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Abstract The paper gives a summary of the existing results about algorithmic analysis of
probabilistic pushdown automata and their subclasses.
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1 Introduction

Discrete time Markov chains (Markov chains for short) have been used for decades to ana-
lyze stochastic systems in many disciplines, from Physics to Economics, from Engineering
to Linguistics, and from Biology to Computer Science.

Probabilistic model-checking introduces a new element in the practices of Markov chain
users. By extending simple programming languages and specification logics with stochastic
components, probabilistic model checkers allow scientists from all disciplines to describe,
modify, and explore Markov Chain models with far more flexibility and far less human
effort. At the same time, this more prominent rôle of modeling formalisms is drawing the
attention of computer science theorists to the classes of Markov chains generated by natural
programming languages. In particular, one such class has been extensively studied since the
mid 00s: Markov chains generated by programs with (possibly recursive) procedures. This
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class is captured by two equivalent formalisms: probabilistic Pushdown Automata (pPDA)
[8, 14, 17, 25, 26], and Recursive Markov Chains [29–32]. Intuitively, the equivalence of the
two models derives from the well-known fact that a recursive program can be compiled into
a “plain” program that manipulates a stack, i.e., into a pushdown automaton.

Apart from being a natural model for probabilistic programs with procedures, pPDA
are strongly related to several classes of stochastic processes that have been extensively
studied within and outside computer science. Since recursion is a particular modality of re-
production, many questions about pPDA are related to similar questions about branching
processes, the class of stochastic processes modeling populations whose individuals may
reproduce and die. Branching processes have numerous applications in nuclear physics, ge-
nomics, ecology, and computer science [4, 35]. Probabilistic PDA are also a generalization
of stochastic context-free grammars, very much used in natural language processing and
molecular biology, and of many variants of one-dimensional random walks.

Markov chains generated by pPDA may have infinitely many states, which makes their
analysis challenging. Properties that researchers working on finite-state Markov chains take
for granted (e.g., that every state of an irreducible Markov chain is visited infinitely often
almost surely) fail for pPDA chains. In particular, analysis questions that in the finite case
only depend on the topology of the chain (e.g., whether a given state is recurrent), depend
for pPDA on nontrivial mathematical properties of the actual values of the transition proba-
bilities. At the same time, pPDA exhibit a lot of structure, which in the last years has been
exploited to prove a wealth of surprising results. Polynomial algorithms have been found
for many analysis problems, and surprising connections have been discovered to various
areas of probability theory and mathematics in general (spectral theory, martingale theory,
numerical methods, etc.).

This paper surveys the theory of pPDA and of two important subclasses. Loosely speak-
ing, a PDA is a finite automaton whose transitions push and pop symbols into and from
a stack. An important class of pPDA, equivalent to stochastic context-free grammars, are
those whose automaton only has one state. For historical reasons, this class is called pBPA
(probabilistic Basic Process Algebra). The second important subclass are pPDA whose stack
alphabet contains only one symbol, apart from the special bottom-of-the-stack marker which
cannot be removed. Since in this case the stack content is completely determined by the num-
ber of symbols in it, they are equivalent to probabilistic one-counter automata (pOC), i.e.,
to finite automata whose transitions increment and decrement a counter which can also be
tested for zero. It turns out that several analysis questions for pBPA and pOC can be solved
efficiently (in polynomial time) by developing specific methods that are not applicable to
general pPDA.

The paper covers a large number of analysis problems, organized into several blocks.
We start by recalling basic notions in Sect. 2, where we also set the scope of this paper
by listing the problems of our interest. Section 3 contains results on basic analysis ques-
tions: probability of termination, and probability of reaching a given state or set of states.
These quantities can be captured as the least solutions of effectively constructable systems
of polynomial equations with positive coefficients [25, 31], and the corresponding decision
problems are mostly solved by analyzing these systems. In particular, one can approximate
the least solution by a decomposed variant of Newton’s method [23, 37] which leads to
efficient approximation algorithms for pBPA [27] and pOC [28].

In Sect. 4, we present a recent result of [17] which allows to transform every pPDA into
an “equivalent” pBPA where every stack symbol terminates with probability 1 or 0. Such
pBPA are easier to analyze, and since the transformation is in some sense effective, this
results leads to substantial simplifications in constructions and proofs that have been previ-
ously formulated for general pPDA, which is explicitly documented in subsequent sections.
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Section 5 studies the expected termination time or, more generally, the expected total
reward accumulated along a terminating run with respect to a given reward function. The
presented results for pPDA are based mainly on [26]. For pOC, we present more recent
results of [15] that establish and utilize a link between pOC and martingale theory. Further,
we study the distribution of termination time in pPDA. Here, the transformation of Sect. 4
plays an important role and allows to define suitable martingales which are then used to
derive tight tail bounds for termination time. This part is based on [17].

Section 6 presents results on the analysis of long-run average properties such as the ex-
pected long-run average reward per visited configuration (i.e., mean payoff). In this section
we again utilize the transformation of Sect. 4 and show how it can be used to simplify the
original proofs of [14, 25].

Finally, Sect. 7 is devoted to the decidability and complexity results for model-checking
pPDA and its subclasses against formulae of linear-time and branching-time logics. This
section is based mainly on [12, 19, 25, 30].

Although the overview of existing results given in this paper is not completely exhaustive
(for example, we have not included the material on analyzing various discounted properties
of pPDA [8], or the results on checking probabilistic bisimilarity [18]), we believe that the
presented proof sketches reflect most of the crucial ideas that have been invented in this area
in the last decade.

2 Preliminaries

In the paper we use N, Z, Q, and R to denote the sets of positive integers, integers, rational
numbers, and real numbers, respectively. When A is some of these sets, we use A

≥0 to
denote the subset of all non-negative elements of A, and A

≥0∞ to denote the set A
≥0 ∪ {∞},

where ∞ is treated according to the standard conventions, i.e., c < ∞ and ∞+c = ∞−c =
∞ · d = ∞ for all c, d ∈ R where d > 0, and we also put ∞ · 0 = 0. The cardinality of a
given set M is denoted by |M|. If M is a problem instance, then ||M|| denotes the length of
the corresponding binary encoding of M . In particular, rational numbers are always encoded
as fractions of binary numbers, unless we explicitly state otherwise.

For every finite or countably infinite set S, the symbols S∗ and Sω denote the sets of
all finite words and all infinite words over S, respectively. The length of a given word u ∈
S∗ ∪ Sω is denoted by len(u), where len(u) = ∞ for every u ∈ Sω . The individual letters
in u are denoted by u(0), u(1), . . . . The empty word is denoted by ε, where len(ε) = 0. We
also use S+ to denote the set S∗

� {ε}. A binary relation → ⊆ S × S is total if for every
s ∈ S there is some t ∈ S such that s → t .

A path in M = (S,→), where S is a finite or countably infinite set and → ⊆ S × S a
total relation, is a word w ∈ S∗ ∪ Sω such that w(i − 1) → w(i) for every 1 ≤ i < len(w).
A given t ∈ S is reachable from a given s ∈ S, written s →∗ t , if there is a finite path w such
that w(0) = s and w(len(w) − 1) = t . A run is an infinite path. For every run w and every
i ∈ Z

≥0, we use wi to denote the run obtained from w by erasing the first i letters (note
that w = w(0) . . .w(i−1)wi ). The sets of all finite paths and all runs in M are denoted
by FPath(M) and Run(M), respectively. For every w ∈ FPath(M), the sets of all finite
paths and runs that start with w are denoted FPath(M,w) and Run(M,w), respectively. In
particular, Run(M, s), where s ∈ S, is the set of all runs initiated in s. In the following we
often write just FPath, Run(w), etc., if the underlying structure M is clear from the context.

Let δ > 0, x ∈ Q, and y ∈ R. We say that x approximates y up to the relative error δ, if
either y 
= 0 and |x − y|/|y| ≤ δ, or x = y = 0. Further, we say that x approximates y up to
the absolute error δ if |x − y| ≤ δ.
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2.1 Basic notions of probability theory

Let A be a finite or countably infinite set. A probability distribution on A is a function
f : A → R

≥0 such that
∑

a∈A f (a) = 1. A distribution f is rational if f (a) is rational for
every a ∈ A, positive if f (a) > 0 for every a ∈ A, and Dirac if f (a) = 1 for some a ∈ A.
The set of all distributions on A is denoted by D(A).

A σ -field over a set Ω is a set F ⊆ 2Ω that includes Ω and is closed under complement
and countable union. A measurable space is a pair (Ω,F ), where Ω is a set called sample
space and F is a σ -field over Ω . A probability measure over a measurable space (Ω,F ) is
a function P : F → R

≥0 such that, for each countable collection {Ωi}i∈I of pairwise dis-
joint elements of F , we have that P(

⋃
i∈I Ωi) = ∑

i∈I P(Ωi), and moreover P(Ω) = 1.
A probability space is a triple (Ω,F ,P) where (Ω,F ) is a measurable space and P
is a probability measure over (Ω,F ). The elements of F are called (measurable) events.
Given two events A,B ∈ F such that P(B) > 0, the conditional probability of A under
the condition B , written P(A | B), is defined as P(A ∩ B)/P(B).

Let (Ω,F ,P) be a probability space. A random variable is a function X : Ω → R∞
such that X−1(I ) ∈ F for every open interval I in R (note that X−1({∞}) = Ω � X−1(R)

and hence X−1({∞}) ∈ F ). The expected value of X is denoted by E(X), and for every
event B ∈ F such that P(B) > 0 we use E(X | B) to denote the conditional expected
value of X under the condition B .

In this paper we employ basic results and tools of martingale theory (see, e.g., [39, 43])
to analyze the distribution and tail bounds for certain random variables.

Definition 1 An infinite sequence of random variables m(0),m(1), . . . over the same proba-
bility space is a martingale if for all i ∈ Z

≥0 we have the following:

– E(|m(i)|) < ∞;
– E(m(i+1) | m(1), . . . ,m(i)) = m(i) almost surely.

Two generic results about martingales that are relevant for the purposes of this paper are
Azuma’s inequality and the optional stopping theorem. Let m(0),m(1), . . . be a martingale
such that |m(k) − m(k−1)| < d for all k ∈ N, and let τ : Ω → Z

≥0 be a random variable
over the underlying probability space of m(0),m(1), . . . such that E(τ ) is finite and τ is a
stopping time, i.e., for all k ∈ Z

≥0 the occurrence of the event τ = k depends only on the
values m(0), . . . ,m(k). Then Azuma’s inequality states that for every b > 0 we have that both
P(m(n) − m(0) ≥ b) and P(m(n) − m(0) ≤ −b) are bounded by

exp

( −b2

2nd2

)

,

and the optional stopping theorem guarantees that E(m(τ)) = E(m(0)).
The semantics of probabilistic pushdown automata is defined in terms of discrete-time

Markov chains, which are recalled in our next definition.

Definition 2 A (discrete-time) Markov chain is a triple M = (S, → ,Prob) where S is a
finite or countably infinite set of vertices, → ⊆ S ×S is a total transition relation, and Prob
is a function which to each transition s → t of M assigns its probability Prob(s → t) ∈ (0,1]
so that for every s ∈ S we have

∑
s→t Prob(s → t) = 1.
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In the rest of this paper we also write s
x→ t to indicate that s → t and Prob(s → t) = x.

To every s ∈ S we associate the probability space (Run(s),F ,P) where F is the σ -field
generated by all basic cylinders Run(w) where w ∈ FPath(s), and P : F → [0,1] is the
unique probability function such that P(Run(w)) = Π

len(w)−1
i=1 xi where w(i−1)

xi→w(i) for
every 1 ≤ i < len(w) (the empty product is equal to 1).

2.2 First-order theory of the reals

At many places in this paper, we rely on decision procedures for various fragments of
(R,+,∗,≤), i.e., first-order theory of the reals (also known as “Tarski algebra”). Given
a closed first-order formula Φ over the signature {+,∗,≤}, the problem whether Φ holds
in the universe of all real numbers, with the standard interpretation of + and ∗, is decidable
[40] (note that “−” and “/” are easily definable from “+” and “∗”, and hence they can be
freely used in formulae of Tarski algebra).

The existential fragment of (R,+,∗,≤) is decidable in polynomial space [20] (the same
upper bound of course holds also for the universal fragment), and the fragment where the
alternation depth of the universal/existential quantifiers is bounded by a fixed constant is
decidable in exponential time [33].

Some of the results presented in next sections are obtained by demonstrating that certain
quantities can be effectively encoded by formulae of Tarski algebra in the following sense:

Definition 3 We say that a given tuple (c1, . . . , cn) of reals is expressible in some fragment
of Tarski algebra if there exists a formula Φ of the respective fragment with n free variables
x1, . . . , xn such that for every tuple (d1, . . . , dn) of reals we have that Φ(x1/d1, . . . , xn/dn)

holds iff di = ci for all 1 ≤ i ≤ n. (Here Φ(x1/d1, . . . , xn/dn) is the closed formula obtained
from Φ by substituting each xi with di .)

2.3 Probabilistic pushdown automata

Pushdown automata (PDA) are a natural model for sequential systems with recursion. Im-
portant subclasses of PDA are stateless pushdown automata (BPA)1 and one-counter au-
tomata (OC). Probabilistic variants of these models, denoted by pPDA, pBPA, and pOC,
respectively, are obtained by associating probabilities to transition rules so that the total
probability of all rules applicable to a given configuration is one. Thus, every pPDA, pBPA,
and pOC generates an infinite-state Markov chain. Let us note that PDA are equivalent (in a
well-defined sense) to recursive state machines (RSM), and the BPA subclass corresponds to
1-exit RSM [2, 3]. There are efficient (linear-time) translations between these models, and
the same applies to their probabilistic variants.

Definition 4 A probabilistic pushdown automaton (pPDA) is a tuple Δ = (Q,Γ, ↪→ ,Prob)

where Q is a finite set of control states, Γ is a finite stack alphabet, ↪→ ⊆ (Q × Γ ) ×
(Q × Γ ∗) is a finite set of rules such that

– for every pX ∈ Q × Γ there is at least one rule of the form pX ↪→qα,
– for every rule pX ↪→qα we have that len(α) ≤ 2,

1The “BPA” acronym stands for Basic Process Algebra and is used mainly for historical reasons.
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and Prob is a function which to every rule pX ↪→qα assigns its probability Prob(pX ↪→qα)

∈ (0,1] so that for all pX ∈ Q × Γ we have that
∑

pX↪→qα Prob(pX ↪→qα) = 1. A config-
uration of Δ is an element of Q × Γ ∗.

