbreviations: # = vZ2.Z
and pZ.¢ = ~vZ.¢[~Z/Z]. Observe that ||tt|| = Act™.

Let X be a labelled Petri net and ¢ a closed formula of the linear time
p-calculus. We say that I satisfies ¢ if L(Z) C [|4||. Notice that, with this
definition of satisfaction, it can be the case that X satisfies neither a formula
nor its negation.

4 Decidability of the Linear Time y@-cal.culixsk

We define the model checking problem for the linear time u-calculus as follows:
given a Petri net X and a closed formula ¢, determine if X satisfies ¢ or not. We
prove in this section that this problem is decidable. The decision procedure is
based on an automata-theoretic characterisation of the logic [16]. We show that
there exist two automata A4, B4 that accept the finite and infinite words of
[|=8ll, respectively. It follows that L satisfies ¢ if and only if L(X) N L(A-4) = 0
and L(X) N L(B~4) = 0. To decide these two properties, we construct Petri net
representations of A-4 and B4, and combine them with X in a way similar to
the product of automata; it is then easy to show that the two properties are
equivalent to two decidable properties of Petri nets.

An automaton over an alphabet Act is a fourtuple (Q, qo, 6, F), where Q is
the set of states, go the initial state, 6: Q x Act — Q the transition function and
F the set of final states. Finite and Biichi automata are automata with different
acceptance conditions: a finite automaton A accepts a word w in Act* if the
computation of A on w ends in some final state; a Biichi automaton B accepts
a word w in Act” if the computation of B on w passes infinitely often through
some final state.

Dam provides in [3] a procedure to construct, given a formula ¢ of a different
version of the linear time y-calculus, a Biichi automaton whose language is the
denotation of the formula. Dam’s version has one single next operator O, in-
stead of an operator O, for every action a. Given a finite set V of propositional
variables, the denotation of a formula with free variables in V is a set of words
over the alphabet 2V . The rules defining the denotation of a formula are like the
ones given above for -, A and greatest fixpoints, plus the following rule for the
new next operator:

10¢llv = {7 € Act™ | o € ||g]Iv}

We briefly discuss how to adapt Dam’s construction to our case. Dam’s auto-
maton has P(V) x P(V) as alphabet, where P(V) is the powerset of V. The
automaton is constructed in a compositional way. A word w is accepted by the
automaton if and only if there is an accépting run

(eter)  (afiep)
dgo — @1 —
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such that at the ith point of w all variables in o} hold and no vanable in o
holds.

For our version of the linear time /A’calculus we ‘enrich the alphabet of the
automaton to P(V) x P(V) x (Act U {r}), where 7 ¢ Act. Dam’s construction
can now be easily modified to take this third component of the alphabet into
account. A word w is accepted by the new automaton if and only if there is an
accepting run

(a:’,al_,al) (a;,cx;,aﬁ

q0 q1

such that at the ith point of w all variables in a;" hold, no variable in o] holds,
and the third component of w at this point is a;.

If ¢ is a closed formula, we choose V = @; then, the automaton we obtain has
just ActU {7} as alphabet. The réle of the action 7 is the following: in our case,
the Biichi automaton does not accept exactly ||¢||, because ||¢|| may contain
finite words (for instance, a € ||O,tt|]), while a Biichi automaton only accepts
infinite ones. If ||¢|| contains a finite word w, then the automaton accepts w *.
The action 7 only appears in transitions of the form (g, 7, ¢).

Proposition1.
Let ¢ be a closed formula of the linear time p- calculus over:a a set of actions
Act. There exist a Biichi automaton B with alphabet ActU{7} which accepts
a word w iff w € ||¢|| N Act” or w = w't¥ and v’ € [|¢]| N Act*.

Proof:
Use Dam’s construction with the modifications discussed above. [ ]

It 1s convenient for our analysis to split the automaton B of Proposition
1 into a finite automaton which accepts the finite words of ||¢|| and a Buchl
automaton whlch accepts the infinite ones.

Proposition 2. '
Let ¢ be a closed formula of the hnear time p-calculus over a set of actions
Act. There ezist a finite automaton Ay and a Biichi automaton By, both
with alphabet Act, such that L(Ag) = ||¢|| N Act*, and L(By) = ||¢]|N Act®.

