Decidability of Model Checking for Infinite-State
Concurrent Systems *

Javier Esparza
Institut fur Informatik
Technische Universitat Miunchen

Arcisstr. 21 D-80290 Munchen, Germany

Abstract

We study the decidability of the model checking problem for linear and branching
time logics, and two models of concurrent computation, namely Petri nets and Basic
Parallel Processes.

1 Introduction

Most techniques for the verification of concurrent systems proceed by an exhaustive
traversal of the state space. Therefore, they are inherently incapable of considering
systems with infinitely many states.

Recently, some new methods have been developed in order to at least palliate this
problem. Using them, several verification problems for some restricted infinite-state
models have been shown to be decidable. These results can be classified into those
showing the decidability of equivalence relations [8, 9, 24, 26], and those showing the
decidability of model checking for different modal and temporal logics. In this paper,
we contribute to this second group.

The model checking problem has been studied so far for three infinite-state models:
context-free processes, pushdown processes, and Petri nets. The first two are mod-
els of sequential computation, while the latter explicitely models concurrency. The
modal mu-calculus, the most powerful of the modal and temporal logics commonly
used for verification, is known to be decidable for context-free processes and push-
down automata. The proof is a complicated reduction to the validity problem for 525
(monadic second order logic of two successors) [32, 13]. Simpler algorithms have been
given for the alternation-free fragment of the mu-calculus [5, 21]. These results have
been extended to context-free like processes in [22], and to pushdown processes in [6].

The model checking problem for Petri nets was first studied by Howell and Rosier
[19], who observed that a certain linear time temporal logic is undecidable even for
conflict-free Petri nets, a fairly small class. This logic is interpreted on the infinite
occurrence sequences of the net, and consists of atomic sentences, the usual boolean
connectives, and the operator F' (eventually). The atomic sentences are of type ge(s, c)
(with intended meaning ‘at the current marking, the number of tokens on place s is

*This work was mostly done while the author was at the University of Edinburgh.

greater than or equal to ¢’) or of type fi(t) (with intended meaning ‘¢ is the next
transition in the sequence’). A Petri net is said to satisfy a formula if it has an infinite
run that satisfies it.

In a subsequent paper [20], Howell, Rosier and Yen showed that the model checking
problem for the positive fragment of this logic (in which negations are only applied to
atomic sentences) can be reduced to the reachability problem, and is thus decidable.
Janc¢ar showed in [23] that the positive fragment with GF (infinitely often) as operator,
instead of F, is decidable as well.

Although some of these results are very deep, they are also rather fragmentary.
The logics have been chosen in a rather ad-hoc way, because the main interest of the
authors has been to study particular problems (the main goal of [20, 23] is to study
fairness problems), and not the logics themselves. In particular, branching time logics
have received very little attention. Also, the logics of [19, 20, 23] contain an ad-hoc set
of atomic sentences, and the impact on decidability of this or other particular choice
has not been cleared up.

The goal of this paper is to offer a more systematic and global picture of the
decidability issues concerning model checking infinite-state concurrent models for both
linear time and branching time logics. For that, we recall some results recently obtained
by the author [15], and complement them with new ones.

We consider interleaving semantics and two different models: labelled Petri nets,
called just Petri nets in the rest of this section, and Basic Parallel Processes (BPPs) [7,
8]. Petri nets are a rather powerful model, which can be used to represent and analyse
a large variety of systems. No natural model of concurrent computation lying strictly
between Petri nets and Turing machines seems to have been proposed so far (context
sensitive grammars lie strictly between Petri nets and Turing Machines [33], but they
are not used as a model for concurrency). Therefore, decidability results for Petri
nets are very significant, because they cannot be easily generalized, but undecidability
results are not very conclusive, because a problem undecidable for arbitrary Petri nets
could be decidable for relevant net classes. That is why we also study BPPs, which (in
interleaving semantics) can be seen as a small subclass of Petri nets. BPPs are a rather
weak process algebra, in which processes are built out of action prefix, nondeterministic
choice, parallel composition without communication, and recursion. It can be argued
that any reasonable infinite-state model of concurrency will have more computing power
than BPPs. Therefore, undecidability results for BPPs should be expected to be very
significant.

The paper is organised as follows. In the first section, we define Petri nets and
BPPs. Section 2 recalls the results of [15] on linear time logics. Section 3 deals with
branching time logics. In these two sections we consider action-based logics without
atomic sentences. Section 4 investigates how the results change when atomic sentences

are added.

2 Models: notations and basic definitions

We introduce Petri nets and Basic Parallel Processes, the two models we study. Before
that, we need a few notions about transition systems.

2.1 Transition systems

A (labelled) transition system T over a set of actions Act consists of a set of states S
and a relation —=C S x S for each action a € Act. A path of T is either an infinite
sequence Sq S5y 25 s5... or a finite sequence 3q B T s, such that s, has
No SUCCESSors.

A transition system is rooted if it has a distinguished initial state. A run of a rooted
transition system 7 is a path which starts at the initial state; a state is reachable if
it appears in some run. The language of 7 is the set of sequences of actions obtained
by dropping the states in the runs of 7 (so the language may contain both finite and
infinite words).

In some proofs we have to consider the states of a transition system up to strong
bisimulation. A relation R C § X § is a strong bisimulation if whenever s; R sy then,
for every a € Act,

: @ ! @ / [! !
o if 53 — s} then sy — s, for some s/, with s| R s);
. a a .
o if s9 — s, then s; — s} for some s| with s}, R s.

Two states s; and sy are strongly bisimilar, denoted by s; ~ sq, if there is a strong
bisimulation R such that s; R s;. This definition can be extended to states of different
transition systems, by putting them ‘side by side’, and considering them as one single
transition system.

2.2 Petri Nets
A labelled net N is a fourtuple (5,7, W,[), where

e S and T are two disjoint, finite sets,
o W:i(SxT)u(T xS)— IN is a weight function, and

e [is a surjective mapping T" — Act, where Act is a set of actions (surjectivity is
assumed for convenience).

The elements of S and T are called places and transitions, respectively. Places and
transitions are generically called nodes.

A marking of N is a mapping M:S5 — IN. A marking M enables a transition ¢
if M(s) > W(s,t) for every place s. If t is enabled at M, then it can occur, and its
occurrence leads to the successor marking M’ which is defined for every place s by

M'(s)= M(s)+ > (W(t,s)— W(s,t))
teT

A marking M is called dead if it enables no transition of N.

A (labelled) Petri net is a pair ¥ = (N, Mg) where N is a labelled net and My is a
marking of N. The rooted transition system of ¥ has all the markings of N as states
and My as initial state. For each action a € Act, we define M; —— M, if M, enables
some transition ¢ labelled by @, and the marking reached by the occurrence of ¢ is Mj.
The language of a Petri net is the language of its transition system.