If a pPDA Δ is used as an input to some algorithm, we implicitly assume that all transition
probabilities are rational, unless we explicitly state otherwise. In particular, in Sect. 4 we
also consider pBPA where the transitions probabilities are irrational but expressible in Tarski
algebra, and in this case we use the corresponding formulae of (R,+,∗,≤) to represent
transition probabilities (cf. Definition 3).

In the rest of this paper we write pX
x

↪→qα to indicate that pX ↪→qα and
Prob(pX ↪→qα) = x. The head of a configuration pXα is pX.

To Δ we associate the Markov chain MΔ where Q × Γ ∗ is the set of vertices and the
transitions are determined as follows:

– pε
1→pε for every p ∈ Q;

– for every β ∈ Γ ∗, pXβ
x→qαβ is a transition of MΔ iff pX

x
↪→qα is a rule of Δ.

Since pPDA configurations are strings over a finite alphabet, we can interpret sets of
configurations as languages. For our purposes, regular sets of configurations are particularly
important.

Definition 5 Let C ⊆ Q × Γ ∗ be a set of configurations. We say that C is regular if there is
a deterministic finite-state automaton (DFA) A over the alphabet Q ∪ Γ such that pα ∈ C
iff the reverse of pα is accepted by A. Further, we say that C is simple if there is a set
H ⊆ Q × Γ such that pα ∈ C iff α 
= ε and the head of pα belongs to H.

Remark 1 Since the DFA A of Definition 5 reads the stack in the bottom-up direction,
one can easily simulate A on-the-fly in the stack alphabet of Δ. Formally, we construct
another pPDA Δ′ which has the same control states as Δ, the stack alphabet of Δ′ is
Γ ′ = (Γ × A) ∪ Z0, where Z0 is a fresh bottom-of-the-stack marker and A is the set
of control states of A, and the rules of Δ′ simulate the execution of A. For example, if
pX

x
↪→qYZ is a rule of Δ, then for every a ∈ A we add the rule p(X,a)

x
↪→q(Y, a′)(Z,a)

to Δ′, where a
Z→a′ is a transition in A. Obviously, there is a bijective correspondence be-

tween Run(MΔ,pX) and Run(MΔ′ ,p(X,a0)Z0), where a0 is the initial state of A. Note that
a configuration qYα of Δ is accepted by A iff the corresponding configuration q(Y, a)α′Z0

of Δ′ satisfies a
Y→a′ q→af where af is an accepting state of A. Hence, the regular set

of configurations of Δ encoded by A corresponds to a simple set of configurations in Δ′
represented by an efficiently constructible set H ⊆ Q × Γ ′. In particular, note that qε is
recognized by A iff qZ0 ∈ H, which also explains the role of the symbol Z0. Since the size
of Δ′ is polynomial in the size of Δ and A, the above described construction is a generic
technique for extending results about simple sets of configurations to regular sets of config-
urations without any complexity blowup. We use this simple principle at many places in this
paper.

Important subclasses of pPDA are stateless pPDA (also known as pBPA) which do not
have control states, and probabilistic one-counter automata (pOC) where the stack alphabet
has just one symbol (apart from the bottom-of-the-stack marker) and can be interpreted as a
counter.

Definition 6 A pBPA is a triple Δ = (Γ, ↪→ ,Prob) where Γ is a finite stack alphabet,
↪→ ⊆ Γ × Γ ∗ is a finite set of rules such that
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Fig. 1 A fragment of MΔ

– for every X ∈ Γ there is at least one rule of the form X ↪→α,
– for every rule X ↪→α we have that len(α) ≤ 2,

and Prob is a probability assignment which to each rule X ↪→α assigns its probability
Prob(X ↪→α) ∈ (0,1] so that for all X ∈ Γ we have that

∑
X↪→α Prob(X ↪→α) = 1. A con-

figuration of Δ is an element of Γ ∗.

Note that each pBPA Δ can be understood as a pPDA with just one control state p which
is omitted in the rules and configurations of Δ. Thus, all notions introduced for pPDA can
be adapted to pBPA. In particular, each pBPA Δ determines a unique Markov chain MΔ

where Γ ∗ is the set of vertices and the transitions are determined in the expected way.

Example 1 Consider a pBPA Δ with two stack symbols I,A and the rules

I
0.5
↪→ ε, I

0.5
↪→ AI, A

1
↪→ II.

A fragment of MΔ is shown in Fig. 1.

A formal definition of pOC adopted in this paper is consistent with the one used in recent
works such as [10, 11, 15].

Definition 7 A pOC is a tuple Δ = (Q, δ=0, δ>0,P =0,P >0), where

– Q is a finite set of control states,
– δ>0 ⊆ Q × {−1,0,1} × Q and δ=0 ⊆ Q × {0,1} × Q are the sets of positive and zero

rules such that each p ∈ Q has an outgoing positive rule and an outgoing zero rule;
– P >0 and P =0 are probability assignments; both assign to each p ∈ Q a positive probabil-

ity distribution over the outgoing transitions in δ>0 and δ=0, respectively, of p.

We say that Δ is zero-trivial if δ=0 = {(p,0,p) | p ∈ Q}. A configuration of Δ is a pair
p(i) ∈ Q × Z

≥0.

The Markov chain MΔ associated to Δ has Q× Z
≥0 as the set of vertices, and the transi-

tion are determined as expected. Note that the transitions enabled at p(0) are not necessarily
enabled at p(i) where i > 0, and vice versa. If Δ is zero-trivial, then the only transition en-
abled at p(0) is the loop p(0)

1→p(0). Also observe that p(i)
x→p(i+c) iff p(j)

x→p(j+c)

for all i, j > 0 and c ∈ {−1,0,1}.
Each pOC can also be understood as a pPDA with just two stack symbols I and Z,

where Z marks the bottom of the stack, and the number of pushed I ’s represents the counter
value. The translations between the two models are linear as long as the counter changes are
bounded (as in Definition 7) or encoded in unary.
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2.4 The problems of interest

In this section we formally introduce the main concepts and notions used in performance and
dependability analysis of probabilistic systems modeled by discrete-time Markov chains. In
the next sections we show how to solve the associated algorithmic problems for pPDA and
its subclasses.

For the rest of this section, we fix a Markov chain M = (S, → ,Prob) where S is finite
or countably infinite.

Reachability and termination Let s ∈ S be an initial vertex and T ⊆ S a set of target
vertices. Let Reach(s, T ) be the set of all w ∈ Run(s) such that w(i) ∈ T for some i ∈ Z

≥0

(sometimes we also write ReachM(s,T ) to prevent confusions about the underlying Markov
chain M). The probability of reaching T from s is defined as P(Reach(s, T )).

For pPDA and its subclasses, we also distinguish a special form of reachability called
termination. Intuitively, a recursive system terminates when its initial procedure terminates,
i.e., the stack of activation records becomes empty. In pOC, termination corresponds to
decreasing the counter to zero (this means that the set of zero rules is irrelevant, and therefore
we restrict ourselves to zero-trivial pOC in the context of problems related to termination).
Technically, we distinguish between two forms of termination.

– Non-selective termination, where the target set T consists of all configurations with empty
stack (or zero counter).

– Selective termination, where T consists of some (selected) configurations with empty
stack (or zero counter).

For pBPA, there is only one terminated configuration ε, and the two notions of termination
coincide. For pPDA and pOC, selective termination intuitively corresponds to terminating
with one of the distinguished output values.

The main algorithmic problem related to reachability is computing the probability
P(Reach(s, T )) for given s and T . For finite-state Markov chains with rational transition
probabilities, P(Reach(s, T )) is always rational and can be computed in polynomial time
by solving a certain system of linear equations2 (see, e.g., [5]). For infinite-state Markov
chains generated by pPDA, we only consider regular sets T of target configurations en-
coded by the associated DFA (see Definition 5). Still, P(Reach(s, T )) can be irrational
and cannot be computed precisely in general. Hence, in this setting we refine the task of
computing P(Reach(s, T )) into the following problems:

– Qualitative reachability/termination. Given s and T, do we have that P(Reach(s, T ))=1?
– Quantitative reachability/termination. Given s, T, and a rational constant � ∈ (0,1),

do we have that P(Reach(s, T )) ≤ �?
– Approximating the probability of reachability/termination. Given s, T, and a rational con-

stant δ > 0, compute P(Reach(s, T )) up to the absolute/relative error δ.

Expected termination time and total accumulated reward Similarly as in the previous para-
graph, let us fix an initial state s ∈ S and a set of target vertices T ⊆ S. Further, we fix a
reward function f : S → R

≥0.

2For every t ∈ S, we fix a fresh variable Yt . If t ∈ T , we put Yt = 1. If t cannot reach T at all, we put Yt = 0.

Otherwise, we put Yt = ∑

t
x→t ′ x · Yt ′ . The resulting system of linear equations has only one solution in R

|S|
which is the tuple of all P(Reach(t, T )).
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We are interested in the expected total reward accumulated along a path from s to T .
Formally, for every run w, let Hit(w) be the least j ∈ Z

≥0∞ such that w(j) ∈ T . We define a
random variable Acc : Run(s) → R

≥0∞ where

Acc(w) =
Hit(w)−1∑

i=0

f
(
w(i)

)
.

Note that if Hit(w) = 0, then the above sum is empty and hence Acc(w) = 0.
The task is to compute the expected value E(Acc). If 0 < P(Reach(s, T )) < 1, we are

also interested in the conditional expectation E(Acc | Reach(s, T )). Note that if f (r) = 1 for
all r ∈ S, then E(Acc) corresponds to the expected number of transitions (or “time”) needed
to visit T from s.

For finite-state Markov chains, both E(Acc) and E(Acc | Reach(s, T )) are easily com-
putable in polynomial time. For pPDA and its subclasses, we face the same difficulties as in
the case of reachability/termination, and also some new ones. In particular, E(Acc) can be
infinite even if P(Reach(s, T )) = 1 and f is bounded, which cannot happen for finite-state
Markov chains. We also need to restrict the reward functions to some workable subclass. In
particular, we consider reward functions that are

– constant, which suffices for modelling the discrete time;
– simple, i.e., for every configuration pXα with non-empty stack, f (pXα) depends just on

the head pX (there are no restrictions on f (pε)). Simple reward functions are sufficient
for modelling the costs and payoffs determined just by the currently running procedure;

– linear, i.e., for every configuration pα we have that

f (pα) = c(p) ·
(

d(p) +
∑

X∈Γ

#X(α) · h(X)

)

.

Here c, d are functions that assign a fixed non-negative value to every control state, and
h does the same for stack symbols. Further, #X(α) denotes the number of occurrences of
X in α. Note that by putting c(p) = 0, we can assign zero reward to all configurations of
the form pα.

Linear reward functions are useful for, e.g., analyzing the stack height or the total
amount of memory allocated by all procedures currently stored in the stack of activation
records.

Similarly to reachability/termination, we refine the problem of computing E(Acc) and
E(Acc | Reach(s, T )) for pPDA and its subclasses into several questions.

– Finiteness. Given s, T , and f , do we have E(Acc) < ∞? Do we have
E(Acc | Reach(s, T )) < ∞?

– Boundedness. Given s, T , f , and c ∈ R
+, do we have E(Acc) ≤ c? Do we have

E(Acc | Reach(s, T )) ≤ c?
– Approximating the expected accumulated reward. Given s, T , f , and δ > 0, compute

E(Acc) and E(Acc | Reach(s, T )) up to the absolute/relative error δ.

Apart from these algorithmic problems, we are also interested in the distribution of Acc,
particularly in the special case when Acc models the termination time. Then P(Acc ≤ c) is
the probability that the initial configuration terminates after at most c transitions, and we ask
how quickly this probability approaches the probability of termination as c increases. Thus,
we obtain rather generic results about the asymptotic behavior of recursive probabilistic
systems (see Theorem 11).
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Mean payoff and other long-run average properties The mean payoff is the long-run av-
erage of reward per visited vertex. Formally, we fix some reward function f : S → R

≥0, and
define random variables MPsup,MPinf : Run(s) → R

≥0∞ as follows:

MPsup(w) = lim sup
n→∞

∑n

i=0 f (w(i))

n + 1
,

MPinf (w) = lim inf
n→∞

∑n

i=0 f (w(i))

n + 1
.

For finite-state Markov chains, we have that P(MPsup 
= MPinf ) = 0, although there
may be uncountably many w ∈ Run(s) such that MPsup(w) 
= MPinf (w). Further, both
MPsup and MPinf assume only finitely many values v1, . . . , vn with positive probabilities
p1, . . . , pn, and these values and probabilities are computable in polynomial time by ana-
lyzing the bottom strongly connected components of the finite-state Markov chain. Hence,
the expected values of MPsup and MPinf are the same and efficiently computable.

For pPDA and its subclasses, we consider the same classes of reward functions as in
the case of total accumulated reward. First, we need to answer the question whether the
mean payoff is well-defined for almost all runs, i.e., whether P(MPsup 
= MPinf ) = 0, and
what is the distribution of MPsup and MPinf . The algorithmic problems concern mainly
approximating the expected value of MPsup and MPinf , and approximating the distribution
of these variables.

Model-checking linear-time and branching-time logics Let s be a vertex of M . A linear-
time specification is a property ϕ which is either true or false for every run, and we are
interested in computing the probability P({w ∈ Run(s) | w |= ϕ}). The property ϕ can
be encoded in linear-time logics such as LTL, or by finite-state automata with some ω-
acceptance condition (Büchi, Rabin, Street, etc.). For finite-state Markov chains, the prob-
ability P({w ∈ Run(s) | w |= ϕ}) can be computed in time polynomial in the size of M .
For pPDA and its subclasses, this probability can be irrational, and we refine the problem
in the same way as for reachability. That is, we consider the qualitative and quantitative
model-checking problems for linear-time specifications, and the associated approximation
problem.