Proof: o
Ay and By are the same automaton (i.e., they différ only in the acceptance
condition), obtained by just removing the transitions of the form (g, 7, ¢) from
8. . [ ]

We now assign to a given automaton a Petri net. Let A = (Q, go, 6, F) be an
automaton over an alphabet Act. The labeled Petri net £4 = (S, T, F, Mo, 1) -
with labels on Act - is defined as follows:

S=Q
" T=6""
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F={(¢,(g,8,97),((g,0,4),4") | (g,a,¢) €6}
Mo(g) ={1 if g = go

0 otherwise - -
L I’((q,a,‘q’)) =a

It follows immediately from this construction that the finite automaton A4
accepts a word o if and only if o is an occurrence sequence of the Petri net T4#
leading to a marking in which some final state is marked (recall that the places
of ¢ are the states of A). Similarly, By accepts a word o if and only if o is
an infinite occurrence sequence such that infinitely many intermediate markings
along the sequence put one token in some of the final states of By. If T'r is the
set of input transitions of these states, then an equivalent condition is that &
contains infinitely many occurrences of some transition of T'r.

Let 21 (S1,T1, Fl, 11, MOI) 22 = (Sg, Tz, Fz, 12, Moz) be two labelled Petri
nets with disjoint sets of nodes. The labelled Petri net &) x Zy = (S, T, F,1, Mo)
is defined as follows:

S=5U8;
T = {{t1,t2} | t1 € Ty Aty € Ty Aly(t1) = lz(t2)}
% P =(ExTIN(s {tit2}) | (5,11) € PV (s,22) € Fy}

"y (S X T) n {({tl,tz} s) l (ti,s) EFLV (tz,s) € Fz}
Mpui(s) ifs€ S,
Mo(s) {Mozgsg ifseS;

I({t1,t2}) = h(t1)

Observe that this product operation is very similar to the ‘usual product of
automata.

Every marking M of X; x X, projects onto a marking M; of X; and a
marking M; of Y5; moreover, these two projections determine M. Making use
of this property, we denote M = (My, M3). So, in particular, My = (Mo, Mo2).

The following lemma is an immediate consequence of the definitions and the
occurrence rule for Petri nets.

Lemma 3.
(My, M)~ (M], M3) iff My —— M, and My —— M. (where My, M] are
markings of X1 and M, M; markings of o3)

Proof: :
(=): Let {t1,u1} {tg,u2} . be the sequence of transitions of Xy x Xy under-
lying o. Then, ¢ t2... and u; uy ... are sequences of transitions underlymg the
occurrence sequence ¢ in Xj and 2‘2, respectively.

(«): Similar to (=). ]

We can now reduce L(Z)NL(By) # 0 to a property of the Petri net £ x Z5¢.
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Lemma4.
L(Z) N L(Bg) # 0 1ff Z x B¢ has an occurrence sequence which contains
wnfinitely many occurrences of some transition {t,u}, where u € Tr.

Proof:

(=): Let ¢ be a word of L(X) N L(B¢) Then o is the sequence of labels of
two occurrence sequences in X' and B ¢; moreover, ¢ contains mﬁmtely many
occurrences of some transition u of T_r By Lemma 3, o is the sequence, of labels
of an occurrence sequence in £ x £, in which transitions of the form {t,u}
occur infinitely often.

(<): Let (Mg, Mo2) — be an infinite occurrence sequence of X' x L4 which
contains infinitely many occurrences of of some transition {¢,u}, where u € T;-

By Lemma 3, Mys - is an occurrence sequence of ZB¢ . Let Mps =% M, =

Mz = ... be the full representation of My, 2. By the definition of 254 each
marking M.- puts one token in exactly one place of £2¢ and no tokens in the
rest. So each marking M; is univoquely associated to a state of By, and the whole
sequence to a computation. The state associated to the markings succeeding an
occurrence of {t,u} is a final state of B,; so B, accepts 0. u

The condition on ¥ x B¢ of Lemma 4 was shown to be decidable by Jantzen
and Valk [4]. Yen shows in [17] that it is decidable within exponential space.