Unlabelled Petri nets are obtained from labelled ones by dropping the labelling
function. Equivalently, one can think of unlabelled Petri nets as labelled Petri nets in
which the labelling function assigns to a transition its own name. With this convention,
the definition of transition system and language of a Petri net carries over to unlabelled
Petri nets.

2.3 Basic and Very Basic Parallel Processes

The class of Basic Parallel Process (BPP) expressions is defined by the following ab-
stract syntax [7, 8]:

E == 0 (inaction)
| X (process variable)
| a-FE (action prefix)
| FE+ FE (choice)
| EIE (merge)

where a belongs to a set Act of actions. The BPP expressions containing no occurrence
of the choice operator + are called Very Basic Parallel Process (VBPP) expressions.
A BPP is a family of recursive equations

(X, ¥ g |1<i<n

where the X; are distinct and the F; are BPP expressions at most containing the

variables {X1,..., X, }. We further assume that every variable occurrence in the ex-

pressions F; is guarded, that is, appears within the scope of an action prefix. The

variable X7 is singled out as the leading variable and X, def F1 is called the leading

equation.

The rooted transition system of a BPP {X; def E; |1 <7< n} has the BPP expres-

sions over variables X1,..., X, as states; the leading variable is the initial state. For
every a € Act, the transition relation —— is the least relation satisfying the following
rules:

a E-Z F E-Z F
a-F — F = =
EF+F—-—F' EHF——>E’HF
_a ! _a / _a /
F a—>E (Xd:efE) F —>aF F a—>F
X — F FE+FP—=F EHF——>EHF’

. . . K.
For a subset of actions K, the relation — is defined as User —-

A BPP is in normal form if every expression F; on the right hand side of an equation
is of the form ay - a7 + ...+ @, - @, where for each ¢ the expression a; is a merge of
process variables. It is shown in [7] that every BBP is strongly bisimilar to a BPP in
normal form (i.e., the leading variables are strongly bisimilar).

Every BPP in normal form can be translated into a labelled Petri net. The transla-
tion is graphically illustrated by means of an example in Figure 1. The net has a place
for each variable X;. For each subexpression a; - a; in the defining equation of F;, a
transition is added having the place X; in its preset, and the variables that appear in
a; in its postset. If a variable appears n times in a;, then the arc leading to it is given
weight n. Finally, a token is put on the place corresponding to the leading variable.
It is easy to see that there exists an isomorphism between the reachable parts of the
transition systems of a BPP in normal form and its associated Petri net.

Also, it follows easily from this translation that:

e the transitions of Petri nets corresponding to BPPs in normal form have exactly
one input place,

e the places of VBPPs in normal form have at most one output transition, and

o all the arcs leading from places to transitions have weight 1.

X=a(X||Y)+b(Y[Y)
Y =b(X]Y)

Fig. 1 A BPP and its corresponding Petri net

3 Linear Time Logics

The contents of this section are taken from [15]. We show that the model checking
problem for Petri nets and closed formulas of the linear time mu-calculus is decidable.
The linear time mu-calculus is a powerful linear time logic, in which all the usual linear
time operators like ‘always’, ‘eventually’, and ‘until’ can be expressed. We describe it
briefly, and refer the reader to [11] for more information.

The linear time mu-calculus has the following syntax

pu=7Z || oNP|(a)p|vZ.g

where a ranges over a set Act of actions, and Z over a set of propositional variables.
Free and bound occurrences of variables are defined as usual. A formula is closed if no
variable occurs free in it.

Formulas are built out of this grammar, subject to the monotonicity condition that
all free occurrences of a variable Z lie in the scope of an even number of negations.

Let Act*, Act” be the set of finite and infinite words on Act, and let Act™ =
Act*U Act”. A wvaluation V of the logic assigns to each variable Z a set of words V(Z)
in Act®™. We denote by V[W/Z] the valuation V' which agrees with V except on 7,
where V/(Z) = W. Given a word 0 = a7 a3 ... on Act™, o(1) denotes the first action
of 0,i.e., a;, and o' denotes the word a; as.... With these notations, the denotation
[|#||v of a formula ¢ is the set of words of Act™ inductively defined by the following

rules:
1Zlly = V(2)
I=olly = Act™ — ¢y
oAby = llollv n[l#lly
[(@)elly = {oedct®|a(l)=a A o' €|glv}

lvZ.olly = U{W C Act™ | W C [|6|lyw 7}

Therefore, ||[vZ.¢||y is the greatest fixpoint of the function which assigns to a set
W of words the set |||y z-

The denotation of a closed formula ¢ is independent of the valuation; we then use
the symbol ||¢||.

A rooted transition system 7 satisfies a closed formula ¢ of the linear time mu-
calculus if every run of 7 satisfies ¢. Accordingly, a Petri net ¥ satisfies ¢ if L(¥) C
[|#||, where L(X) denotes the language of its transition system. Notice that, with this
definition of satisfaction, it can be the case that ¥ satisfies neither a formula nor its
negation.

According to our definition, the denotation of a formula is a set of finite and infinite
words. This choice is due to the fact that we wish to define satisfaction as L(X) C ||¢||,
and we wish to define L(Y) as a set of finite and infinite words, in order to account
for deadlock properties. In particular, with this definition we can express deadlock-
freedom as

vZ. \/ (a)Z
aEAct
Sometimes the denotation of a formula is defined as a set of only infinite words, as for
instance in [11].

We define the model checking problem for the linear time mu-calculus and Petri
nets as follows: given a Petri net ¥ and a closed formula ¢, determine if 3 satisfies ¢
or not. This problem is proved to be decidable in [15]. Here we just sketch the proof.
The decision procedure is based on an automata-theoretic characterisation of the logic
[35]. It is shown in [11] that, given a closed formula ¢, there exists a finite automaton
A4 and a Biichi automaton B-4 that accept the finite and infinite words of ||-¢||,
respectively. Tt is then easy to see that ¥ satisfies ¢ if and only if L(X) N L(A-y) =0
and L(X)N L(B-y) = 0.

In order to decide these two properties, two new Petri nets ¥ x $4-¢ and ¥ x ¥B-¢
are constructed, having the properties L(X x Y¥4-¢) = L[(X) N L(¥4-¢), and L(X x
$B-¢) = L(Z) N L(XB-¢). Then, the two following results are proved:

o L(X)N L(By) # 0 holds if and only if the Petri net ¥ x %8¢ has a run which
contains infinitely many occurrences of transitions of a set T". The set T can be
efficiently computed from X and By.

o L(X)NL(Ay) # 0if and only if the Petri net ¥ x X4¢ has a reachable dead marking
which marks some place of a set §. The set § can be efficiently computed from
Y and By.

The existence of the run was shown to be decidable by Jantzen and Valk [25]. Yen
shows in [36] that it is decidable within exponential space.

The existence of the dead marking can be decided by solving an exponential number
of instances of the reachability problem. The reachability problem is decidable [27, 30]
and known to require exponential space [29], but none of the algorithms known so far
is primitive recursive.