A branching-time specification is a state formula of a branching-time probabilistic logic
such as PCTL or PCTL∗ [34]. Intuitively, these logics are obtained by replacing the existen-
tial and universal path quantifiers in CTL and CTL∗ (see, e.g., [22]) with the probabilistic
operator P∼�(·), which says that the probability of satisfying a given path formula is ∼-
related to �. More precisely, the syntax of PCTL∗ state and path formulae Φ and ϕ, resp.,
is given by the following abstract syntax equations.

Φ ::= a | ¬Φ | Φ1 ∧ Φ2 | P∼�ϕ,

ϕ ::= Φ | ¬ϕ | ϕ1 ∧ ϕ2 | X ϕ | ϕ1 U ϕ2.

Here a ranges over a countably infinite set Ap of atomic propositions, � ∈ [0,1] is a rational
constant, and ∼ ∈ {≤,<,≥,>,=}.

The logic PCTL is a fragment of PCTL∗ where path formulae are given by the equation
ϕ ::= X Φ | Φ1 U Φ2. The qualitative fragments of PCTL and PCTL∗, denoted by qPCTL
and qPCTL∗, resp., are obtained by restricting the allowed operator/number combinations
in P∼�ϕ subformulae to ‘=0’ and ‘=1’ (we do not include ‘<1’, ‘>0’ because these are
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definable from ‘=0’, ‘=1’, and negation). Finally, a path formula ϕ is an LTL formula if all
of its state subformulae are atomic propositions.

Now we define the semantics of PCTL∗. Let us fix a valuation ν : Ap→2S . State for-
mulae are interpreted over S, and path formulae are interpreted over Run. Hence, for given
s ∈ S and w ∈ Run we define

s |=ν a iff s ∈ ν(a),
s |=ν ¬Φ iff s 
|=ν Φ ,
s |=ν Φ1 ∧ Φ2 iff s |=ν Φ1 and s |=ν Φ2,
s |=ν P∼�ϕ iff P({w ∈ Run(s) | w |=ν ϕ}) ∼ �,

w |=ν Φ iff w(0) |=ν Φ ,
w |=ν ¬ϕ iff w 
|=ν ϕ,
w |=ν ϕ1 ∧ ϕ2 iff w |=ν ϕ1 and w |=ν ϕ2,
w |=ν X ϕ iff w1 |=ν ϕ,
w |=ν ϕ1 U ϕ2 iff there is j ≥ 0 s.t. wj |=ν ϕ2 and wi |=ν ϕ1 for all 0 ≤ i < j .

The model-checking problem for PCTL, PCTL∗, and their qualitative fragments is the
question whether s |=ν Φ for a given vertex s and a state formula Φ of the respective logic.

For pPDA and its subclasses, the model-checking problems for linear/branching time
logics are usually considered only for regular valuations, which assign to every atomic
proposition a regular set of configurations (see Definition 5).

3 Reachability and termination

In this section we examine the problems of quantitative/qualitative reachability and the prob-
lems of approximating the probability P(Reach(s, T )) up to the given absolute/relative er-
ror δ > 0. We start with general pPDA and then show that some of the considered questions
are solvable more efficiently for the pBPA and pOC subclasses.

3.1 Quantitative and qualitative reachability

Recall that the quantitative/qualitative reachability problems are the questions whether
P(Reach(s, T )) is bounded by a given rational � ∈ (0,1) or equal to one, respectively.

Results for pPDA First, we show how to solve the reachability problems for a simple
set of target configurations. A generalization to arbitrary regular sets is then obtained by
employing the generic construction recalled in Remark 1.

Let Δ = (Q,Γ, ↪→ ,Prob) be a pPDA and C ⊆ Q × Γ ∗ a simple set of configurations
where H is the associated set of heads (see Definition 5). For all p,q ∈ Q and X ∈ Γ , let

– [pX•] denote the probability P(Reach(pX, C));
– [pXq] denote the probability of all w ∈ Reach(pX, {qε}) such that w does not visit a

configuration of C .

One can easily verify that all such [pX•] and [pXq] must satisfy the following:

– For all pX ∈ H and q ∈ Q, we have that [pX•] = 1 and [pXq] = 0.
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– For all pX 
∈ H and q ∈ Q, we have that

[pX•] =
∑

pX
x

↪→rY

x · [rY•] +
∑

pX
x

↪→rYZ

x · [rY•] +
∑

pX
x

↪→rYZ

∑

t∈Q

x · [rY t] · [tZ•],

[pXq] =
∑

pX
x

↪→qε

x +
∑

pX
x

↪→rY

x · [rYq] +
∑

pX
x

↪→rYZ

∑

t∈Q

x · [rY t] · [tZq].

Now consider a system ReachΔ of recursive equations obtained by constructing the above
equalities for all [pX•] and [pXq] where p,q ∈ Q and X ∈ Γ , and replacing each occur-
rence of all [pX•] and [pXq] with the corresponding fresh variables 〈pX•〉 and 〈pXq〉.
In general, ReachΔ may have several solutions. It has been observed in [25, 31] that the
tuple of all [pX•] and [pXq] is exactly the least solution of ReachΔ in ([0,1]k,�), where
k = |Γ | · (|Q|2 + |Q|) and � is the component-wise ordering. Observe that if C = ∅, then
[pX•] = 0 and [pXq] = P(Reach(pX, {qε})) for all p,q ∈ Q and X ∈ Γ . Hence, in the
case of termination, it suffices to put C = ∅ and consider a simpler system of equations
TermΔ which is the same as ReachΔ but all 〈pX•〉 variables and the corresponding equa-
tions are eliminated.

Example 2 Consider again the pBPA Δ of Example 1, and let C = ∅. The system TermΔ

looks as follows:

〈I 〉 = 1

2
+ 1

2
· 〈A〉 · 〈I 〉,

〈A〉 = 1 · 〈I 〉 · 〈I 〉.
Hence, [I ] is the least solution of 〈I 〉 = 1

2 + 1
2 〈I 〉3, which is

√
5−1
2 (the golden ratio).

In general, the least solution of ReachΔ cannot be given as a tuple of closed-form ex-
pressions. Still, we can decide if [pX•] ≤ � for a given rational � ∈ (0,1) by encoding this
question in Tarski algebra (see Sect. 2.2). More precisely, we construct a formula Φ which
says

“there is V ∈ [0,1]k such that V is a solution of ReachΔ and V〈pX•〉 ≤ �”.

Here V〈pX•〉 is the component of V corresponding to 〈pX•〉. Note that if some solution V
of ReachΔ satisfies V〈pX•〉 ≤ �, then also the least solution does. Since the formula Φ is
existential and its size is polynomial in ||Δ||, the validity of Φ can be decided in space poly-
nomial in ||Δ|| (see Sect. 2.2). Similarly, one can decide whether [pX•] ≥ � in polynomial
space by constructing a universal formula

“for every V ∈ [0,1]k such that V is a solution of ReachΔ we have V〈pX•〉 ≥ �”.

The same observations are valid also for the probability [pXq], and be can be further ex-
tended to regular sets of target configurations (see Remark 1). Thus, we obtain the following:

Theorem 1 (see [25, 31]) Let Δ = (Q,Γ, ↪→ ,Prob) be a pPDA, pα ∈ Q × Γ ∗ a config-
uration of Δ, and C a regular set of configurations of Δ represented by a DFA A. Further,
let � ∈ (0,1) be a rational constant. Then the problems whether P(Reach(pα, C)) = 1 and
P(Reach(pα, C)) ≤ � are in PSPACE.
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Interestingly, there are no lower complexity bounds known for the problems consid-
ered in Theorem 1. On the other hand, there is some indication that improving the pre-
sented PSPACE upper bound to some natural Boolean complexity class (e.g., the poly-
nomial hierarchy) might be difficult. As observed in [31], even the problem whether
P(Reach(pX, {qε})) = 1 is at least as hard as SQUARE-ROOT-SUM, whose exact com-
plexity is a long-standing open problem in computational geometry3.

As we shall see in Sects. 4, 5, and 6, the tuple of termination probabilities, i.e., the least
solution of TermΔ, is useful for computing and approximating other interesting quantities.
Since TermΔ can have several solutions, it is not immediately clear that the tuple of all ter-
mination probabilities [pXq] is efficiently expressible in the existential fragment of Tarski
algebra in the sense of Definition 3. However, we can effectively extend the system TermΔ

by the following constraints:

(1) 0 ≤ 〈pXq〉 ≤ 1 for every 〈pXq〉;
(2) 〈pXq〉 = 0 for every 〈pXq〉 such that [pXq] = 0;
(3)

∑
q∈Q 〈pXq〉 = 1 for every pX ∈ Q × Γ such that

∑
q∈Q[pXq] = 1;

(4)
∑

q∈Q 〈pXq〉 < 1 for every pX ∈ Q × Γ such that
∑

q∈Q[pXq] < 1.

Note that the constraints (1) and (2) can be computed in time polynomial in ||Δ||, and the
constraints (3) and (4) can be computed in space polynomial in ||Δ|| by Theorem 1. It has
been shown in [29, 30] that the system TermΔ extended with the above constraints has a
unique solution in R

k , where k = |Q|2 · |Γ |. Thus, we obtain the following:

Theorem 2 Let Δ = (Q,Γ, ↪→ ,Prob) be a pPDA. The tuple of all termination proba-
bilities [pXq] is expressible in the existential fragment of Tarski algebra. Moreover, the
corresponding formula Φ is constructible in space polynomial in ||Δ||, and the length of Φ

is polynomial in ||Δ||.

Results for pBPA For pBPA, the quantitative termination, i.e., the question whether
P(Reach(X, {ε})) ≤ � for a given rational � ∈ (0,1), is still as hard as SQUARE-ROOT-
SUM [31]. However, it has been also shown in [31] that the qualitative termination, i.e., the
question whether P(Reach(X, {ε})) = 1, is solvable in polynomial time. This is achieved
by employing some results and tools of spectral theory. First, let us consider a pBPA
Δ = (Γ, ↪→ ,Prob) such that

(1) for every X ∈ Γ we have that P(Reach(X, {ε})) > 0;
(2) for all X,Y ∈ Γ there is a configuration of the form Yα reachable from X.

As a running example, we use a pBPA Θ with three stack symbols X, Y , Z, where

X
0.25−→YZ, Y

0.5−→XX, Z
0.25−→YX,

X
0.75−→ ε, Y

0.5−→Z, Z
0.25−→XZ,

Z
0.5−→ ε.

3An instance of SQUARE-ROOT-SUM is a tuple of positive integers a1, . . . , an, b, and the question is whether∑n
i=1

√
ai ≤ b. The problem is obviously in PSPACE, because it can be encoded in the existential fragment

of Tarski algebra (see Sect. 2.2), and the best upper bound currently known is CH (counting hierarchy; see
Corollary 1.4 in [1]). It is not known whether this bound can be further lowered to some natural Boolean sub-
class of PSPACE, and a progress in answering this question might lead to breakthrough results in complexity
theory.
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Assumptions (1) and (2) imply that either all stack symbols of Δ terminate with probability
one, or all of them terminate with a positive probability strictly less than one. Hence, we
need to decide whether the least solution of TermΔ is equal to (1, . . . ,1) or strictly less
than 1 in every component. To get some intuition, let us first realize that Δ can also be
interpreted as a multi-type branching process (MTBP). Intuitively, the symbols of Γ then
correspond to different “species” which can evolve into finite collections of other species
or die. For example, X

0.25−→YZ means “one copy of X can evolve into one copy Y and one
copy of Z with probability 0.25”, while X

0.75−→ ε means “X dies with probability 0.75”. The
states of the MTBP determined by Δ are finite collections of species (stack symbols) where
the ordering of symbols is irrelevant. Each occurrence of every stack symbol in the current
state chooses a rule independently of the others, and the chosen rules are then executed
simultaneously. The probability of this transition is obtained by multiplying the probabilities
of the chosen rules. Thus, we obtain an infinite-state Markov chain BΔ whose states are
tuples of the form (X

k1
1 , . . . ,Xkn

n ), where {X1, . . . ,Xn} = Γ and ki ∈ Z
≥0 for every 1 ≤

i ≤ n, and the transitions are defined in the way described above. For example, the set of
transitions in BΘ includes the following (for simplicity, in each tuple we omit all symbols
with zero occurrence index):

(X,Y )
0.375−→ (Z), (X,Y )

0.125−→ (
X2, Y,Z

)
,

(
X2

) 0.375−→ (Y,Z).

The first transition is determined by the rules X
0.75−→ ε and Y

0.5−→Z, the second transition
by the rules X

0.25−→YZ and Y
0.5−→XX, and the third transition by the rules X

0.25−→YZ and
X

0.75−→ ε. Note that the probability of the last transition is 2 · 0.25 · 0.75 = 0.375 because
both copies of X select their rules independently.

Intuitively, the only difference between MΔ and BΔ is that in MΔ, the stack symbols
are processed from left to right, while in BΔ, all stack symbols are processed simultane-
ously. However, if the goal is to empty the stack, it does not really matter in what order
we process the symbols because all of them have to disappear anyway. Formally, one can
prove that for every α ∈ Γ ∗, the probability of reaching ε from α in MΔ is the same as the
probability of reaching the empty family from the family of symbols listed in α in BΔ. In
particular, we have that every symbol X ∈ Γ terminates with probability 1 in MΔ iff the
family (X1, . . . ,Xn) reaches the empty family with probability 1 in BΔ. Now consider an
n× n matrix C where C(i, j) is the expected number of Xj ’s obtained by performing a rule
of Xi . For example, for the pBPA Θ we thus obtain the matrix

⎛

⎜
⎝

0 1
4

1
4

1 0 1
2

1
2

1
4

1
4

⎞

⎟
⎠ .