Lemma 5. [17]
Let X be a Petri net with n nodes, and let Ty be a subset of transitions
of L. It can be decided in O(2°™ ") space, for some constant c, if some
infinile occurrence sequence of X contains infinitely many occurrences of
some transition of Ty. [ ]

Proof:

There exists such an infinite occurrence sequence iff there exists a finite occur-
rence sequence My —% M; 22 M3 such that M; < M, and o contains some
occurrence of a transition of Ty (then M; enables the sequence o4 ). This can
be expressed as a formula on paths.of Petri nets which belongs to the class of
formulas defined by Yen in [17]. Yen shows that any of these formulas can be
decided using the space indicated in the lemma. »

L(Z)n L(A¢) 96 0 can also be_reducéd to é, suitable prbl.)erty;of 5 x DA

Lemma 6.
L(Z) 0 L(Ag) # O iff there ezists a reachable dead marking of)L’ X Z’A"
which puts one token in some final state of Ag. : : ;

Proof:

(=): Let o be a word of L(Z)NL(Ay). Then Mo = M1 in ¥ and Mys -5 M,
in Z4¢. moreover, M; is a dead markmg of X¥','and M; puts a token in some final
state of Ag. By Lemma 3, (Mo1, Moz) — (M1, M>) is. an occurrence. sequence
of & xASA" Since ‘M is a dead marking of X, (M;, M5) is a dead marking of
D x X4
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(<): Let (Mo, Mys) - (M1, M3) be an occurrence sequence of X such that
(M1, M3) is a dead marking, and M, puts a token in some final state of Ag.
By Lemma 3, Mgs —— M, is an occurrence sequence of ZA"’, and therefore
S L(A¢).

It remains to prove that o belongs to the language of X, i.e., that My; — M,
is a maximal occurrence sequence of X.

Assume this is not the case. Then there exists an occurrence sequence Mg; —2»
M; % M. Let t be the transition underlying the occurrence of a. By the defin-
ition of Ay, a belongs to the alphabet of Ay, and therefore to the alphabet of
Z44 as well. So Z4¢ contains a transition (¢,a,q’), where ¢ is the final state
marked at My. This transition is enabled at M,. By Lemma 3, {t,(g,a,¢")} is
enabled at (M, M), which contradicts that (M7, M>) is a dead marking. ®

The existence of the dead marking of lemma 6 can be decided by solving
an exponential number of instances of the submarking reachability problem [5].
Given a net with a set of places S, a submarking of the net is a partial mapping
from S onto IN. The submarking reachability problem is the problem of decid-
ing, given a Petri net & = (N, Mp) and a submarking P of N, if some reachable
marking coincides with P on all the places where P is defined. The submark-
ing reachability problem is reducible (in polynomial time) to the reachability
problem [5].

Lemma 7.
Let X' be a Petri net, and let Sy be a subset of places of X. It is decidable if
some dead marking of X' puts a token on some place of Sy.

Proof:

If M is a dead marking, then for every transition ¢ some input place of ¢ is
unmarked at M. The set of submarkings which specify that, for every transition
t, some input place of t is unmarked, and moreover that some place of S contains
one token, is finite: it contains at most |S|'T! . |Sp| elements, where S, T are the
sets of places and transitions of the net. The property of the lemma can then be
decided by solving the submarking reachability problem for these sets. [ |

The complexity of the reachability problem is still open. The most efficient
algorithm is not primitive recursive, while the best known lower bound is expo-
nential space [11]. If exponential space suffices, then the complexities of deciding
L(Z)N L(Bg) = ® and L(X) N L(Ag) = 0 are similar. Otherwise, deciding the
second property is more involved.

Theorem 8.
Let X be a labelled Petri net, and let ¢ be a closed formula of the linear time
p-calculus. It is decidable if X satisfies ¢.

Proof: ,
X satisfies ¢ iff L(X) C [|4|], or, by the semantics of negation, iff L(Z)N||-¢|| = 0.
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By Proposition 2, L(Z)N||—¢|| = 0 iff L(X)NL(A-¢) = @ and L(Z)NL(B~4) = 0.
Use then Lemmas 4, 5, 6 and 7. [ |

5 Adding Atomic Sentences

It is well known that Petri nets have less computing power than Turing machines.
In particular, it is impossible to construct a Petri net model of a counter. Crudely
speaking, the reason is that Petri nets cannot ‘test for zero’. This means that it
is not possible in general to add new places and transitions to a given Petri net
having a distinguished place s, in such a way that (1) the behaviour of the old
net is not disturbed, and (2) one of the new transitions is enabled exactly when
s is not marked. If Petri nets are enriched with inhibitor arcs, which allow to
‘test for zero’, they become Turing powerful [14].