4 Branching Time Logics

The decidability border changes rather drastically when we move from linear time to
branching time logics. We have seen that a powerful linear time logic like the linear
time mu-calculus is decidable for a powerful model like Petri nets. In this section we
shall see that a weak branching time logic ise undecidable even for VBPPs, a very weak
model of computation.

For a smooth approach to the result, we shall first prove that the modal mu-
calculus is undecidable for VBPPs. We introduce the modal mu-calculus very briefly,
more details can be found in [34].

4.1 The modal mu-calculus

The modal mu-calculus has the same syntax as the linear time mu-calculus, just
substituting (a)¢ for (a)¢. It is interpreted on labelled transition systems. Let
7 = (S, imeAct) be a labelled transition system. Given a valuation V that assigns
to each variable a subset of states S, the denotation of a formula is a subset of states
defined by the following rules:

1Zlly = V(Z)
1=6lly = S—l4llv
61 A dallv = ll¢ullv 0 ligz]lv
Hayplly = {se€S|3s' €8s s'As €]d|v}
lvZ.olly = (HACS|ACdllvian}

Loosely speaking, a state belongs to ||(a)¢||y if it has some succesor, reachable by
means of an a action, which satisfies ¢. We use the following abbreviations:

true =vZ7.7 $1V g2 = (=1 A =d2)
W76 =-vimd-717) lalé=(a)=0
As in the case of the linear time mu-calculus, the denotation of a closed formula is
independent of the valuation, and then we drop the index v. Observe that ||true|| = S.

A rooted transition system satisfies a closed formula ¢ if the denotation of ¢ contains
the initial state.

The modal mu-calculus has the following property: if two states of a transition
system are strongly bisimilar, then they satisfy exactly the same closed formulas of the
logic.

4.2 TUndecidability of the modal mu-calculus for VBPPs

We prove the undecidability of the model checking problem by means of a reduction
from the halting problem of counter machines [31] (more precisely, to the halting
problem for counter machines whose counters are initialised to 0).

A counter machine M is a tuple

({q07 sy qn+1}7 {Clv e -7CM}7 {607 Ty 6n})

where ¢; are the counters, q; are the states with gg being the initial state and g,41 the
unique halting state, and §; is the transition rule for state ¢; (0 < ¢ < n). The states
are divided into two types. The states of type I have transition rules of the form

c; :=c; +1; goto qx
for some j, k. The states of type II have transition rules of the form
if ¢; = 0 then goto ¢ else (¢; 1= ¢; — 1; goto g/)

for some j, k, k'

A configuration of M is a tuple (¢;, j1,...,Jm), where ¢; is a state, and j1,...,Jm
are natural numbers indicating the contents of the counters. We are interested in
the behaviour of a machine whose counters are initialised to 0. Therefore, we define
the initial configuration as (qo,0,...,0). The computation of M is the sequence of

configurations which starts with the initial configuration and is inductively defined in
the expected way, according to the transition rules. Notice that the computation of
M is unique, because each state has at most one transition rule. We say that M halts
if its computation is finite, or, equivalently, if its computation contains a configuration
with state g,41. It is undecidable if a given counter machine halts [31].

Given a counter machine M, our reduction constructs a VBPP with leading variable
M, and a formula Halt of the modal mu-calculus such that M halts if and only if M
satisfies Halt.

If instead of VBPPs we were considering a Turing-powerful model like CCS, the
problem would be trivial: M would just be a faithful model of the counter machine M,
in which the occurrence of an action halt signals termination, and we would take

Halt = pX. (halt) true V /\ [a] X
acAct\{halt}

which expresses that M eventually performs halt.

However, VBPPs are much less powerful than Turing Machines. The idea of the
reduction is to construct a VBPP which simulates the counter machine in a weak sense:
the VBPP may execute many runs, some of which — the ‘honest’ runs — simulate the
computation of the counter machine, while the rest are ‘dishonest’ runs in which, for
instance, a counter is decreased by 2 instead of by 1. We replace the formula Halt
above by a more complicated formula expressing that a certain honest run eventually
executes halt. Thus, the problem of having a ‘weaker’ simulation is compensated by
a ‘stronger’ formula, and it is still the case that the counter machine halts if and only
if the BPP satisfies the new formula.

A ‘weak’ model of a counter machine. A counter ¢; containing the number
n is modeled by n copies in parallel of a process Cj.
C j d:ef dec e 0

The action decj models decreasing the counter ¢; by 1. Notice that VBPPs cannot
enforce synchronisation between the action decj and a change of state of the counter
machine. In some sense, the formula Halt will be in charge of modelling these synchro-
nisations.

The states of the counter machine are modelled according to their associated in-
struction. A state ¢; of type I is modelled by the processes

sq; ¥ in;i - (SQ; || Qi)
def

Qi = outs-(Qk || Cy)
A state ¢; of type II is modelled by the processes

sq; in;i - (SQ; || Qi)
def

Q; = out;-0

The actions in; and out; model the fact that the counter machine enters and leaves
the state g;, respectively. Notice that VBPPs cannot model the fact that from state
¢; the states g; or ¢, can be reached, because in order to model the choice between gy
and ¢; we need the choice operator.

The halting state ¢,+1 is modelled by the processes

def .
SQn+1 = inpgt - (SQntt || Qntt)
def

Qn+1 = halt-Qpyt
Finally, we define M as follows
sM =" sQq ... | SQnt1
M < sM|| Qo

It follows easily from the operational semantics of BPPs that every reachable state
of M is strongly bisimilar to a unique expression of the form

SU[Qo™ [| -+ || Qupa™* [l € | .o] Cu™
where PF €' p || ... [|P for & > 1, and P° 4 0. TFor instance, the initial state M
—_———
k
is strongly bisimilar to SM || Qo || O] ... || 0. The expressions in which all the
—_——
m4n—1
indices 1g,...,%,41 except one, say %;, are 0, and moreover i; = 1, correspond to the
configurations of the counter machine. The nonzero index indicates which is the state
of the machine, and the indices ji,..., j,, indicate the values of the counters. We say

that the states which are bisimlar to a expression of this form are meaningful.

Let f be the mapping that assigns to each meaningful state the corresponding
configuration of the counter machine. A run M SLE Ay 235 .is honest if it
has a prefix satisfying the following property: the image under f of the subsequence
of meaningful states of the prefix yields the computation of the counter machine M.
Loosely speaking, a honest run of M simulates the computation of the counter machine
M, but if the simulation terminates (with the execution of halt) then it may behave
arbitrarily. It is clear from the definitions that M has honest runs, but not every run of
M is honest.

We now construct a formula of the mu-calculus expressing that a certain honest
run eventually executes halt. For a state ¢; of type I we define the open formula

¢; = (outi) Z
For a state ¢; of type II we define

¢; = [decj]false A (outi) (ink) Z
\
(decj) (outsi) (ing/) Z

This formula expresses that either the action decj is not enabled (which models
that the counter ¢; is empty) and then after the execution of the sequence out; iny,
(which models the transition from the state ¢; to the state g) the formula Z holds, or
after the execution of the sequence decj out; inyg (which models decreasing counter
¢; by 1 and moving from state ¢; to ¢;) the formula Z holds.