Here the symbols X, Y , Z are formally treated as X1, X2, X3, respectively. Note that, e.g.,
C(3,1) = 1

4 · 1 + 1
4 · 1 + 1

2 · 0 = 1
2 . The three summands correspond to the three outgoing

rules of Z, where for each rule we count the number of X’s on its right-hand side.
It follows immediately that the i-th component of the vector (1, . . . ,1) ·C is the expected

number of occurrences of Xi in a one-step successor of (X1, . . . ,Xn) in BΔ. In general,
one can easily verify that the i-th component of (1, . . . ,1) · Ck is the expected number of
occurrences of Xi in a k-step successor of (X1, . . . ,Xn). Intuitively, it is not surprising that
(X1, . . . ,Xn) reaches the empty family with probability one iff the expected size of the
family reached in k steps stays bounded as k increases. Indeed, denoting by Sk the size of
the family in the k-th step, the Markov inequality implies that lim infk→∞ Sk is almost surely
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finite. However, this means that almost every run must visit a particular family infinitely
many times. As every symbol terminates with positive probability, almost all runs terminate.

Checking whether the expected size of the family stays bounded translates to checking
whether the sum of all elements in Ck is bounded for all k ≥ 1. Note that due to Perron-
Frobenius theorem, the matrix C possesses a positive real dominant eigenvalue, say r (i.e.,
all other eigenvalues λ satisfy |λ| < r). The elements of Ck are bounded iff r ≤ 1, and the
latter condition can be checked in polynomial time [32].

For the pBPA Θ , the largest eigenvalue of C is strictly less than 0.9, hence (X,Y,Z)

reaches the empty family with probability one, and hence all of the symbols X, Y , Z termi-
nate with probability one in MΘ .

If a given pBPA Δ does not satisfy the assumptions (1) and (2), we first determine and
eliminate all stack symbols that cannot reach ε (this is easily achievable in polynomial time).
Then, the variables of TermΔ are ordered according to the associated dependency relation,
and the resulting dependency graph is split into strongly connected components that are
processed in the bottom-up direction, using the above described method as a procedure for
resolving the most complicated subcase in the underlying case analysis. Thus, every stack
symbol is eventually classified as terminating with probability 0, 1, or strictly in between.
We refer to [32] for details.

The result about termination has been extended to general qualitative reachability in [13],
even for a more general model of Markov decision processes generated by BPA. Thus, we
obtain the following:

Theorem 3 Let Δ = (Γ, ↪→ ,Prob) be a pBPA, α ∈ Γ ∗ a configuration of Δ, and C
a regular set of configurations of Δ represented by a DFA A. The problem whether
P(Reach(α, C)) = 1 is in P.

Results for pOC Currently known results about the quantitative reachability/termination
for pOC are essentially the same as for pPDA. However, the qualitative termination, i.e., the
question whether P(Reach(p(k), T )) = 1, where T is a subset of configurations with zero
counter, is solvable in polynomial time. The underlying method is based on analyzing the
trend, i.e., the long-run average change in counter value per transition. This is an important
proof concept which turned out to be useful also in the more general setting of MDPs and
stochastic games over one-counter automata (see, e.g., [9–11]). Therefore, we explain the
main idea in greater detail.

Let Δ = (Q, δ=0, δ>0,P =0,P >0) be a zero-trivial pOC. We may safely assume that for
all p,q ∈ Q there is at most one rule (p, c, q) ∈ δ>0. The behavior of Δ for positive counter
values is then fully captured by the associated finite-state Markov chain FΔ, where the set
of vertices is Q and each transition is assigned, in addition to its probability, a weight,
which encodes the corresponding change in the counter value. More precisely, p

x,c−→q is a
transition of FΔ with probability x and weight c iff (p, c, q) ∈ δ>0 and P >0(p, c, q) = x. An
example of FΔ is shown in Fig. 2 (note that the underlying pOC Δ has ten control states).

Now consider an initial configuration p(k) of Δ, and let T be the set of all configurations
with zero counter (the selective case, when T ⊆ Q × {0}, is discussed later). Our aim is
to decide whether P(Reach(p(k), T )) = 1. Obviously, almost every run w ∈ Run(p(k))

which does not visit T must visit a bottom strongly connected component (BSCC) C of FΔ.
For each such C we can easily compute the trend tC which corresponds to the long-run
average change in the counter value per transition (in other words, tC is the mean payoff
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Fig. 2 A chain FΔ and its bottom strongly connected components

determined by transition weights). More precisely, for every q ∈ C we first compute

changeq =
∑

q
x,c−→q ′

x · c

which is the expected change of counter value caused by an outgoing transition of q . Then,
we take the weighted sum of all changeq according to the unique invariant distribution πC

for C (intuitively, πC(q) gives the “frequency” of visits to q along a run initiated in (some)
state of C; see, e.g., [21]). Hence,

tC =
∑

q∈C

πC(q) · changeq .

For the BSCCs C1, C2, C3, and C4 of Fig. 2 we obtain the trends 0, 0, 1
6 , and − 1

6 , respectively
(note that the invariant distribution is uniform for each of these BSCCs). Now we distinguish
three possibilities:

– If tC < 0, then for every configuration q(�) where q ∈ C we have that q(�) terminates
with probability 1. Intuitively, this is because the counter tends to decrease on average,
and hence it is eventually decreased to zero with probability 1.

– If tC > 0, one might be tempted to conclude that P(Reach(q(�), T )) < 1 for every q ∈ C

and � ≥ 1. The intuition is basically correct, but for some small �, the configuration q(�)

may still terminate with probability one, because the initial transitions of q(�) may only
decrease the counter even if the overall trend is positive. For example, consider the con-
figuration g(1) in the underlying pOC of Fig. 2. Although g ∈ C3 and the trend of C3

is positive, g(1) terminates with probability one. In general, one can show that if q(�)

can reach a configuration with an arbitrarily high counter value without a prior visit to
a configuration with zero counter, then q(�) terminates with probability strictly less than
one; otherwise, q(�) terminates with probability one. This condition can be checked in
polynomial time by the standard reachability analysis (see, e.g., [24]), and for every q ∈ C

we can easily compute a bound k ∈ N such that P(Reach(q(�), T )) < 1 iff � ≥ k. For
example, for the state g of Fig. 2 we have that k = 2.

– If tC = 0, then for every q(�) where q ∈ C we have that q(�) terminates with probability
one iff q(�) can reach a configuration with zero counter. Again, this condition is easy to
check in polynomial time, and for each q we can easily compute a bound k ∈ Z

≥0∞ such
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that P(Reach(q(�), T )) = 1 iff � < k. For example, for the states c and e of Fig. 2 we
have that the k is equal to 1 and ∞, respectively. Intuitively, the above condition captures
the difference between two possible “types” of BSCCs with zero trend, which can be
informally described as follows:
– In Type I case, the counter can be changed by an unbounded amount along a run in C

(a concrete example is the component C2 of Fig. 2). Then, given q ∈ C, the expected
accumulated counter change between two visits of q in FΔ is zero. At the same time,
the accumulated change is negative with some positive probability. Thus, by standard
results of theory of random walks (see, e.g., [21]), for every run w of FΔ we have that
the counter change accumulated along w fluctuates among arbitrarily large positive and
negative values. However, then the corresponding run of MΔ initiated in a configuration
q(�) eventually terminates.

– In Type II case, the counter change along every run in C is bounded. A concrete exam-
ple is the component C1 of Fig. 2, where the counter is not changed at all. Then, a run
initiated in q(�) terminates either with probability one or zero, depending on whether
� is small enough or not, respectively.

Using the above observations, we can determine if a configuration q(�), where q belongs to
some BSCC of FΔ, terminates with probability one or not. If q does not belong to a BSCC of
FΔ, we simply check whether q(�) can reach a configuration q ′(�′), such that q ′ belongs to
some BSCC and q ′(�′) terminates with probability less than one. If so, then q(�) terminates
with probability less than one, otherwise it terminates with probability one.

For the selective termination, when T ⊆ Q × {0}, we have that P(Reach(q(�), T )) = 1
iff P(Reach(q(�),Q×{0})) = 1 and q(�) cannot reach a configuration r(0) 
∈ T . Thus, we
obtain the following:

Theorem 4 Let Δ = (Q, δ=0, δ>0,P =0,P >0) be a zero-trivial pOC, q(�) a configu-
ration of Δ, and T ⊆ Q×{0} a set of target configurations. The problem whether
P(Reach(q(�), T )) = 1 is in P, assuming that � is encoded in unary.

3.2 Approximation results for reachability and termination

Now we consider the problem of approximating P(Reach(s, T )) up to the given abso-
lute/relative error δ > 0.

Note that the results of Theorem 1 can be used to compute P(Reach(pα, C)) up to the
given absolute error δ > 0 in polynomial space by a simple binary search. However, since
this algorithm uses a decision procedure for the existential fragment of Tarski algebra, it is
not really practical. Observe that we can view the system ReachΔ introduced in Sect. 3.1
more abstractly as a system of polynomial equations of the form yi = Poli (y1, . . . , yn),
where n ∈ N, 1 ≤ i ≤ n, and Pol(y1, . . . , yn) is a multivariate polynomial in the variables
y1, . . . , yn with positive coefficients. Such systems are always monotone, and hence they
have the least non-negative solution in (Rn∞,�) by Knaster-Tarski theorem [41]. Also ob-
serve that if Δ is a pBPA, then ReachΔ is always probabilistic in the sense that the sum
of coefficients in every Poli (y1, . . . , yn) is bounded by 1, which does not hold for general
pPDA.

Let us consider some (unspecified) system y = P(y) of polynomial equations with pos-
itive coefficients. A naive approach to approximating the least non-negative solution of
y = P(y) is value iteration. We start with the vector of zeros 0 and successively compute
P(0), P(P(0)), P(P(P(0))), etc. This sequence of vectors is guaranteed to converge to the
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least solution of the system, but the speed of this convergence can be very slow. In general,
exponentially many iterations may be needed to produce another bit of precision. However,
one can also apply more efficient methods. In [37], it has been shown that (a decomposed
variant of) Newton’s method, when applied to y = P(y), converges linearly in the sense that
after some initial number of iterations, it produces one bit of precision per iteration. In gen-
eral, no bound is given for the initial number of iterations. A special variant of Newton’s
method applicable to probabilistic systems y = P(y) has been designed and investigated
in [23]. Although the method does not improve the worst-case upper bounds, it seems to
be more robust and delivers better performance in practical examples. A recent work [27]
shows that for probabilistic systems, the initial phase actually requires only linearly many
iterations when all variables with value 0 and 1 are eliminated in a preprocessing phase
(which is achievable in polynomial time). This already gives a polynomial-time approxima-
tion algorithm on the unit-cost rational arithmetic RAM. However, in [27] it is also shown
that one can actually obtain a polynomial-time approximation algorithm on the standard
Turing machine model by rounding down the intermediate results carefully. Interestingly, in
the special case of TermΔ, when Δ is a pOC, Newton’s method requires only polynomially
many iterations in the initial phase after eliminating all variables which are equal to 0 (which
is again achievable in polynomial time) [28].

To sum up, Newton’s method can be used to approximate P(Reach(pα, C)) for general
pPDAs, but it does not allow for improving the PSPACE worst-case complexity bound
obtained by employing the decision procedure for Tarski algebra. Still, there are at least two
tractable subcases of pBPA and pOC.

Theorem 5 Let Δ = (Γ, ↪→ ,Prob) be a pBPA, α ∈ Γ ∗ a configuration of Δ, C a regular set
of configurations of Δ represented by a DFA A, and δ > 0 a rational constant represented
as a fraction of binary numbers. Then there is r ∈ Q computable in polynomial time such
that |P(Reach(α, C)) − r| ≤ δ.

For pOC, it is not known whether the termination probabilities can be approximated in
polynomial time on the standard Turing machine model. So, we can only state a somewhat
weaker result.

Theorem 6 Let Δ = (Q, δ=0, δ>0,P =0,P >0) be a pOC, p(k) a configuration of Δ

(where k is encoded in unary), q ∈ Q, and δ > 0 a rational constant. Then there is
r ∈ Q computable in polynomial time on the unit-cost rational arithmetic RAM such that
|P(Reach(p(k), {q(0)})) − r| ≤ δ.

Approximating P(Reach(pα, C)) up to a given relative error δ > 0 is more prob-
lematic. It requires exponential time even for pBPA and termination, because the prob-
ability P(Reach(X, {ε})) can be doubly-exponentially small in the size of the underly-
ing pBPA Δ. To see this, realize that pBPA can simulate repeated squaring; let Δ =
({X1, . . . ,Xn+1,Z}, ↪→ ,Prob) where, for all 1 ≤ i ≤ n,

Xi

1
↪→ Xi+1Xi+1, Xn+1

0.5
↪→ Z, Xn+1

0.5
↪→ ε, Z

1
↪→ Z.

Then P(Reach(X1, {ε})) = 1/22n
. This argument does not work for pOC, where a positive

probability of the form P(Reach(p(k), {q(0)})) can be only singly exponentially small in
the size of the underlying pOC and the initial counter value k. Hence, it follows directly
from Theorem 6 that P(Reach(p(k), {q(0)})) can be approximated up to the relative error
δ > 0 in polynomial time on the unit-cost rational arithmetic RAM.
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4 Translating pPDA into pBPA

In this section we present the construction of [17] which transforms every pPDA into an
equivalent pBPA where all stack symbols terminate either with probability 0 or 1. This trans-
formation preserves virtually all interesting quantitative properties of the original pPDA (ex-
cept, of course, termination probabilities) and it is in some sense effective. Thus, the study of
general pPDA can be reduced to the study of a special type of pBPA, and the reduction step
does not lead to any substantial increase in complexity (at least, for the problems considered
in this survey).

For the rest of this section, we fix a pPDA Δ = (Q,Γ, ↪→ ,Prob). For all p,q ∈ Q and
X ∈ Γ , we use

– Run(pXq) to denote the set of all runs in MΔ initiated in pX that visit qε;
– Run(pX↑) to denote the set of all runs in MΔ initiated in pX that do not visit a configu-

ration with empty stack.

The probability of Run(pXq) and Run(pX↑) is denoted by [pXq] and [pX↑], respectively.
The idea behind the transformation of Δ into an equivalent pBPA Δ• is relatively sim-

ple and closely resembles the standard method for transforming a PDA into an equivalent
context-free grammar (see, e.g., [36]). Formally, the stack alphabet Γ• of Δ• is defined as
follows:

– For all p ∈ Q and X ∈ Γ such that [pX↑] > 0 we add a stack symbol 〈pX↑〉 to Γ•.
– For all p,q ∈ Q and X ∈ Γ such that [pXq] > 0 we add a stack symbol 〈pXq〉 to Γ•.