Instead of enriching Petri nets, we can enrich the linear time p-calculus,
and allow it to ‘test for zero’: it suffices to supplement the logic with atomic
sentences of the form s = 0, meaning ‘the place s contains no tokens at the
current marking’. We show that this addition makes the model checking problem
undecidable, even for formulas with one single fixpoint and for a small class of
unlabelled Petri nets. The proof is by reduction from the halting problem for
register machines; it is a modification of Bradfield’s construction in [1].

Let us start by giving the semantics of the extended logic. We interpret the
sentence s = 0 on Petri nets ¥ = (N, Mp) having a place s. We then extend
valuations in the following way:

V(s =0) = {o € L((N,M)) | M(s) = 0}
A register machine R is a tuple

({qo’ . ')QH+1}7 {RI: e 'aRm}) {601 B '16"})

where R; are the registers, ¢; are the states with go being the initial state and
gn+1 the unique halting state, and §; is the transition rule for state ¢; (0 < ¢ < n):
&; is either (1) ‘R; := R; +1; goto ¢’ for some j, k, or (2) ‘if R; = 0’ then goto
qx else (R; := R; —1; goto qz/)’ for some j, k, k'. We denote the set of transition
rules of the first and second kind by A; and Aj, respectively. The register R;
used by §; is denoted by reg(6;).

The halting problem for register machines is defined thus: given a register
machine R and a set vy,..., v, of nonnegative integers, to decide if the compu-
tation of R with the registers initialised to v1,..., v, ever reaches the halting
state. This problem is known to be undecidable [13], even for machines with only
two registers.

We define an unlabelled net Nz as follows: the places of Nz are

qo,...,qn,Rl,...,Rm.

For every register R; the net contains two transitions inc(R;), dec(R;), such

that *inc(R;) = dec(R;) = 0 and inc(R;)* = *dec(R;) = {R;}. The rest of the
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transitions and the flow relation are determined by the §;: if §; € Ay, then there
is a transition &7 with *8F = {¢;} and & * = {gx}; and if 6; € Ao, then there are
transitions 62 and 6, such that *6) = *6; = {¢:}, 69° = {qx} and 67° = {qr'}.
Finally, there is a transition halt, such that *halt = {gn41} and halt* = 0.

Observe that every transition of Nz has at most one input place and at most
one output place.

If we put vy, ..., vy, tokens in the places Ry, ..., Ry of Nz, and one token in
the place go, then an occurrence sequence of the Petri net so obtained simulates
the computation of R on the initial values vy, ..., vn. It is namely the sequence
in which an occurrence of 8 (6;) is always followed by the occurrence of the
transition inc(reg(6;) (dec(reg(é;)), and in which a transition 6 occurs only at
markings in which the place reg(é;) contains no tokens. There exist, however,
many other occurrence sequences which do not correspond to any computation.

Define the formula halt(R) as:

pZ. Opan tt
\/ OajoinC(reg(i))Z
§:€4,
\V  (reg(8)=0 A 0p2) V Os-Odccregir)Z
8;€A2

Theorem 9.
Let R be a register machine, and let vy,..., v, be initial values for the
registers of R. Let ¥z = (Nr, M) be a Petri net, where M 1is the marking
that puts v; tokens on the place R; and one token on the place qo. R halts
for these initial values iff Zr does not satisfy —halt(R).

Proof:
Yr satisfies —halt(R) iff L(Zg) C ||-halt(R)|| iff L(ZR) N ||halt(R)|| = 0. Let
o be a sequence of [|halt(R)|. It follows from the semantics of the linear time

p-calculus that ¢ = o1 ... 0% halt, where every o; is of the form 617" inc(reg(6;)),
0

67 dec(reg(8;)) or 67. Moreover, whenever we have M 2 M, along the oc-
currence sequence corresponding to o, M;(reg(6;)) = 0. Such an ocurrence se-
quence simulates a halting computation of the register machine. Conversely, from
a halting computation of the register machine we can easily obtain a sequence
of hal{(R). So L(Zr) N||halt(R)|| # @ iff R halts with input vi,...,vm.. [

As mentioned above, the transitions of the Petri nets derived from register
machines have at most one input place and at most one output place. In partic-
ular, they are Petri net representations of Basic Parallel Processes, a subset of
CCS [2].