Finally, we define

Halt = pZ. (halt) true V \/@
=0

Loosely speaking, a run of M satisfies this formula if and only if it eventually ex-
ecutes the action halt, and the prefix preceeding the first occurrence of halt is the
concatenation of small sequences of actions, each of which satisfies one of the formulas
¢;. Each of these small sequences simulates one step of the counter machine.

Theorem 4.1

The model checking problem for closed formulas of the modal mu-calculus and
VBPPs is undecidable.

Proof: Let M be a counter machine with initially empty counters. The VBPP M
satisfies the formula Halt iff it has a honest run that eventually executes the action
halt. Since honest runs faithfully simulate the computation of M, this is the case iff

M halts.]

Theorem 4.1 may not seem very surprising; the modal mu-calculus is known to be
an extremely powerful logic, and one may expect it to be undecidable even for such
simple processes as VBPPs. However, we will now show that the undecidability result
still holds for a small subset of the modal mu-calculus.

4.3 Unified System of Branching Time

The Unified System of Branching Time (UB) is a logic introduced by Ben-Ari, Manna
and Pnueli [2], where it is given a state-oriented semantics in terms of Kripke structures.
In particular, UB includes a next operator F¢, meaning that ¢ holds at some successor
of the current state. Since BPPs are an action oriented model, we use a version of UB
in which the next operator is relativised: for each action a, we have an operator £(a)¢,
whose meaning is that ¢ holds at some successor reached after performing an a. Also,
we only allow the atomic sentence true, which holds at every state.
After these changes, the syntax of UB is

¢u=true| - | g1 Agy| E(a)p| EF¢ | EGo

UB is a fragment of Computation Tree Logic [10], which in turn can be easily
embedded in the modal mu-calculus (see, for instance, [4]).

We interpret UB formulas on a rooted labelled transition system. We denote that
a state s satisfies a formula ¢ by s |= ¢. The satisfaction relation is inductively defined

as follows:
s |= true always
N iff not s = ¢

sE G ANgy iff sl ¢ and s = ¢y

sk E(a)p iff s s and s’ |= ¢ for some s’ such that

sE EF¢ iff for some path (s1,s2,...) where s =s1,3i > 15, F ¢
sl EGo iff for some path (s1,52,...) where s = 51,Vj > 15; |= ¢

We define the following dual operators:
A(a) = ~F(a)~ AG=-FEF-~ AF =-EG-

A rooted transition system satisfies a formula ¢ if the initial state satisfies ¢. The
model checking problem for a formula ¢ and a BPP or a Petri net consists in deciding
if the initial state of the associated transition system satisfies the formula.

10

In the rest of the section we consider two different fragments of UB, which we denote
by EF and EG. The syntax of EF is obtained from the syntax of UB by removing the
operator KG (and implicitely its dual AF’). So EF can only express properties of the
form ‘always in the future ¢ holds’ (AG¢) or ‘sometime in the future ¢ holds’ (FF¢),
but not properties like ‘eventually in the future ¢ holds’ (AF¢). In [12] this fragment
is called UB™. The syntax of EG is obtained from the syntax of UB by removing the
operator F'F' (and implicitely its dual AG).

We prove the following three results:

¢ The model checking problem for EG and VBPPs is undecidable.
e The model checking problem for EIF and Petri nets is undecidable.

¢ The model checking problem for EF and BPPs is decidable and PSPACE-hard.
Moreover, the model checking problem for EF is decidable for any class of Petri
nets whose set of reachable markings is effectively semilinear (a concept to be

defined).

4.4 TUndecidability of EG for VBPPs

We proceed again by a reduction from the halting problem for counter machines. Given
a counter machine M, we construct a VBPP weak model of M and a formula ¢, of EG
satisfying the following two properties:

(1) there exists a run of M such that all the states reached along it satisfy ¢, and
(2) if all the states reached along a run of M satisfy ¢, then the run is honest.

Let us see that, once M and ¢ have been given, the undecidability result follows
easily. We define the formula

Halt = AF(=¢y vV FE(halt)true)

If M satisfies Halt, then the runs that satisfy ¢ at every state must contain a state
satisfying F/(halt) true. Since such runs exist and are honest by (1) and (2), and
since honest runs faithfully simulate the behaviour of the counter machine, the counter
machine terminates.

Conversely, assume that the counter machine terminates. A run of the model M
either is honest or visits a state which does not satisfy ¢5. In the first case, since the
machine terminates, the run contains a state satisfying F'(halt)true, and therefore it
satisfies Halt. In the second case, the run directly satisfies Halt.

Unfortunately, it is not possible to find the formula ¢; for the weak model of the
counter machine we use for the modal mu-calculus. The essence of the problem is
easier to see in a simpler process P given by

pdéfQHR Qdéfq_.Q R LR
Assume that P is simulating, in a weak sense, a certain system. Assume further that
the honest runs of P are those whose prefixes satisfy |#q—#r| < 1, where #q, #r is the
number of q’s and r’s in the prefix. It is easy to see that no formula ¢; of UB satisfies

the conditions (1) and (2) above. The reason is that, for every run £y 2Lop 22
of P, we have P = Fg = F; = Therefore, all intermediate states satisfy exactly the

same properties, and no formula of EG (or UB) can distinguish between honest and
dishonest runs.

11

The rest of the section is devoted to finding another weak model of a counter
machine for which the formula ¢ exists.
We shall often use formulas of the form FE(a)true. To lighten the notation, we
define
EN(a)= FE(a)true

FEN(a)is read ‘a is enabled’.

The solution. We make use of an idea introduced by Yoram Hirshfeld in [18]. If
we are allowed to split the actions q and r in the definition of the process P above,
things change. Define

PEQR 0= q" 9% q*-q R p1. 2,43 8
and define the honest runs as those satisfying |#q! — #r!| < 1. The following formula
#y, holds for all the states of a run only if it performs the sequence (q! r! q2 r? q% r®)~,
which is honest.

én = (EN@QYHYAEN(YH) v (EN(Q®)AEN(x!) v
(EN(q*)AEN(x?) v (EN(®)AEN(?)) vV

(q

1

2<

(EN(q®)AEN(x®) Vv (EN(q)AEN(r®))

From P, only the actlon q! can occur, because if r! occurs, then a state is reached
which enables q! and r?, and such a state does not satisfy ¢;,. We can then similarly
prove that after q' only r! can occur, and so on. Incidentally, the reader can check
that splitting p and q into two is not enough.

Once the power of splitting has been identified, the rest is straightforward. We

refine our VBPP model in the following way.