Note that Γ• is effectively constructible in polynomial space by applying the results of
Sect. 3. Now we construct the rules ↪−→• of Δ• together with their probabilities. For all
〈pXq〉 ∈ Γ• we do the following:

– if pX
x

↪→ rYZ, then for all s ∈ Q such that y = x · [rY s] · [sZq] > 0 we put

〈pXq〉 ↪
y/[pXq]−−−−→• 〈rY s〉〈sZq〉;

– if pX
x

↪→ rY where y = x · [rYq] > 0, we put 〈pXq〉 ↪
y/[pXq]−−−−→• 〈rYq〉;

– if pX
x

↪→qε, we put 〈pXq〉 ↪
x/[pXq]−−−−→• ε.

For all 〈pX↑〉 ∈ Γ• we do the following:

– if pX
x

↪→ rYZ, then for every s ∈ Q such that y = x · [rY s] · [sZ↑] > 0 we put

〈pX↑〉 ↪
y/[pX↑]−−−−→• 〈rY s〉〈sZ↑〉;

– for all q ∈ Q and Y ∈ Γ such that y = [qY↑] · ∑
pX

z
↪→qYβ

z > 0 we put 〈pX↑〉 ↪
y/[pX↑]−−−−→•

〈qY↑〉.
Note that the transition probabilities of Δ• may take irrational values, but are effectively
expressible in the existential fragment of Tarski algebra (see Theorem 2). Obviously, all
symbols of the form 〈pX↑〉 terminate with probability 0, and we show that all symbols of
the form 〈pXq〉 terminate with probability 1 (see Theorem 7).

Remark 2 The translation from Δ to Δ• makes also good sense when Δ is a pBPA. Since
qualitative termination for pBPA is decidable in polynomial time (see Theorem 3), one can
also efficiently compute the set of all stack symbols Y of Δ such that [Y↑] > 0, and hence
the set of rules of Δ• is constructible in polynomial time (the rule probabilities may still take
irrational values). Consequently, some interesting qualitative properties of pBPA are decid-
able in polynomial time, because they do not depend on the exact values of rule probabilities
in Δ• (see Sect. 7.1).
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Example 3 Consider a pPDA Δ with two control states p,q , one stack symbol X, and the
following transition rules, where a > 1/2:

pX ↪
a−→ qXX, pX ↪

1−a−−→ qε, qX ↪
a−→ pXX, qX ↪

1−a−−→ pε.

Clearly, [pXp] = [qXq] = 0. Using the results of Sect. 3, one can easily verify that
[pXq] = [qXp] = (1 − a)/a. Hence, [pX↑] = [qX↑] = (2a − 1)/a. Consequently, the
stack symbols of Δ• are 〈pXq〉, 〈qXp〉, 〈pX↑〉, and 〈qX↑〉, and the transition rules of Δ•
are the following:

〈pXq〉 ↪
1−a−−→• 〈qXp〉〈pXq〉, 〈qXp〉 ↪

1−a−−→• 〈pXq〉〈qXp〉,
〈pXq〉 ↪

a−→• ε, 〈qXp〉 ↪
a−→• ε,

〈pX↑〉 ↪
1−a−−→• 〈qXp〉〈pX↑〉, 〈qX↑〉 ↪

1−a−−→• 〈pXq〉〈qX↑〉,
〈pX↑〉 ↪

a−→• 〈qX↑〉, 〈qX↑〉 ↪
a−→• 〈pX↑〉.

As a > 1/2, the resulting pBPA has a tendency to decrease the stack height. Hence, both
〈pXq〉 and 〈qXp〉 terminate with probability 1.

Every run of MΔ initiated in pX that reaches qε can be “mimicked” by the associated run
of MΔ• initiated in 〈pXq〉. Similarly, almost every4 run of MΔ initiated in pX that does not
visit a configuration with empty stack corresponds to some run of MΔ• initiated in 〈pX↑〉.

Example 4 Let Δ be a pPDA with two control states p,q , one stack symbol X, and the
following transition rules:

pX ↪
0.5−→ pXX, pX ↪

0.5−→ qε, qX ↪
1−→ qε.

Then [pXq] = 1 and [qXq] = 1, which means that Δ• has just two stack symbols 〈pXq〉
and 〈qXq〉 and the rules

〈pXq〉 ↪
0.5−→• 〈pXq〉〈qXq〉, 〈pXq〉 ↪

0.5−→• ε, 〈qXq〉 ↪
1−→• ε.

The infinite run pX,pXX,pXXX, . . . cannot be mimicked in MΔ• , but since the total prob-
ability of all infinite runs initiated in pX is zero, almost all (but not all) of them can be
mimicked in MΔ• .

The correspondence between the runs of MΔ and MΔ• is formally captured by a finite
family of functions (·)� where � ∈ Q∪{↑}. For every run w ∈ Run(pX) in MΔ, the function
(·)� returns an infinite sequence w� such that w�(i) ∈ Γ ∗• ∪ {×} for every i ∈ Z

≥0. The
sequence w� is either a run of MΔ• initiated in 〈pX�〉, or an invalid sequence. As we shall
see, all invalid sequences have an infinite suffix of “×” symbols and correspond to those
runs of Run(pX) that cannot be mimicked by a run of Run(〈pX�〉).

So, let � ∈ Q ∪ {↑}, and let w be a run of MΔ initiated in pX. We define an infinite
sequence w� over Γ ∗• ∪ {×} inductively as follows:

4Here “almost every” is meant in the usual probabilistic sense, i.e., the probability of the remaining runs is
zero.
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– w�(0) is either 〈pX�〉 or ×, depending on whether 〈pX�〉 ∈ Γ• or not, respectively.
– If w�(i) = × or w�(i) = ε, then w�(i+1) = w�(i). Otherwise, we have that w�(i) =

〈pX†〉α, where † ∈ Q ∪ {↑}, and w(i) = pXγ for some γ ∈ Γ ∗. Let pX ↪→ rβ be the
rule of Δ used to derive the transition w(i)→w(i+1). We put

w�(i+1) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α if β = ε and † = r;
〈rY†〉α if β = Y and [rY†] > 0;
〈rY s〉〈sZ†〉α if β = YZ, [sZ†] > 0, and there is k > i such that

w(k) = sZγ and |w(j)| > |w(i)| for all i < j < k;
〈rY↑〉α if β = YZ,† = ↑, [rY↑] > 0, and |w(j)| > |w(i)|

for all j > i;
× otherwise.

We say that w ∈ Run(pX) is invalid if w�(i) = × for some i ∈ Z
≥0. Otherwise, w is valid.

It is easy to check that if w is valid, then w� ∈ Run(〈pX�〉). Hence, (·)� can be seen as a
partial function from Run(pX) to Run(〈pX�〉) which is defined only for valid runs. Further,
for every valid w ∈ Run(pX) and every i ∈ Z

≥0 we have that

– w(i) = rYβ iff w�(i) = 〈rY†〉γ for some † ∈ Q ∪ {↑} and γ ∈ Γ ∗• ,
– w(i) = rε iff w�(i) = ε and � = r .

Hence, (·)� preserves all properties of runs that depend just on the heads of visited con-
figurations. Further, (·)� preserves the probability of measurable subsets of Run(pX) with
respect to the associated probability measure P�. More precisely, we define the proba-
bility space (Run(pX),F ,P�), where F is the standard Borel σ -field generated by all
basic cylinders (see Sect. 1) and P� is the unique probability function such that for every
w ∈ FPath(pX) we have that

P� = P(Run(w) ∩ Run(pX�))

[pX�]
where P is the standard probability function. Now we can state the main theorem, which
says that (·)� is a probability preserving measurable function.

Theorem 7 (see [17]) Let Δ = (Q,Γ, ↪→ ,Prob) be a pPDA, p ∈ Q, X ∈ Γ , and � ∈
Γ ∪{↑} such that [pX�] > 0. Then for every measurable subset R ⊆ Run(〈pX�〉) we have
that (·)−1

� (R) ⊆ Run(pX) is measurable and P(R) = P�((·)−1
� (R)).

In particular, Theorem 7 implies that all symbols of the form 〈pXq〉 which belong to Γ•
terminate with probability one, because

P
(
Reach

(〈pXq〉, {ε})) = Pq

(
(·)−1

q

(
Reach

(〈pXq〉, {ε}))) = Pq

(
Run(pXq)

) = 1.

5 Termination time and total accumulated reward

Now we show how to compute the (conditional) expected total reward accumulated along
a run initiated in a given configuration before visiting a target configuration from a given
regular set. We also formulate generic tail bounds on the termination time in pPDA. This
section is based mainly on the results presented in [15, 17, 26].
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5.1 Computing and approximating the expected total accumulated reward

Results for pPDA and pBPA Let us fix a pPDA Δ = (Q,Γ, ↪→ ,Prob) and a simple reward
function f : Q × Γ ∗ → R

≥0 (recall that a reward function is simple if f (pXα) = f (pXβ)

for all pX ∈ Q × Γ and all α,β ∈ Γ ∗). As in the previous sections, for all p,q ∈ Q and
X ∈ Γ we use Run(pXq) to denote the set Reach(pX, {qε}), and [pXq] to denote the
probability of Run(pXq). If [pXq] > 0, then we also use EpXq to denote the conditional
expectation

E
(
Acc | Run(pXq)

)

where Acc is the random variable introduced in Sect. 2.4 and the set of target configurations
contains just qε. That is, EpXq is the conditional expected total reward accumulated along
a run initiated in pX before visiting qε under the condition that qε is eventually visited,
where f is the underlying reward function.

We show that the tuple of all EpXq , where [pXq] > 0, is the least solution of an effec-
tively constructible system of linear equations ExpectΔ, where the (fractions of) termination
probabilities are used as coefficients. Since EpXq can also be infinite, we need to consider
the least solution of ExpectΔ in ((R≥0∞ )k,�), where k is the number of all triples (p,X,q)

such that [pXq] > 0, and � is the component-wise ordering.
The system ExpectΔ is obtained as follows. First, we compute the set of all triples

(p,X,q) such that [pXq] > 0 (this can be done in polynomial time). For each such (p,X,q)

we fix a fresh variable 〈EpXq〉 and construct the equation given below, where all summands
with zero coefficients are immediately removed.

〈EpXq〉 = f (pX) +
∑

pX
x

↪→rY

x · [rYq]
[pXq] · 〈ErYq〉

+
∑

pX
x

↪→rYZ

∑

t∈Q

x · [rY t] · [tZq]
[pXq] · (〈ErY t 〉 + 〈EtZq〉

)
. (1)

Example 5 Let us consider a pBPA Δ with just one stack symbol I and the rules

I ↪
x−→ II, I ↪

1−x−−→ ε.

Further, let f (I) = 1. The system ExpectΔ then contains just the following equation:

〈EI 〉 = 1 + x · [I ] · (〈EI 〉 + 〈EI 〉
)
.

If x = 2
3 , then [I ] = 1

2 and hence EI = 3. If x = 1
2 , then [I ] = 1 and the only solution to the

above equation is ∞.

In general, ExpectΔ may have several solutions in ((R≥0∞ )k,�). However, if we identify
and remove all variables which are equal to 0 or ∞ in the least solution, then the resulting
system Expect′Δ has exactly one solution in ((R≥0)k,�). To see this, let us assume that
Expect′Δ has another solution ν apart from the least solution μ (note that ν − μ ≥ 0). Since
we eliminated all zero variables, μ is strictly positive in all components and hence there is
c > 0 such that (c, . . . , c) � μ. Let d be the maximal component of ν − μ. Then d > 0, and
μ − c

d
(ν − μ) is also a non-negative solution of Expect′Δ which is strictly smaller than μ,

and we have a contradiction.
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Note that one can easily identify all 〈EpXq〉 such that EpXq = 0. This is because EpXq = 0
iff every w ∈ Run(pXq) visits only configurations with zero reward (except for the last
configuration qε), and this is a simple reachability question which can be solved in poly-
nomial time by standards methods [24]. However, identifying the variables 〈EpXq〉 such
that EpXq = ∞ is not so trivial because the coefficients of ExpectΔ are given only sym-
bolically and their actual values are not at our disposal. Still, one can easily express the
question whether EpXq = ∞ in the existential fragment of Tarski algebra, and hence the
system Expect′Δ is constructible in polynomial space. This implies that the tuple of all EpXq

is effectively expressible in the existential fragment of Tarski algebra. The corresponding
formula (cf. Definition 3) can be constructed in polynomial space and its size is polynomial
in the size of Δ.

Remark 3 It is worth mentioning that in the special case when Δ is a pBPA such that all
stack symbols terminate with probability one, the system Expect′Δ and its only solution are
computable in polynomial time. Here, the only problem is to identify all stack symbols X

such that EX = ∞, which can be done by constructing the dependency graph among the
stack symbols (we say that X depends on Y if X can reach a configuration of the form Yα),
identifying strongly connected components (SCCs) in this graph, and processing them in
the bottom-up direction. Note that if EY = ∞, then EX = ∞ for all X that depend on Y .
For a bottom SCC C, we simply consider a pBPA ΔC obtained from Δ by restricting the
stack alphabet to C, and check whether ExpectΔC

has a solution in non-negative reals. If so,
EX < ∞ for all X ∈ C, otherwise EX = ∞ for all X ∈ C. A similar procedure is used when
processing the intermediate SCCs. So, we eventually decide whether EX = ∞ for every
X ∈ Γ .

The above observations can be immediately extended to the conditional expectation of
the form

E
(
Acc | Reach(pX, C)

)

where C is a simple set of target configurations (see Definition 5). This is because we can
modify a given pPDA Δ into another pPDA Δ′ by

– adding a fresh control state t where tX
1

↪→ tε for every stack symbol X of Δ;
– modifying the rules of Δ so that the only successor of every qYβ ∈ C is the configuration

tYβ;
– extending the reward function f by stipulating f (tX) = 0 for every stack symbol X of Δ.