It seems difficult to find an interesting class of Petri nets with infinite state
spaces, and properly included in the class derived from register machines. Since
the formula halt(R) is also rather simple, this undecidability result seems to
determine the decidability border rather neatly.
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6 Branching Time Logics

The modal p-calculus, has the same syntax as the linear time p-calculus (al-
though O,¢ is usually replaced by (a)¢), but is interpreted on labelled transition
systems. Let 7 = (S, —4¢ Act) be a labelled transition system. Given a valu-
ation V that assigns to each variable a subset of S, the denotation of a formula
is defined by the following rules:

121l = v(2)
gy = S Il
61 A dally = llésllv 0 igally
la)lly = {s €5 |35’ € Sis =2 5/ A6’ € ||¢||v}

IvZ.éllv = A C STAC lidllviasz}

As in the case of the linear time p-calculus, the denotation of a closed formula
is independent of the valuation.

Given a labelled Petri net ¥ = (N, Mp), the transition system associated
to X, denoted by 7(Z), has the set of reachable markings as states; there is a
transition labelled by a between two markings M;, M, if and only if My -+ M.
We say that X satisfies a formula ¢ if M, € ||¢||v.

It is undecidable if a Petri net satisfies a formula. In order to prove it, it suf-
fices to proceed as for the linear time p-calculus, but change in the formula
halt(R) the atomic sentence reg(6;) = 0 into the formula —(dec(reg(5;)))tt.
Observe that [|(dec(reg(6;)))tt|| are the markings which enable the transition
dec(reg(é;)), which are exactly the markings that put no tokens on reg(§;). So,
in fact, in the modal p-calculus we can ‘test for zero’ without having to add
atomic sentences.

In spite of its simplicity, this undecidability result has a consequence which
may be a little bit surprising. For the class of Basic Parallel Processes (BPPs),
bisimulation equivalence has been shown to be decidable [2]; moreover, since
BPPs are image-finite, two Basic Parallel Processes are bisimilar if and only if
they satisfy the same properties of the modal u-calculus. So it is decidable if
two BPPs satisfy the same properties. However, the model checking problem is
undecidable.

Since the p-calculus.is known to be an extremely powerful logic, it could
be expected to find some weaker but interesting, decidable logic. Unfortunately,
there is little hope of obtaining such a result: we now show that one of the weakest
non-trivial branching time logics is still undecidable. It extends propositional
logic with an operator ¢, for each action a of the set Act. The syntax is:

¢ = 1| ~¢ | 41 Ada ] Out

Formulas are interpreted on a transition system 7 = (S, ——4c.:). Define

==> as the relation (Use act —b>)* —. The denotation of a formula ¢ is a set
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of states ||4|| defined according to the following rules:

Jtt|=8
lI-é|=3S—li4ll
61 A dall =[xl O | g2|
loadl| = {s € S| 3s' € S.s =2 5" A" € |9}

(see [1] for an embedding of this logic in the modal p-calculus)

When interpreted on Petri nets, a marking satisfies ©,¢ if it enables some
sequence o a, whose occurrence leads to a marking which satisfies ¢. We use
the abbreviation [J; = —04. A marking M satisfies-[J,;¢ if every sequence o a
enabled:-at M leads to a marking satisfying ¢. _

We prove undecidability by a reduction from the containment problem. An
instance of the problem consists of two Petri nets Xy, X» with the same number
of places, and a bijection f between the sets of places of ) and Tj. f can be
extended to a bijection between markings in the obvious way. The question to
decide is whether for every reachable marking M of T, f(M ) is a reachable
marking of ,. Rabin showed that this problem is undecxdable the proof can be
found in [5): '

Let Xy, X7 and f be an instance of the containment problem, and let S;, S,
be the sets of places of £, ;. Assume also, without loss of generality, that the
sets of nodes of Xy and X, are disjoint. We construct an unlabelled Petri net
X = (N, My) in several stages. At each stage we add some places and transitions.
For transitions we use the notation X — Y, meaning that the transition ¢ has
the sets X and Y of places as preset and postset, respectively (the flow relation
is thus specified at the same time as the set of transitions). To give a transition
X —'Y the name ¢, we write t: X — Y.