A second ‘weak’ model. A counter ¢; is now modelled by

Cj déf dec dec dec -0

A state ¢; of type II is modelled by
def .
SQ: = in;-(Q: || SQy)
Qi def out% -out% . out? -0

In the other equations we replace outi by out% for consistency, but the actions
out; are not split.

For the definition of the formula ¢, is convenient to introduce some notations. First
of all, in order to allow a more compact representation of the formula, we rename the
action halt to outli_H. Now, define

A = {out}, out? out1|0<z<n—|—1}U{dec dec |1<j<m}

(notice that the actions dec% do not belong to A), and let aq,...,a; be actions of A.
Then,
o k k
EN(ay,...,a;) = /\ EN(a;)) A N\ ~E(a;)EN(a;) A /A —EN(a)
; =1 aEA\{al...ak}

12

JE——

In words, FN(aq,...,ax) states that the actions ay,...a; are enabled, no sequence
a; a; is enabled, and all the other actions of A are disabled.

The formula ¢y, is a disjunction of formulas. For each state ¢; of type I and for the
state g,4+1, ¢n contains a disjunct of the form

ﬁ(out%)
For each state ¢; of type II, ¢, contains two disjuncts. The first is
~EN(dec}) A (EN(outl)v
ﬁ’(out%) \%
ﬁ(out%, out}) Vv
ﬁ(out%, outi))

and the second is .
(EN(decjl-) A EN(outl))v

(EN(dec}) A EN(out?)) v

(EN(decjl) A ﬁf(outg, outl,)) Vv
ﬁ’(dec?, out? outi,) v
ﬁ’(dec%, out?, outl,) v
ﬁr(dec?, out?, outi,) v

ﬁ’(decg’, outi,))

It is not difficult to see that there exists a run of M such that all the states it visits
satisfy ¢p. This run simulates the computation of the counter machine and, in case it
terminates, executes the sequence halt = outp41“. We now prove:

Lemma 4.2

If all the states of a run of the model M satisfy the formula ¢y, then the run is
honest.

Proof: Let ' '
Er~ sMfQif[Ci" [... || Ca™

be a meaningful state of a run in which every state satisfies ¢, and assume ¢ # n + 1,
i.e., g; is not the halting state. We show that the next meaningful state of the run is
the one that corresponds to the next configuration in the computation of the counter
machine. More concretely, we examine the actions enabled at F, and check that only
one leads to a state E’ satisfying ¢,. Then we examine the actions enabled at E’,
check again that only one leads to a state satisfying ¢, and so on. We terminate when
a sequence of actions leading to a meaningful state has been determined.

Let ¢; be the counter corresponding to the state ¢; that appears in £. There are
three possible cases: (1) ¢; is of type I; (2) ¢; is of type II, and i; = 0; (3) ¢; is of type

13

II, and 7; > 0. Since the procedure is very repetitive and requires to consider many
different cases, we only deal in detail with the case (2), i.e., the case in which ¢; is of
the form

if ¢; = 0 then goto ¢ else (¢; := ¢; — 1; goto qx/)

for some j,k, k', and E contains no copies of the process C;, i.e. we have i; = 0.

The actions enabled at F are out%, all the in actions, and the dec! actions of
the counters which are nonempty at E (in particular, since i; = 0, the action dec} is
not enabled). For each state F’ reached by the occurrence of one of these actions, we
exhibit either a disjunct of ¢, satisfied by F' (items marked with e), or a feature of
F from which it is easy to deduce that F' does not satisfy any disjunct of ¢ (items
marked with —).

- The in actions lead to states which enable out} and some other out! action, or
the sequence out} out!.

- The dec! actions lead to states which enable out! and one dec? action, but no
other action of A.

e The action out% leads to the state
Ei~ SM|out?.0| Ci | ... Calm
satisfying ﬁEN(dech) A ﬁf(outg).
The actions enabled at F; are out%7 all the in actions, and the dec! actions of the
nonempty counters.

- The action out% leads to a state which enables no out actions.

- The dec! actions lead to states which enable one out? and one dec? action, but
no other action of A.

- The actions iny, [# k, lead to states which enable out% and outi7 but neither
dec} nor any other action of A.

e The action ing leads to the state
Eo~ SM|out? -0 Qx| C1% || ... || Ca'™
satisfying ﬁEN(dech) A ﬁf(outg, outy).

The actions enabled at Fy are out%(7 out%, all the in actions, and the dec! actions
of the nonempty counters.

- The action outll(leads to a state which enables out% and out]?(.

- The in actions lead to states which enable either three different out actions or
the sequence outll{outll(.

- The dec! actions lead to states which enable out?

i out%(, and one dec? action
different from dec j2.

e The action out% leads to the state
Es~ SM|out} -0 Q| Ci] ... | Ca*"

satisfying ﬁEN(dech) A EN(out:ia7 outy).

14

The actions enabled at Fs are out%(, out:i3, all the in actions, and the dec! actions
of the nonempty counters.

- The action out11(leads to a state which enables out:i3 and out%.

- The in actions lead to states which enable either three different out actions or
the sequence outll{outll(.

- The dec! actions lead to states which enable out? outllt, and one dec? action

i’
different from dec]'2 are enabled.

e The action out? leads to the state
Ein sHI| Q]| G2 || ... || G

satisfying ﬁEN(decjl-) A E/Rf(outg, outi).

E4 is a meaningful state. Therefore, the Tun executes out! ini out? out? from

FE. This sequence faithfully simulates the transition from ¢; to g while keeping the
counter c; to 0.

This concludes the discussion of case (2). In cases (1) and (3) we proceed similarly.
The only possible sequence in case (1) is out!. The only possible sequence in case (3)
is

2

outj?L out}1(, dec} outj dec?

J
Again, these sequences faithfully simulate the computation of the counter machine.
|

3

2
outj decj

Theorem 4.3
The model checking problem for EG and VBPPs is undecidable.

Proof: Use the argument presented at the beginning of the section to prove that a
machine M terminates iff the model M satisfies the formula Halt. [

4.5 Undecidability of EF for arbitrary Petri nets.

This result was obtained in [15]. Here we briefly sketch the proof.

We prove undecidability by a reduction from the containment problem. An instance
of the problem is a triple (X1, Xq, f), where ¥, Y3 are two Petri nets having the same
number of places, and f is a bijection between the sets of places of ¥; and ¥,. The
mapping f can be extended to a bijection between markings in the obvious way. The
question to decide is whether for every reachable marking M of ¥y, f(M) is a reachable
marking of ¥5. Rabin showed that this problem is undecidable. A proof can be found
in [24].

A look at this proof shows that one can safely assume that all the transitions of ¥4
and Yy have some input place, and that all their arcs have weight 1. Let (X1, X9, f)
be an instance of this restricted containment problem, and let T;, Ty be the sets of
transtions of 31, Y. Assume without loss of generality that the sets of nodes of ¥
and Y, are disjoint. We construct an unlabelled Petri net Y. The description of X
given in [15] has a mistake which is corrected here.