It follows immediately that E(Acc | Reach(pX, C)) computed for Δ is equal to E(Acc |
Reach(pX, {tε})) computed for Δ′, and thus we can apply the results mentioned above.
Further, we can generalize this observation to regular sets of target configurations by using
the generic method of Remark 1. Thus, we obtain the following theorem:

Theorem 8 (see [26]) Let Δ = (Q,Γ, ↪→ ,Prob) be a pPDA, pα ∈ Q × Γ ∗ a configu-
ration of Δ, C a regular set of configurations of Δ represented by a DFA A such that
P(Reach(pα, C)) > 0, and f a simple reward function. Further, let � > 0 and δ > 0 be
rational constants. Then the problems whether E(Acc | Reach(pα, C)) < ∞ and E(Acc |
Reach(pα, C)) ≤ � are in PSPACE. Further, there is r ∈ Q computable in polynomial space
such that |E(Acc | Reach(pα, C)) − r| ≤ δ.

In the special case when Δ is a pBPA where all stack symbols terminate with probability
one, the conditional expectation E(Acc | Reach(α, {ε})) is computable in polynomial time.
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Theorem 8 can be easily extended to a more general class of linear reward functions.
Recall that a reward function f is linear if there are functions c, d : Q → R

≥0 and h : Γ →
R

≥0 such that for all pα ∈ Q × Γ ∗ we have that

f (pα) = c(p) ·
(

d(p) +
∑

X∈Γ

#X(α) · h(X)

)

where #X(α) denotes the number of occurrences of X in α. Again, we start by considering
the conditional expectation

E
(
Acc | Run(pXq)

)
.

Intuitively, the main difference from the case when f was simple is that after executing a
rule of the form pX

x
↪→qYZ, the symbol Z contributes to the total accumulated reward even

if it is hidden in the middle of the stack. Using the results about simple reward functions,
we can express the expected number of visits to a configuration with a given control state
r along a path from pX to qε. Thus, we can also express the “expected contribution” of Z

to the total reward accumulated along such a path. These considerations lead to a system of
equations similar to ExpectΔ (we refer to [26] for details). Hence, Theorem 8 holds also for
linear reward functions without any change.

Let us note that Theorem 8 can be generalized even further; it holds for an arbitrary
(fixed) conditional moment

E
(
Acci | Reach(pα, C)

)
.

In particular, one can approximate the conditional variance of Acc up to an arbitrarily small
absolute error ε > 0 in polynomial space [26].

Results for pOC In this paragraph we present the results of [15] about the conditional
expected termination time in zero-trivial pOC.

Let us fix a zero-trivial pOC Δ = (Q, δ=0, δ>0,P =0,P >0). Similarly as in Sect. 3.1, we
assume that for all p,q ∈ Q there is at most one rule (p, c, q) ∈ δ>0. Since we are primarily
interested in the (conditional) expected termination time, we fix a constant reward function
f which returns 1 for every configuration. Consistently with the notation previously adopted
for pPDA, we use Run(p↓q) to denote the set Reach(p(1), {q(0)}), and [p↓q] to denote the
probability of Run(p↓q). For every i ∈ N, we also use Run(p↓q, i) to denote the set of all
runs initiated in p(1) that visit q(0) for the first time in exactly i transitions, and [p↓q, i]
to denote the probability of Run(p↓q, i). If [p↓q] > 0, then Ep↓q denotes the conditional
expectation

E
(
Acc | Run(p↓q)

)
,

where q(0) is the only target configuration. Also recall the finite-state Markov chain FΔ

which captures the behavior of Δ for positive counter values, and the definitions of the
expected counter change at q ∈ Q, denoted by changeq , and the trend of a given bottom
strongly connected component (BSCC) C of FΔ, denoted by tC (see Sect. 3.1). For every
configuration p(k) of Δ, we use

– pre∗(p(k)) to denote the set of all configurations that can reach p(k) in MΔ;
– post∗(p(k)) to denote the set of all configurations reachable from p(k) in MΔ.

Our aim is to show that the problem whether Ep↓q < ∞ is decidable in polynomial time,
and that the value of Ep↓q (if it is finite) can be efficiently approximated. A crucial step
towards these results is the following theorem:
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Theorem 9 (see [15]) Let Δ = (Q, δ=0, δ>0,P =0,P >0) be a zero-trivial pOC, and let
p,q ∈ Q such that [p↓q] > 0. Further, let xmin denote the smallest (positive) probability
in FΔ.

(A) If q is not in a BSCC of FΔ, then Ep↓q ≤ 5|Q| / x
|Q|+|Q|3
min .

(B) Let q ∈ C, where C is a BSCC of FΔ. Further, let Conf = pre∗(q(0)) ∩ post∗(p(1)) ∩
C × N. Then
(a) if Conf is a finite set, then Ep↓q ≤ 20|Q|3/x4|Q|3

min ;
(b) if Conf is an infinite set, then

(1) if C has trend t 
= 0, then Ep↓q ≤ 85000|Q|6/(x5|Q|+|Q|3
min · t4);

(2) if C has trend t = 0, then Ep↓q is infinite.

According to Theorem 9, the value of Ep↓q is either infinite or at most exponential in the
size of Δ. Note that this does not hold for pBPA, where the value of EX can be doubly ex-
ponential in the size of the underlying pBPA (an example is easy to construct by simulating
repeated squaring similarly as in Sect. 3.2).

It follows from the results of [24] that the sets pre∗(q(0)) and post∗(p(1)) are regular and
the associated DFA are computable in polynomial time. Hence, the finiteness of Conf can
be decided in polynomial time, and thus we obtain the following corollary to Theorem 9:

Corollary 1 Let p,q ∈ Q such that [p↓q] > 0. The problem whether Ep↓q < ∞ is in P.

The bounds given in Theorem 9 also provide the missing piece of knowledge needed for
efficient approximation of the expected termination time in pOC. Recall that the tuple of
all Ep↓q , where [p↓q] > 0, is the least solution of the system of linear equations ExpectΔ.
Due to Corollary 1, we can eliminate all variables 〈p↓q〉 such that Ep↓q = 0 or Ep↓q = ∞
in polynomial time, and thus construct the system Expect′Δ. We have already shown that
Expect′Δ has only one solution. Also recall that the coefficients of Expect′Δ are fractions of
termination probabilities, which can be computed up to an arbitrarily small positive error
in polynomial time, assuming the unit-cost rational arithmetic RAM model of computation
(see Theorem 6). Using the bounds of Theorem 9, for each δ > 0 we can give ε > 0 (as
a function of δ) such that solving a perturbed system Expect′Δ, where the coefficients are
just approximated up to the absolute error ε, produces a solution whose absolute error is
bounded by δ. Further, the size of ε (i.e., the length of the corresponding binary encoding)
is polynomial in the size δ. Thus, we obtain the following:

Theorem 10 (see [15]) Let Δ = (Q, δ=0, δ>0,P =0,P >0) be a zero-trivial pOC, and let
p,q ∈ Q such that [p↓q] > 0 and Ep↓q < ∞. Further, let δ > 0 be a rational constant.
Then the value of Ep↓q can be approximated up to the absolute error δ in polynomial time,
assuming the unit-cost rational arithmetic RAM model of computation.

In the rest of this subsection we sketch the main ideas behind the proof of Theorem 9.
In particular, we indicate why Ep↓q is infinite only in case (B.b.2). First assume case (A),
i.e., q is not in a BSCC of FΔ. Then for all s(�) ∈ post∗(p(1)), where � ≥ |Q|, we have that
s(�) can reach a configuration outside pre∗(q(0)) in at most |Q| transitions. It follows that
the probability of performing a path from p(1) to q(0) of length i decays exponentially in i,
and hence

Ep↓q =
∞∑

i=1

i · [p↓q, i]
[p↓q]
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is finite. As an example, consider the states a and b of Fig. 2. A “long” path from a(1) to
b(0) inevitably loops between the control states a and b. Since there is always a chance to
enter some BSCC of FΔ, the probability of executing a path of length i which loops between
a and b decays exponentially in i.

Next assume case (B.a), i.e., C is a BSCC and Conf is a finite set. It is easy to show that
the expected time for a run in Run(p↓q) to reach C is finite. Once the run has reached C,
it basically moves within a Markov chain on Conf . By assumption, Conf is finite (which
implies, by a pumping argument, that |Conf | ≤ 3|Q|3). Consequently, after the run has
reached C, it reaches q(0) in finite expected time.

Case (B.b) requires new non-trivial techniques. For the sake of simplicity, from now on
we assume that Q = C (the general case requires only slight modifications of the arguments
presented below). We employ a generic observation which connects the study of pOC to
martingale theory (recall the definitions and results of Sect. 2.1). Let us fix an initial config-
uration r(c) ∈ Q × N. Our aim is to construct a suitable martingale over Run(r(c)). Let p(i)

and c(i) be random variables which to every run w ∈ Run(r(c)) assign the control state and
the counter value of the configuration w(i), respectively. Note that if the expected change of
counter value changes was the same for every s ∈ C, we would have changes = t where t is
the trend of C, and we could define a martingale m(0),m(1), . . . simply by

m(i) =
{

c(i) − i · t if c(j) ≥ 1 for all 0 ≤ j < i;

m(i−1) otherwise.

Since changes is generally not constant, we might try to compensate the difference among
the individual control states by adding a constant “weight” vs to each s ∈ C. That is, we aim
at designing a martingale of the form

m(i) =
{

c(i) + vp(i) − i · t if c(j) ≥ 1 for all 0 ≤ j < i;

m(i−1) otherwise.

In [15], it is shown that there indeed exists a vector of suitable vs ∈ R such that the above
stochastic process becomes a martingale. Further, the difference between the maximal and
the minimal weight assigned to some state, denoted by diff , is bounded by 2|C|/x |C|

min. Due to
this result, powerful tools of martingale theory, such as Azuma’s inequality and the optional
stopping theorem (see Sect. 2.1) become applicable to pOC. In particular, we can resolve
both case (B.b.1) and case (B.b.2) of Theorem 10.

Let us first consider case (B.b.1) when t 
= 0. By applying Azuma’s inequality to the
above martingale m(0),m(1), . . . over Run(p(1)), we show that there are 0 < a < 1 and h ∈ N

such that for all i ≥ h we have that [p↓q, i] ≤ ai . This immediately implies that Ep↓q is
finite, and the bound given in case (B.b.1) is obtained by analyzing the size of a and h.

Realize that for every w ∈ Run(p↓q, i) we have that

(
m(i) − m(0)

)
(w) = vq − vp − i · t.

Hence, [p↓q, i] ≤ P(m(i) − m(0) = vq − vp − i · t). A simple computation reveals that for
a sufficiently large h ∈ N and all i ≥ h we have the following:

– If t < 0, then

[p↓q, i] ≤ P
(
m(i) − m(0) ≥ (i/2) · (−t)

)
.
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– If t > 0, then

[p↓q, i] ≤ P
(
m(i) − m(0) ≤ (i/2) · (−t)

)
.

In each step, the martingale value changes by at most diff + t + 1, where diff is defined
above. Hence, by applying Azuma’s inequality, we obtain the following for all t 
= 0 and
i ≥ h:

[p↓q, i] ≤ exp

(

− (i/2)2t2

2i(diff + t + 1)2

)

= ai.

Here a = exp(−t28(diff + t + 1)2) < 1. Hence, Ep↓q < ∞, and the bound given in Theo-
rem 9, case (B.b.2), is computed by means of the bounds on diff and h.

Finally, consider case (B.b.2), i.e., t = 0. We need to show that Ep↓q = ∞. Since
pre∗(q(0)) ∩ post∗(p(1)) ∩ C × N is infinite, for an arbitrarily large k ∈ N there is a con-
figuration r(k) ∈ pre∗(q(0)) ∩ post∗(p(1)). We show that if k is sufficiently large, then the
expected number of transitions needed to decrease the counter by some fixed constant b is
infinite. This is achieved by analyzing the martingale m(0),m(1), . . . for r(k), but this time we
use the optional stopping theorem (see Sect. 2.1) to show that the probability of performing
a finite path of length i which decreases the counter by b decays sufficiently slowly to make
the expected length of this path infinite. It follows that Ep↓q is also infinite. We refer to [15]
for details.

5.2 Distribution of termination time

In this section we present the results of [17] about the distribution of termination time in
pPDA. These results do not have immediate algorithmic consequences, but bring a general
insight into the behavior of probabilistic recursive programs. In particular, we show that
stochastic computations defined by pPDA are “well-behaved” in the sense that if their ex-
pected termination time is finite, then the actual termination time is exponentially unlikely
to deviate from this expectation (i.e., the probability of performing a run of length n decays
exponentially in n).

Let us fix a pPDA Δ = (Q,Γ, ↪→ ,Prob) and a constant reward function f : Q × Γ →
{0,1} which assigns 1 to all configurations. Similarly as in Sect. 5.1, for all p,q ∈ Q and
X ∈ Γ we use Run(pXq) to denote Reach(pX, {qε}), and [pXq] to denote the probability
of Run(pXq). If [pXq] > 0, then EpXq denotes E(Acc | Run(pXq)) where qε is the only
target configuration and f is the underlying reward function.

Our aim is to show that for all p,q ∈ Q and X ∈ Γ such that [pXq] > 0, there are
essentially three possibilities:

– There is a “small” k ∈ N such that P(Acc ≥ n | Run(pXq)) = 0 for all n ≥ k.
– EpXq is finite and P(Acc ≥ n | Run(pXq)) decreases exponentially in n.
– EpXq is infinite and P(Acc ≥ n | Run(pXq)) decreases “polynomially” in n.

A precise formulation of this result is given below.
Due to the translation presented in Sect. 4, we can equivalently consider pBPA where

each stack symbol terminates with probability 1 or 0. Let X,Y be stack symbols. We say
that X depends on Y if X can reach a configuration with head Y . Since the symbols which
terminate with probability 0 are not interesting from the current point of view, they can be
safely removed (obviously, the symbols which terminate with probability 1 do not depend on
symbols which terminate with probability 0). So, for the rest of this section we assume that
Δ = (Γ, ↪→ ,Prob) is a pBPA where every X ∈ Γ terminates with probability 1. For every
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α ∈ Γ ∗, we use Eα to denote the expected value of Acc over Run(α) where the only target
configuration is ε (note that α terminates with probability 1). Observe that the dependence
relation partitions Γ into “strongly connected components” formed by symbols that depend
on each other, and one can also order these components into a directed acyclic graph (DAG)
which has some finite height h ≥ 1 (here the height of a DAG consisting of a single strongly
connected component is defined as 1).