Add 21 U X,.

Add three.places 4, B, C, and two transitions t4p: {A}L S {B}usS
and tpc:{B} U S; — {C} U S3. Put one token on A, and no tokens on B
and C. .

For every place s of Xy, add a transition {s, f(s),C} — {C}.

For every place - added so fa.r with the éxceptmn of G add a transition

{s}—{s}.

Every marking M of X projects onto a marking M; of X, a marking M,
of X5, and a marking M3 of the three places A, B and C; moreover, these
three projections determine M. Making use of this property, we write M =
(My, My, M3); also, we write M3 as a string of three numbers representing the
number of tokens in A, B, and C. Finally, the null marking, i.e., the marking
that puts no token in any place, is denoted by 0

The following temma follows easily from the definition of 2.
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Lemma 10.
If (Mm,Mog,IOO) — (M1, M>5,001) is an occurrence sequence of X, then
there exist sequences o1, 02;03 such that 0 = o, t4p0os tpc 03. n

We can now characterise the ‘yes’ instances of the conta.lnment problem in
terms of occurrence sequences of X.

Lemmall. . o : ~
2y, Yo, f is a ‘yes insiance of the containment problem iff every occurrence

sequence (Moi,Mog,IOO) (Ml,Mog,OIO) ofE can be ez’tended to a
mazimal occurrence sequence (M(n,Moz, 100) il (0,0,001).

Proof:
(=): M, is a reachable marking of X . Since M; is reachable in 5, as well, there
exists a sequence oy tgc such that

(My, Moz, 010) 2225 (M, My, 001)

Let 03 be a sequence which contains each transition of the form {s, f(s),C} —
{C} M(s) times, and no occurrence of any other transition. We then have
(M1, My,001) =% (0,0,001). By the definition of X, no transition is enabled at
the marking (0, 0,001), and therefore

(Mo, Mo, 100) 22724222 (4 0, 001)
is maximal.
(«=): Let M; be a reachable marking of Xy. Then, we have

(M01, Moz, 100) (M1, Moz, 100) 148 (Ml,Moz, 010)

for some sequence o, . So there exists a sequence r such that

(Moy, Moz, 010) 227 (0,0, 001)

is a maximal occurrence sequence. By Lemma 10, 7 = o3 tpc o3 for some se-
quences o3 and 3. Let

(Ml, Mo, 010) 72ie¢ (M, M3, 010) = (0,0, 100)
We show M| = = M, which proves that M, is reachable in X.
Since o3 occurs after tap has occurred, no transition of X occurs in o3. So
Ml = M, 1-
Since o3 occurs after tpc, only transitions of the form {s} — {s} for some place
s can occur in o3. Since these transitions remove one token from s and one from
f(s), we have My — 0 = M; — 0. So M{ = M,. : ]

To finish the undecidability proof, it suffices to encode the characterisation
of Lemma 11 into the temporal logic defined above. Define the operator ¢ as
Vae et Ca- It follows from the semantics of the logic that ©¢ holds at a marking
M if and only if some succesor marking M’, M’ # M satisfies ¢. In particular,
¢ it holds at a marking M if and only if M has some successor, i.e., it is not
dead.
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Theorem 12.
21, Lo, f is a ‘yes’ instance of the containment problem iff X satisfies the
formula
D ,ABO =0 1.
Proof:

=0t holds at a marking M iff M enables no transition. Therefore, the formula of
the theorem states that every occurrence sequence oy t4p of X can be extended
to an occurrence sequence oy t4p 7 leading to a marking at which no transition
of X is enabled. By the definition of X, this marking can only be (0,0,001).
Apply then Lemma 11. |

7 Conclusions

We have examined the decidability of the model checking problem for several
p-calculi and Petri nets. The decidability border turns out to be rather neat: if
we consider p-calculi without atomic sentences, the whole linear time p-calculus
is decidable, while a very weak branching time subset of the modal p-calculus
1s undecidable. The addition of very simple atomic sentences makes the linear
time p-calculus undecidable, even for formulas with one fixpoint and Petri nets
in which every transition has at most one input and at most one output place.
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