The construction takes place in several steps. At each step we add new places,
transitions, and arcs. We represent a node n (place or transition) having X and Y as

15

input and output sets of nodes as X — Y. If we wish to give a name n to the node,
we write n: X — Y. All the arcs of ¥ are going to have weight 1, and therefore with
this notation we specify at the same time the set of nodes and the weighting function.
The steps are:

e Add ¥; and Xs.
o Add three places A: Ty — Ty, B: Ty — Ty, C:) — 0.
o Add two transitions t4p: {A} — {B}, tpc:{B} — {C}.
Put one token on A, and no tokens on B and C.
e lor every place s of Y1, add a transition {s, f(s),C} — {C}.

e For every place s added so far, except C, add a transition {s} — {s}.

Y simulates X7 until transition {4 occurs. Then, no transition of ¥ can occur
anymore, and ¥ simulates ¥y until transition {gc occurs. After that, pairs of tokens
may be extracted simultaneously from a place s and its image f(s).

Let Dead be the conjunction of the formulas = EN(¢) for every transition ¢ of X.
A marking satisfies Dead iff it is dead, i.e., it does not enable any transition. It is
proved in [15] that a triple (X1, X9, f) is a ‘yes’ instance of the containment problem
iff 3 satisfies the formula

AG(EIV(tAB) - E(tAB) EF Dead)

This formula states that every sequence of the form M LM, tag M, can be

extended to a sequence My 2 M, tag My —— M5 where Ms is a dead marking. Since
every place s except C' has a transition {s} — {s}, the only dead reachable marking
of X is the one which puts one token on C and no tokens elsewhere. Therefore, 7 is a
sequence which first generates the marking f(M7) in Y9, and then after the occurrence
of tgc ‘empties’ both ¥4 and 5. So, if the formula holds, for every reachable marking
M of ¥4, f(M) is a reachable marking of ¥;. The converse direction is proved similarly.

4.6 Decidability of EF for BPPs and other Petri net
classes

We prove the decidability of the model checking problem for EF and Petri nets whose
reachability relation is effectively semilinear. We first introduce this notion.

The markings of a Petri net with k& places can be represented as vectors of k£ natural
numbers: the 7-th component of the vector indicates the number of tokens on the i-th
place, for some fixed order of the places. We can then identify the set of reachable
markings with a set of vectors.

A set X of elements of IN* is linear if there exist v, vq,...,v, € IN* such that

X={v+avi+ ...+ a0, | a1,...,a, >0}

X is semilinear if it is the union of a finite number of linear sets.

It is easy to see that every semilinear set can be expressed in Presburger arithmetic,
the first order theory of addition (see for instance [3]). That is, given a semilinear
set X C IN*, there exists a formula of Presburger arithmetic with k free integer

variables x1,...,x) which holds for an assignment x7 := nq,...,xy := ng if and only
if (nl,...,nk) € X.

16

The reachability relation of a net N is the set of pairs (M, M’) of markings of N
such that M’ is reachable from M. When the reachability relation of N is semilinear,
we denote by Reachn(M, M) the formula of Presburger arithmetic expressing it (M
and M’ are two vectors of free variables). The reachability relations of a class of Petri
nets are effectively semilinear if they are semilinear sets, and moreover there is an
algorithm which given a net N of the class computes Reachn(M, M').

To prove decidability, we reduce the problem to the problem of determining if a
given formula of Presburger arithmetic is true, which is decidable ([3]).

Theorem 4.4

Let C be a class of nets whose reachability relations are effectively semilinear. The
model checking problem for FF and C is decidable.

Proof: Let ¥ = (N, Mp) be a Petri net of C, and let ¢ be a formula of of EF. We
prove that the set of reachable markings that satisfy ¢ can be expressed by a formula
Fy(M) of Presburger arithmetic, which is moreover effectively computable.

The proof is by structural induction on the syntax of EF:

o ¢ = true. The set of reachable markings that satisfy ¢ is the set of all reachable
markings of ¥, which is effectively semilinear by hypothesis. Take Firne(M) =
Reachy (Mo, M) (i.e., we assign My to M).

o ¢ =-1p. Then Fy(M) = =Fy(M).

® &= ¢1 Az Then Fy(M) = Fy (M) A Fy,(M).

e ¢ = F(a)y. A marking satisfies F(a) if it enables some transition with label
e and the marking reached after executing this transition satisfies 1. All this
can be easily encoded in Presburger arithmetic. For instance, let sq1,...,s; be
the places of ¥, and assume that the input places of a transition ¢ are sy and sg

and its output places s3 and s4. Let M = (mjy,..., my) be the set of variables
corresponding to the places sq,...,s;. Then the formula

mj >0Amsg > 0/\F¢(m1 —1,mp—1,mg+ 1,my+ 1,ms,...,my)
encodes the markings which enable ¢ and, once ¢t occurs, are transformed into
markings satisfying .
o ¢ = EFp. Then Frry(M) = 3IM' (Reachy(M,M') A Fy(M')).

Now, to check if ¥ satisfies a formula ¢, it suffices to decide if the formula Fy(My) is
true.]

It was proved in [14] that the reachability relations of the Petri nets corresponding
to BPPs in normal form are effectively semilinear (this property also holds for persistent
and reversible Petri nets [16]). In this particular case, we can obtain the following lower

bound:

Theorem 4.5

The model checking problem for EF and BPPs is PSPACFE-hard, even if the BPPs
are finite state.

Proof: The proof is a straightforward reduction from the problem of deciding if a
quantified boolean formula without free variables evaluates to ‘true’, which is known

17

to be PSPACE-complete [1]. Consider without loss of generality a quantified boolean
formula with alternating quantifiers

¢ = Ja4Vay3zs - - -3z, H(21 - 20)

where ¢(zq---2,) is a boolean formula in conjunctive normal form. We construct in
polynomial space a BPP with leading variable S and a formula True_® of EF such that
® is true iff S satisfies True_®.

Let ¢(z1,...,2,) = C1 ACg A ... A Cyy, where each C; is a clause. For each clause

C;, define the BPP

def
True_Cj = true_Cj -0

For each variable z;, let C! be the set of clauses of ¢ which contain the literal z;

(i.e., the set of clauses that become true when X; is set to true), and let Cif be the set

of clauses that contain the literal —z; (i.e., the set of clauses that become true when
X is set to false). Define

f . .
X; = assignx;-Truex; + assign_x; -False x;

Truex; = propxi-([¢ ect TrueCy)

Falsex; = propxi - (|| ¢, ¢cs TrueCk)

The process X; can perform an assign_x; action, which models setting z; to true
or to false, respectively. If z; is set to true, then all the clauses that contain the literal
x; are true as well, otherwise the clauses that contain the literal —z; are true. This
propagation of the truth value of z; to the clauses that contain either z; or —z; is
modeled by the action prop_xj.