Theorem 11 (see [16, 17]) Let Δ = (Γ, ↪→ ,Prob) be a pBPA where every X ∈ Γ termi-
nates with probability 1. Let xmin be the minimal probability assigned to a rule of Δ. Then
for every X0 ∈ Γ , one of the following is true (where Acc is interpreted as a random variable
over Run(X0)):

(1) P(Acc ≥ 2|Γ |) = 0.
(2) EX0 is finite and for all n ∈ N with n ≥ 2EX0 we have that

xn
min ≤ P(Acc ≥ n) ≤ exp

(

1 − n

8E2
max

)

.

Here, Emax = max{EX | X depends on X0} < ∞.
(3) EX0 is infinite and there is n0 ∈ N such that for all n ≥ n0 we have that

c/
√

n ≤ P(Acc ≥ n) ≤ d1/nd2

where d1 = 18h|Γ |/x3|Γ |
min , and d2 = 1/(2h+1 − 2). Here, h is the height of the DAG of

strongly connected components of the dependence relation, and c is a suitable positive
constant depending on Δ.

One can effectively distinguish between the three cases set out in Theorem 11. More
precisely, case (1) can be recognized in polynomial time by looking only at the structure of
the pBPA, i.e., disregarding the probabilities. Determining whether EX0 is finite or infinite
can be done in polynomial space by Theorem 8. This holds even if the transition probabilities
of Δ are represented just symbolically by formulae of the existential fragment of Tarski
algebra.

The proof of Theorem 11 is based on designing suitable martingales that are used to an-
alyze the concentration of the termination probability. Here we only sketch the proof for the
upper bound of Theorem 11 (2), which is perhaps the most interesting part. Observe that for
every α ∈ Γ ∗ such that α 
= ε, Eα < ∞, and α terminates with probability one, performing
one transition from α decreases the expected termination time by one on average. For every
w ∈ Run(X0), we denote by I (w) the maximal number j ≥ 0 such that w(j − 1) 
= ε. For
every i ≥ 0, we put

m(i)(w) = Ew(i) + min
{
i, I (w)

}
.

It is easy to see that E(m(i+1) | m(i)) = m(i), i.e., m(0),m(1), . . . is a martingale. Let
Emax = max{EX | X depends on X0}, and let n ≥ 2EX0 . By applying Azuma’s inequality
(see Sect. 2.1) we obtain

P
(
m(n) − EX0 ≥ n − EX0

) ≤ exp

(−(n − EX0)
2

2n(2Emax)2

)

≤ exp

(
2EX0 − n

8E2
max

)

.
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For every w ∈ Run(X0) we have that w(n) 
= ε implies m(n) ≥ n. It follows:

P(Acc ≥ n) ≤ P
(
m(n) ≥ n

) ≤ exp

(
2EX0 − n

8E2
max

)

≤ exp

(

1 − n

8E2
max

)

.

The proof of Theorem 11 (3) is also based on designing and analyzing a suitable martingale,
but the argument is more technical. We refer to [17] for details.

6 Mean payoff and other long-run properties

In this section we indicate how to analyze long-run average properties, such as the expected
mean payoff, for pPDA. The key idea, originally presented in [14, 25], is to abstract the
behavior of a given pPDA Δ into a finite-state Markov chain XΔ, where possible evolutions
of individual stack symbols are “summarized” and explicitly quantified. Since XΔ preserves
important behavioral aspects of Δ, the questions about long-run average properties of Δ

can be reformulated as questions about XΔ and solved by standard methods for finite-state
Markov chains.

The original definition of XΔ and the underlying analysis given in [14, 25] are somewhat
technical. In this section, we follow a simpler approach enabled by the translation presented
in Sect. 4. That is, we introduce the chain XΔ only for the special type of pBPA obtained by
this translation, which is remarkably simple. Then, we show how XΔ can be used to com-
pute/approximate the expected mean payoff for this special type of pBPA. For completeness,
we also show how to lift the obtained results to general pPDA. Let us note that the chain
XΔ is also used in Sect. 7.1 to solve the model-checking problem for pPDA and linear-time
logics.

For the rest of this section, we fix a pBPA Δ = (Γ, ↪→ ,Prob), where Γ is partitioned
into two disjoint subsets Γ↓ and Γ↑ of all symbols that terminate with probability 1 and 0, re-
spectively (cf. Sect. 4). Obviously, if X ↪→α and X ∈ Γ↓, then α ∈ Γ ∗

↓ . Similarly, if X ↪→α

and X ∈ Γ↑, then α contains at least one symbol of Γ↑, and we can safely assume that
α ∈ Γ ∗

↓ Γ↑.

Example 6 Let Δ be a pBPA with stack symbols A,B,X,Y,Z, where

X ↪
0.2−→ AY, Y ↪

0.2−→ BX, Z ↪
0.1−→ AX, A ↪

0.6−→ ε, B ↪
0.8−→ ε,

X ↪
0.1−→ BY, Y ↪

0.4−→ AY, Z ↪
0.2−→ BY, A ↪

0.2−→ B, B ↪
0.1−→ BB,

X ↪
0.3−→ Y, Y ↪

0.3−→ Z, Z ↪
0.1−→ AZ, A ↪

0.2−→ AA, B ↪
0.1−→ AA,

X ↪
0.4−→ AZ, Y ↪

0.1−→ AZ, Z ↪
0.6−→ BZ.

Then Γ↓ = {A,B} and Γ↑ = {X,Y,Z}.

Now we can define the promised Markov chain XΔ.

Definition 8 Let XΔ be a finite-state Markov chain where Γ↑ is the set of vertices, and
X

x→Y is a transition of XΔ iff x = ∑
X

y
↪→αY

y > 0.

For the pBPA Δ of Example 6, the chain XΔ is shown in Fig. 3.
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Fig. 3 The chain XΔ for the
pBPA of Example 6

Let Y ∈ Γ↑. Obviously, for almost every w ∈ Run(MΔ,Y ) there is an infinite increasing
sequence of indexes i0, i1, . . . such that w(i) ∈ Γ↑ iff i = ij for some j ∈ Z

≥0. The sequence
w(i0),w(i1), . . . is a run in XΔ initiated in Y , which we call the footprint of w. Further,
for every j ∈ Z

≥0, the j -th jump of w is the finite path w(ij ) . . .w(ij+1) in MΔ. Hence,
the transitions of XΔ represent the jumps in MΔ. One can easily verify that the mapping Υ

which to every run w ∈ Run(MΔ,Y ) assigns its footprint ŵ ∈ Run(XΔ,Y ) is defined almost
surely and preserves probability.

Let C1, . . . ,Cn be the bottom strongly connected components (BSCCs) of XΔ. For every
1 ≤ i ≤ n, let ReachXΔ

(Y,Ci) be the set of all ŵ ∈ Run(XΔ,Y ) that visit Ci , and let

pi = P
(
ReachXΔ

(Y,Ci)
)
.

Note that
∑n

i=1 pi = 1. Further, let πi be the unique invariant distribution for Ci (see, e.g.,
[21]). Then for almost all ŵ ∈ ReachXΔ

(Y,Ci) and every Z ∈ Ci we have that

lim
i→∞

#i
Z(ŵ)

i + 1
= πi(Z)

where #i
Z(ŵ) denotes the number of all indexes j such that 0 ≤ j ≤ i and ŵ(j) = Z. Since

the above defined mapping Υ preserves probability, we obtain that almost every run w ∈
Run(MΔ,Y ) whose footprint ŵ belongs to ReachXΔ

(Y,Ci) satisfies

lim
i→∞

#i
Z(w)

#i
Γ↑(w)

= lim
i→∞

#i
Z(ŵ)

i + 1
= πi(Z)

where #i
Z(w) and #i

Γ↑(w) denote the number all indexes 0 ≤ j ≤ i such that w(j) = Z and
w(j) ∈ Γ↑, respectively.

Now let f : Γ ∗ → R
≥0 be a simple reward function (see Sect. 2.4). Recall that for ev-

ery A ∈ Γ↓, we use EA to denote E(Acc | ReachMΔ
(A, ε)), i.e., the expected total reward

accumulated along a terminating path initiated in A before visiting ε. Let Z
y→U be a tran-

sition of XΔ, and let E(Z →U) be the expected total reward accumulated along a jump5

represented by Z
y→U . Observe that

E(Z → U) = f (Z) +
∑

Z
x

↪→AU

x

y
· EA. (2)

5The last configuration of a jump does not contribute to the total accumulated reward.
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Let Ci be a BSCC of XΔ with the invariant distribution πi . Then

∑

Z∈Ci

πi(Z) ·
∑

Z
y→U

y · E(Z → U) =
∑

Z∈Ci

πi(Z) ·
(

f (Z) +
∑

Z
x

↪→AU

x · EA

)

(3)

is the long-run average reward per jump in a run of Run(MΔ,Z) whose footprint visits Ci .
More precisely, for almost all w ∈ Run(MΔ,Y ) whose footprint visits Ci we have that the
long-run average reward per jump is defined (i.e., the limit of partial averages computed for
more and more jumps in w exists) and is equal to (3).

Similarly, we obtain that the long-run average length of a jump exists for almost all
w ∈ Run(MΔ,Y ) whose footprint visits Ci and is equal to the same value (observe that the
long-run average length of a jump is actually the long-run average reward per jump with
respect to the constant reward function 1 which assigns 1 to every configuration; hence, we
can just re-use (3) for another reward function).

Since the long-run average reward per jump as well as the long-run average length of a
jump are the same for almost all w ∈ Run(MΔ,Y ) whose footprint visits Ci , the long-run
average reward per configuration (i.e., the value of the random variables MPsup and MPinf
introduced in Sect. 2.4) should be equal to

∑
Z∈Ci

πi(Z) · (f (Z) + ∑
Z

x
↪→AU

x · Ef

A)
∑

Z∈Ci
πi(Z) · (1 + ∑

Z
x

↪→AU
x · E1

A)
(4)

for almost all w ∈ Run(MΔ,Y ) whose footprint visits Ci . This is correct if (4) is defined,
i.e., the numerator or the denominator is finite. If they are both infinite (which may happen),
then the problem of computing the expected mean payoff becomes more problematic. We
may even have that MPsup(w) 
= MPinf (w) for almost all runs w ∈ Run(MΔ,Y ) whose
footprint visits Ci . A more detailed analysis of this problematic case is still missing in the
literature.

Observe that the denominator of (4) is finite if E1
A is finite for every A ∈ Γ↓. This moti-

vates the following definition (later we also discuss the problem of computing the expected
mean payoff for general pPDA, and therefore we formulate our definition for general pPDA).

Definition 9 Let Δ = (Q,Γ, ↪→ ,Prob) be a pPDA. We say that Δ is well-terminating if for
all p,q ∈ Q and X ∈ Γ such that [pXq] > 0 we have that EpXq < ∞, where the underlying
reward function assigns 1 to every configuration (cf. Sect. 5.1).

From now on, we assume that the pBPA Δ fixed above is well-terminating, which means
that E1

A is finite for all A ∈ Γ↓. Since f is simple, we actually have that E
f

A is also finite for
all A ∈ Γ↓. For every BSCC Ci of XΔ, we use vi to denote the value defined by (4), and pi

to denote the probability of reaching Ci from Y in XΔ. Now observe the following:

– The invariant distribution πi is the unique solution of the system of linear equations y =
y · M, where M is the transition matrix of Ci (see, e.g., [21]).

– The tuple of all E
f

A , where A ∈ Γ↓ and E
f

A > 0, is the unique solution of the system of
linear equations Expect′Δ in ((R≥0)k,�) (see Sect. 5.1). Note that the system Expect′Δ is
constructible in polynomial time even if the transition probabilities of Δ are encoded just
symbolically in Tarski algebra (since all E

f

A are finite, we only need to recognize those
E

f

A that are equal to zero, i.e., we do not rely on the procedure outlined in Remark 3 which
requires explicit values of transition probabilities).
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Analogous observations hold for the tuple of all E1
A. Here the situation is even simpler,

because all of E1
A are positive.

– The probability pi is a component of the unique solution of an efficiently constructible
system of linear equations, where the transition probabilities of XΔ are used as coeffi-
cients (see, e.g., [5]).

The above observations imply that if the transition probabilities of Δ are given explicitly
as rational numbers, then both vi and pi are rational and computable in polynomial time.
If Δ is obtained by running the translation algorithm of Sect. 4 with some well-terminating
pPDA on input, then the transition probabilities of Δ are encoded just symbolically in the
existential fragment of Tarski algebra (but they are already guaranteed to be positive). In this
case, we cannot compute vi and pi directly, but we can still express them in the existential
fragment of Tarski algebra by a formula constructible in polynomial time.

Note that P(MPsup = MPinf = vi) is not necessarily equal to pi , because there can be
another BSCC Cj of XΔ such that vj = vi , and then P(MPsup = MPinf = vi) is at least
pi + pj . Since all vi ’s are expressible in the existential fragment of Tarski algebra, we can
decide whether vi = vj in space polynomial in ||Δ||, and thus identify all BSCCs with the
same value.

Now we show how to lift the above results to general pPDA. Let us fix a well-terminating
pPDA Δ, a simple reward function f over the configurations of Δ, and a configura-
tion p0X0 ∈ Q × Γ that cannot reach a configuration with empty stack (note that the
problem whether a given pPDA Δ is well-terminating is decidable in polynomial space).
If we interpret MPsup and MPinf as random variables over Run(p0X0), we obtain the fol-
lowing:

– Let v1, . . . , vm be the eligible values obtained for the symbol 〈p0X0↑〉 of the pBPA Δ•
by the method described above, and let p1, . . . , pm be the associated probabilities. Then
almost all runs of Run(p0X0) can be split into m disjoint classes R1, . . . , Rm such that
– P(Ri ) = pi for all 1 ≤ i ≤ m;
– for almost all w ∈ Ri we have that MPsup(w) = MPinf (w) = vi .
This follows from the correspondence between the runs in Δ and Δ• established in Sect. 4.