Finally, define the leading variable of the BPP as follows:

def
ST X ... | Xn

Since none of the equations of this BPP is recursive, S is a finite state process.
Let us now construct the formula True_®. First, we define for every 0 < 7 < n the
following auxiliary formula

Assignedil = FEN(propxi)A...A EN(propxi)A
EN(assignxijyq1)A ... EN(assign xp)
Loosely speaking, Assigned|[i] expresses the following:

(1) the variables z; to z; (or no variable in the case ¢ = 0) have been already set
to true or false, but the values have not been propagated (otherwise the prop
actions would no longer be enabled), and

(2) the variables z;41,..., %, have not been assigned any truth value yet (otherwise
the assign actions would no longer be enabled.

We define the formula True_® as follows:

18

EF(Assigned[1] A
AG(Assigned[2] =
E F(Assigned[3] A

‘ EF(Assigned[n] A
EN(trueCi)A...A EN(trueCy))...)))

This formula expresses that there is a truth value for z; such that for every truth
value for x5 such that ...there exists a truth value for z,, such that every clause of the
formula ¢ is true. So S satisfies this formula iff the formula ® is true. [|

Using results of [14], it is easy to show that the model checking problem for formulas
of EF without nested temporal operators (and arbitrary BPPs) is NP-complete. We
conjecture that the problem for formulas with £ nested temporal operators is complete
for the k-th level of the polynomial time hierarchy, and that the model checking problem
for arbitrary formulas is PSPACE-complete, which would yield an exponential time
upper bound. Since it is known that checking validity in Presburger arithmetic requires
at least doubly exponential nondeterministic time [17], this result would improve the
upper bound derived from Proposition 4.4.

5 Adding atomic sentences

We study the impact on decidability caused by the addition of certain atomic sentences
to the logics we have studied so far. By atomic sentences we understand propositional
constants whose semantics is determined a priori by a valuation. In mu-calculi, atomic
sentences are equivalent to free variables. In the logic UB described in the last section
the only atomic sentence was true.

5.1 Linear Time logics

We add atomic sentences to a weak linear time temporal logic, and show that there exist
simple valuations which make the model checking problem undecidable for VBPPs.
More precisely, we show that, using these valuations, it is possible to construct a
formula Halt' equivalent to the formula Halt of EF, i.e., true for the same transition
systems.

The syntax of the logic is

¢ n=true | EN(a) | =@ | ¢1 A ¢p2 | (a)p | F¢
where @ is an action of Act, and EN(a) is an atomic sentence.

The logic is interpreted on the paths of a labelled transition system. We consider
the valuation which assigns to EN(a) the paths which start at a state which enables
a. Negation, conjunction and true are interpreted as usual. A path satisfies F'¢p if it
contains a suffix which satisfies ¢. A labelled transition system 7 with an initial state
s satisfies a formula ¢ if all the runs of 7 (i.e., all the paths of 7 that start at sp)
satisfy ¢. In particular, a transition system satisfies EN(a) if and only it satisfies the
formula E'N(a) of UB.

We define the formula ¢}, of this logic as the result of replacing each occurrence of
an expression EN(a) in the formula ¢;, of EG by the sentence EN(a).

19

We now construct the formula

Halt' = F(-¢) v EN(halt))

A transition system satisfies Halt' if every run visits a state which satisfies ~¢) Vv
EN(halt). Clearly, this is the also the meaning of the formula Halt = AF(—~¢p, V
EN(halt)) of EG. It follows that the model checking problem for this linear temporal
logic and VBPPs is undecidable.

Notice that the addition of the atomic sentences has a dramatic effect: without
them, the model checking problem for closed formulas of the linear mu-calculus and
arbitrary Petri nets is decidable; with them, the model checking problem for the weak
temporal logic given above and VBPPs is undecidable.

When model checking Petri nets it is common to use logics with atomic sentences
that express properties of the markings visited by a path. For instance, a sentence like
s = 0 is assigned the set of paths starting at markings which put no tokens on the
place s. It is easy to see that these sentences can ‘simulate’ the sentences EN(a), and
so the undecidability results also hold for them.

5.2 Branching Time Logics

Theorem 4.4 has been proved in Section 4 for the logic EF, which has only true as
atomic sentence. Actually, the decidability result still holds if we add atomic sentences,
as long as we restrict ourselves to valuations which are expressible in Presburger arith-
metic (i.e., valuations which assign to a given sentence a set of states expressible in
Presburger arithmetic). In particular, we can add sentences of the form

A-M<B

where A is a matrix of integers, M a vector of marking variables, and B a vector of
integers. An example of a formula of this extension is

AG(m1+me =3 — EFm3g>5)

which expresses that every marking that puts a total of 3 tokens on the places s; and
s9 has a successor which puts more than 5 tokens on the place s3.

In the case of a Petri net derived from BPPs, [14] not only proves the semilinearity
of the reachability relation, but also the semilinearity of the set of Parikh mappings of
the sequences of actions executed by the net. Given a sequence o € Act*, its Parikh
mapping P(o) assigns to each action the number of times it occurrs in . This result
allows us to extend EF further while keeping decidability. For instance, it is possible to
relativise not only the next operator, but also the other operators. Given an effectively
semilinear set P of Parikh mappings, we can introduce an operator EF(P)¢, which
holds at a marking M if there exists a marking M’ that satisfies ¢, and moreover
M’ can be reached from M by the execution of a sequence of actions whose Parikh
mapping belongs to P. AG(P) is defined similarly.

6 Conclusions

We have studied the model checking problem for Petri nets and Basic Parallel processes
(BPPs), two models of concurrent computation, and different temporal logics. While

20

modal mu—calculus

CTL*

CTL

|
EG/ \EF
N\

Hennessy—Milner logic

Fig. 2 Branching time logics

Petri nets are a rather powerful model, BPPs are very weak. We have also studied an
even weaker model, the Very Basic Parallel Processes (VBPPs).

The following table summarizes our results. F+EN denotes the linear time logic
having F' as single modal operator and atomic sentences of the form EN(a) (see section
5.1). EF+Pres denotes the branching time logic having EF as modal operator and
atomic sentences evaluated to sets expressible in Presburger arithmetic (see section 5.2).

Petri nets | BPPs | VBPPs
linear linear time mu-calculus D D D
time F + EN U U U
branching EG U U U
time EF U D D
EF + Pres U D D

The most relevant conclusion is the existence of a ‘decidability gap’ between lin-
ear time and branching time logics. The linear time mu-calculus is decidable for an
expressive model like Petri nets (when we consider only closed formulas), while EG
is undecidable for a very weak model like VBPPs. The linear time mu-calculus is a
powerful linear time logic, strictly more expressive than LTL, the linear time logic
most commonly used for verification [28, 35]. On the contrary, EG is a weak branching
time logic. Figure 2 shows a hierarchy of branching time temporal logics in order of
decreasing expressive power (when considered as action-based logics). All the logics
above EG are strictly more expressive.

This ‘decidability gap’ does not exist for sequential models, like context-free pro-
cesses or pushdown automata. For them, the modal mu-calculus is decidable, and
the modal mu-calculus is known to be strictly more expressive than the linear time
mu-calculus.

After the undecidability result for EG and VBPPs, the only logic of Figure 2 which
remains to be investigated is EF. We have shown that it is undecidable for arbitrary
Petri nets, but decidable for BPPs and other classes of nets with semilinear reachability
relations. These include persistent and reversible nets, among others (see [16]).

Finally, we have studied the addition of atomic sentences to linear time logics. If the
linear time logic with F (eventually) as only operator is enriched with atomic sentences

21

able to express which actions are enabled at a state, then it becomes undecidable for
VBPPs. Loosely speaking, the addition of these atomic sentences make linear time
logics as undecidable as branching time logics. Therefore, the gap between linear
time and branching time time logics is in fact a gap between linear time and one-step
branching time logics, i.e., logics which can look only one step ahead into the branching
structure of the transition system.

Acknowledgements

Many thanks to Mads Dam, Colin Stirling and Astrid Kiehn for helpful discussions,
and to two anonymous referees for their detailed comments.

References

[1] J.L. Balcdzar, J. Diaz and J. Gabarré: Structural Complexity I, EATCS Mono-
graphs on Theoretical Computer Science 11 (1988).

[2] M. Ben-Ari, Z. Manna and A. Pnueli: The Temporal Logic of Branching Time.
Acta Informatica 20(3), 207-226 (1983).

[3] G.S. Boolos and R.C. Jeffrey: Computability and Logic. Cambridge University
Press (1989).

[4] J. C. Bradfield: Verifying Temporal Properties of Systems. Birkhduser (1991).

[5] O. Burkart and B. Steffen: Model checking for context-free processes. Proceedings
of CONCUR ’92, LNCS 630, 123-137 (1992).

[6] O. Burkart and B. Steffen: Pushdown Processes: Parallel Composition and Model
Checking. Proceedings of CONCUR 94, LNCS 836, 98-113 (1994). (1994).

[7] S. Christensen: Decidability and Decomposition in Process Algebras, Ph. D. The-
sis, University of Edinburgh, CST-105-93 (1993).

[8] S. Christensen, Y. Hirshfeld and F. Moller: Bisimulation equivalence is decidable
for basic parallel processes. CONCUR 93, LNCS 715, 143-157 (1993).

[9] S. Christensen, H. Hiittel and C. Stirling: Bisimulation Equivalence is decidable
for all context-free processes. Proceedings of CONCUR 92, LNCS 630, 138-147
(1992).

[10] E.M. Clarke, E.A. Emerson and A.P. Sistla: Automatic Verification of Finite-State
Concurrent Systems Using Temporal Logic Specifications. ACM Transactions on
Programming Languages and Systems, 8(2), pp. 244-263 (1986).

[11] M. Dam: Fixpoints of Biichi automata. Proceedings of the 12th International Con-
ference of Foundations of Software Technology and Theoretical Computer Science,

LNCS 652, 39-50 (1992).

[12] E.A. Emerson and Srinivasan: Branching Time Temporal Logic. LNCS 354, 123~
172 (1988).

[13] E.A. Emerson and C. S. Jutla: Tree Automata, Mu-Calculus and Determinacy,
Proceedings of FOCS 91 (1991).

[14] J. Esparza: Petri Nets, Commutative Context-Free Grammars, and Basic Parallel
Processes. Proceedings of FCT 95, LNCS 965, 221-232 (1995).

22

[15]
[16]

[17]

J. Esparza: On the decidability of model checking for several mu-calculi and Petri
nets. Proceedings of CAAP ’94, LNCS 787, 115-129 (1994).

J. Esparza and M. Nielsen: Decidability issues for Petri nets — a survey. Bulletin
of the EATCS 52, 245-262 (1994).

M. J. Fischer and M.O. Rabin: Super-exponential complexity of Presburger arith-
metic. Complexity of Computation, Proceedings of the SIAM-AMS Symposium
on Applied Mathematics (1974).

Y. Hirshfeld: Petri Nets and the Equivalence Problem. Proceedings of CSL 93,
LNCS 832, 165-174 (1994).

R.R. Howell and L.E. Rosier: Problems concerning fairness and temporal logic for
conflict-free Petri nets. Theoretical Computer Science 64, 305-329 (1989).

R.R. Howell, I..E. Rosier and H. Yen: A taxonomy of fairness and temporal logic
problems for Petri nets. Theoretical Computer Science 82, 341-372 (1991).

H. Hungar and B. Steffen: Local Model Checking for Context-Free Processes.
Proceedings of ICALP 93, LNCS 707, (1993).

H. Hungar: Model Checking of Macro Processes. Proceedings of CAV ’94, LNCS
818, 169-182 (1994).

P. Jancar: Decidability of a temporal logic problem for Petri nets. Theoretical
Computer Science 74, 71-93 (1990).

P. Janéar: Decidability Questions for Bisimilarity of Petri Nets and Some Related
Problems. Proceedings of STACS 94, LNCS 775, 581-594 (1994). To appear in
Theoretical Computer Science.

M. Jantzen and R. Valk: The Residue of Vector Sets with Applications to Decid-
ability Problems in Petri Nets. Acta Informatica 21, 643-674 (1985)

A. Kiehn and M. Hennessy: On the Decidability of Non-Interleaving Process
Equivalences. Proceedings of CONCUR ’94, LNCS 836, 18-33 (1994).

S.R. Kosaraju: Decidability of reachability in vector addition systems. Proceedings
of the 6th Annual ACM Symposium on the Theory of Computing, 267-281 (1982).

O. Lichtenstein and A. Pnueli: Checking that finite state programs satisfy their
linear specifications. Proceedings of the 12th ACM Symposium on Principles of
Programming Languages, 97-107 (1985).

R. Lipton: The Reachability Problem Requires Exponential Space. Technical Re-
port 62, Yale University (1976).

E.W. Mayr: An algorithm for the general Petri net reachability problem. STAM
Journal of Computing 13, 441-460 (1984).

M. Minsky: Computation: Finite and Infinite Machines. Prentice-Hall (1967).

D. Muller and P. Schupp: The Theory of Ends, Pushdown Automata and Second
Order Logic. Theoretical Computer Science 37, 51-75 (1985).

J.L. Peterson: Petri Net Theory and the Modelling of Systems. Prentice-Hall
(1981).

C. P. Stirling: Modal and temporal logics. In Handbook of Logic in Computer
Science, Vol. 2, Oxford University Press, 477-563 (1992).

23

[35] M.Y. Vardi and P. Wolper: Automata Theoretic Techniques for Modal Logics of
Programs. Journal of Computer and System Sciences 32, 183-221 (1986).

[36] H. Yen: A Unified Approach for Deciding the Existence of Certain Petri Net
Paths. Information and Computation 96(1), 119-137 (1992).

24