Thus, we obtain the following theorem:

Theorem 12 Let Δ = (Q,Γ, ↪→ ,Prob) be a well-terminating pPDA, f : Q × Γ ∗ → R
≥0

a simple reward function, and p0X0 ∈ Q × Γ a configuration that cannot reach a config-
uration with empty stack. Then for almost all w ∈ Run(p0X0) we have that MPsup(w) =
MPinf (w), and there are at most |Q| · |Γ | distinct values that MPsup and MPinf may
assume over Run(p0X0) with positive probability. Moreover, these values and the associ-
ated probabilities can by approximated up to a given absolute error δ > 0 in polynomial
space.

Let us note that Theorem 12 holds also for linear reward functions.

7 Model-checking

Finally, we present the existing results about the model-checking problem for pPDA and
formulae of linear-time and branching-time logics.
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Fig. 4 Summary of results for pPDA/pBPA and linear-time model-checking

7.1 Linear-time logics

Results for pPDA and pBPA Model-checking pPDA against deterministic Büchi specifica-
tion was already studied in [25], where it was shown that the quantitative model-checking
problem, i.e., the question whether the probability of all runs accepted by a given determin-
istic Büchi automaton is bounded by a given � ∈ [0,1], is solvable in exponential time. This
result was extended to deterministic Muller automata (and hence all ω-regular properties)
in [19]. The complexity of quantitative and qualitative model-checking problem for pPDA,
pBPA and LTL was studied in greater detail in [30], where it was shown that for a given
pPDA Δ and a given LTL formula ϕ, the quantitative and qualitative model-checking prob-
lem is EXPTIME-hard and solvable in space polynomial in ||Δ|| and time exponential in
||ϕ||. Moreover, it was shown that the qualitative LTL model-checking problem is solvable
in polynomial time for pBPA and every fixed LTL formula. The upper bounds for LTL re-
quire different techniques than the ones for automata specifications, and the lower bounds
are inherited from the non-probabilistic case [6, 38].

The current knowledge about quantitative/qualitative linear-time model-checking is sum-
marized in Fig. 4. Here DRA stands for deterministic Rabin automata specifications (see
Definition 10 below).

Using the techniques presented in previous sections, the results about model-checking
DRA specifications are actually easy to prove.

Definition 10 A deterministic Rabin automaton (DRA) is a tuple D = (D,Σ, → , dinit,R),
where D is a finite set of control states, Σ is a finite input alphabet, → ⊆ D × Σ ×
D is a deterministic and total transition relation, d0 ∈ D is an initial state, and R =
(E1,F1), . . . , (En,Fn) is a Rabin acceptance condition, where Ei,Fi ⊆ D.

Let u be an infinite word over the alphabet Σ . A computation of D over u is an infinite
sequence of states c(u) = d0, d1, d2, . . . such that d0 = dinit and di

u(i)−→di+1 for all i ∈ Z
≥0.

We say that u is accepted by D if there is 1 ≤ i ≤ n such that all states of Ei appear in c(u)

finitely many times, and at least one state of Fi appears in c(u) infinitely many times.

Let Δ = (Q,Γ, ↪→ ,Prob) be a pPDA, and let p0X0 ∈ Q × Γ be a configuration of Δ

that cannot reach a configuration with empty stack. Further, let D = (D,Σ, → , dinit,R) be
a DRA where Σ = Q × Γ is the input alphabet. We say that w ∈ Run(p0X0) is recognized
by D if the corresponding word p0X0 p1X1 p2X2 . . . , where piXi is the head of w(i), is
accepted by D . The set of all w ∈ Run(p0X0) that are recognized by D is denoted by
Run(p0X0,D).

Our aim is to compute/approximate the probability of Run(p0X0,D). This is achieved
in three steps.

Step I. We compute the synchronized product of Δ and D , which is a pPDA Δ×D that
behaves like Δ but also simulates the execution of D in its finite control. Hence, the set of
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control states of Δ×D is Q × D, and if pX
x

↪→qα is a rule of Δ and d
pX−→d ′ a transition

of D , then (p, d)X
x

↪→ (q, d ′)α is a rule of Δ×D .
Let w ∈ Run(MΔ×D, (p0, dinit)X0), and let inf(w) be the set of all d ∈ D such that

w visits infinitely many configurations with head of the form (q, d)Y . We say that w

is accepting if there is 1 ≤ i ≤ n such that inf(w) ∩ Ei = ∅ and inf(w) ∩ Fi 
= ∅.
Let Run(Δ×D, (p0, dinit)X0,Accept) be the set of all accepting runs of Run(MΔ×D,

(p0, dinit)X0). Since D just “observes” the computation of Δ in Δ×D without any real
influence, we have that

P
(
Run(p0X0,D)

) = P
(
Run

(
Δ×D, (p0, dinit)X0,Accept

))
.

Step II. We translate Δ×D into the corresponding pBPA Δ×D• by the construction
given in Sect. 4. Let w ∈ Run(MΔ×D• , 〈(p0, dinit)X0↑〉), and let inf(w) be the set of all
d ∈ D such that w visits infinitely many configurations with head of the form 〈(q, d)Y�〉.
Similarly as above, we say that w is accepting if there is 1 ≤ i ≤ n such that inf(w)∩Ei = ∅
and inf(w) ∩ Fi 
= ∅, and we use Run(Δ×D•, 〈(p0, dinit)X0↑〉,Accept) to denote the set
of all accepting runs. Due to the correspondence between the runs in MΔ×D and MΔ×D•
established in Sect. 4, we can conclude that

P
(
Run

(
Δ×D, (p0, dinit)X0,Accept

)) = P
(
Run

(
Δ×D•,

〈
(p0, dinit)X0↑

〉
,Accept

))
.

Another important observation is that if Δ is a pBPA, then the set of rules of Δ×D• is
computable in time polynomial in ||Δ|| and ||D||. This does not follow immediately from
Remark 2, because Δ×D is not a pBPA. However, if Δ is a pBPA, then the control unit
of Δ×D just stores the current state of D , and hence for every configuration dY of Δ×D
we have that it terminates with the same probability as the configuration Y of Δ. Thus, all
information need for computing the set of rules of Δ×D• can be obtained by analyzing the
pBPA Δ.

Step III. We construct the Markov chain XΔ×D• of Sect. 6, and classify each BSCC of
XΔ×D• as either “good” or “bad” with respect to the Rabin condition R. It turns out that
almost all runs w ∈ Run(Δ×D•, 〈(p0, dinit)X0↑〉) whose footprint visits a good BSCC of
XΔ×D• are accepting, and almost all runs w ∈ Run(Δ×D•, 〈(p0, dinit)X0↑〉) whose foot-
print visits a bad BSCC of XΔ×D• are not accepting. Hence, P(Run(p0X0,D)) is equal
to the probability of visiting a good BSCC in XΔ×D• , and from this we obtain the desired
results.

More concretely, let C be a BSCC of XΔ×D• . Note that the elements of C are symbols
of the form 〈(q, d)Y↑〉. We compute the set Cinf of all d ′ ∈ D such that there exists a con-
figuration with head of the form 〈(r, d ′)Z�〉 reachable from some 〈(q, d)Y↑〉 ∈ C in the
Markov chain MΔ×D• . Note that Cinf can be computed in polynomial time if the set of rules
of Δ×D• is given (the precise probabilities of these rules are irrelevant). In particular, if Δ

is a pBPA, then Cinf can be computed in time polynomial in ||Δ|| and ||D|| (see above). We
declare C as good if there is 1 ≤ i ≤ n such that Cinf ∩Ei = ∅ and Cinf ∩Fi 
= ∅. Now it suf-
fices to realize that for almost every run w ∈ Run(〈(p0X0)X↑〉) in MΔ×D• whose footprint
in XΔ×D• visits C we have that inf(w) = Cinf. So, the probability

P
(
Run

(
Δ×D•,

〈
(p0, dinit)X0↑

〉
,Accept

))

is equal to the probability of visiting a good BSCC of XΔ×D• from 〈(p0, dinit)X0↑〉
in XΔ×D• . Since XΔ×D• has finitely many states, this probability is a component in the
unique solution of an effectively constructible system of linear equations whose coefficients
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are the transition probabilities of XΔ×D• (see, e.g., [5]). Since the transition probabilities
of XΔ×D• are effectively expressible in the existential fragment of Tarski algebra (cf. The-
orem 2), the same can be said about the probability of our interest. Thus, we obtain the
PSPACE upper bounds given in Fig. 4.

If Δ is a pBPA, then the rules of Δ×D• are computable in time polynomial in ||Δ||
and ||D|| (see above). This means that the transitions of XΔ×D• are also computable in
polynomial time (see Definition 8). Hence, we can decide in polynomial time whether all
BSCC of XΔ×D• reachable from 〈(p0, dinit)X0↑〉 are good. Thus, we obtain the P upper
bound for qualitative DRA properties and pBPA of Fig. 4.

Results for pOC The qualitative and quantitative model-checking problems for pOC and
linear-time properties encoded by DRA was analyzed in [15]. To some extent, the method
is similar to the one for pPDA described in the previous paragraph, but the underlying an-
alytical techniques are different. Again, it is shown that the probability of all runs that are
recognized6 by a given DRA is equal to the probability of visiting a “good” BSCC in a suit-
able finite-state Markov chain YΔ×D (the chain YΔ×D is somewhat different from the chain
XΔ×D• used for pPDA). The set of transitions of YΔ×D is computable in polynomial time,
and the “good” BSCCs of YΔ×D are also computable in polynomial time. Thus, we obtain
the following:

Theorem 13 Let Δ = (Q, δ=0, δ>0,P =0,P >0) be a pOC and D = (D,Σ, → , dinit,R) a
DRA where Σ = Q × {0,1}. For every configuration p(k), where k is encoded in unary, the
problem whether almost all runs initiated in p(k) are recognized by D is in P.

Further, one can efficiently approximate the probability of reaching a good BSCC in
YΔ×D by approximating the values of its transition probabilities and solving the correspond-
ing system of linear equations. The underlying analysis is not completely simple and relies
on the divergence gap theorem, which bounds a positive non-termination probability in pOC
away from zero (this theorem has been established in [15] by analyzing the martingale con-
structed in Sect. 5.1). This leads to the following result:

Theorem 14 Let Δ = (Q, δ=0, δ>0,P =0,P >0) be a pOC, D = (D,Σ, → , dinit,R) a DRA
where Σ = Q × {0,1}, and δ > 0 a rational constant. For every configuration p(k), where
k is encoded in unary, the probability of all runs initiated in p(k) that are recognized by D
can be approximated up to the relative error δ in polynomial time on the unit-cost rational
arithmetic RAM.

7.2 Branching-time logics

The currently known results about model-checking pPDA and pBPA against branching-
time formulae of PCTL and PCTL∗ established in [12, 19] are summarized in Fig. 5. The
abbreviation “p.c.” stands for program complexity, i.e., the respective upper bounds hold for
an arbitrary fixed formula, and the lower bounds hold for some fixed formula.

The undecidability of the model-checking problem for pPDA and PCTL is proven by
reduction from the Post’s correspondence problem (see below). The fundamental idea of

6Formally, the “head” of a given pOC configuration p(k) is either (p,0) or (p,1), depending on whether
k = 0 or k > 0, respectively. The input alphabet of the corresponding DRA is then Q × {0,1}.
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Fig. 5 Summary of results for pPDA/pBPA and branching-time model-checking

encoding words into probabilities which lies behind this proof appeared for the first time
in [14]. The undecidability proof for pBPA and PCTL∗ is obtained as a slight modification
of the construction used for pPDA and PCTL. However, the question whether this undecid-
ability result can be extended to pBPA and PCTL is still open.

The 2-EXPTIME (and EXPTIME) upper bounds on model-checking pPDA against
qPCTL∗ (and qPCTL) rely on the results of [30] about LTL model-checking for pPDA.
Using these results, one can show that the set of all configurations that almost surely satisfy a
given path formula with regular valuations of atomic propositions is also effectively regular,
i.e., the associated DFA is effectively constructible. From this one obtains a model checking
algorithm for qPCTL∗.

The 2-EXPTIME (and EXPTIME) lower bounds on model-checking pPDA against
qPCTL∗ (and qPCTL) are based on standard techniques from non-probabilistic model-
checking algorithms [7, 42].

We sketch the main idea of the undecidability proof for model-checking pPDA against
PCTL formulae. The result is obtained by reduction from (a slightly modified version of)
the Post’s correspondence problem (PCP). An instance of PCP consists of two sequences
x1, . . . , xn and y1, . . . , yn of words over the alphabet Σ = {A,B,•} such that all xi and yj

have the same length m. The question is whether there is a finite sequence i1, · · · , ik of
indexes such that xi1 · · ·xik and yi1 · · ·yik are the same words after erasing all occurrences of
“•”. Given such an instance, we construct a pPDA Δ where

– the number of control states is O(m · n), and there are always three distinguished control
states g, c, and t ;

– the stack alphabet of Δ is fixed and contains the symbols Z, Y , and nine symbols of the
form (z, z′) where z, z′ ∈ Σ .

Further, we define a PCTL formula

Φ ≡ ♦>0
(
cZ ∧ ♦=1/2 tY

)

where the atomic propositions cZ and tY are valid in exactly all configurations with head
cZ and tY , respectively. The formula ♦∼�(Ψ ) is an abbreviation for P∼�(true U Ψ ).

Our construction ensures that the given PCP instance has a solution iff gZ |=ν Φ , where
ν is the simple valuation described above (from now on, we omit the ν superscript in |=ν ).
From the initial configuration gZ, the pPDA Δ tries to “guess” a solution to our PCP in-
stance by pushing pairs of words (xi, yi) successively to the stack. Since xi and yi have
the same length m, this is implemented by pushing pairs of letters from Σ . For example,
if xi = AAB and yi = BA•, then the pair (xi, yi) is stored as a sequence of three stack
symbols (A,B), (A,A), (B,•), where (B,•) is on top of the stack. After storing a chosen
pair of words, the automaton can either go on with guessing another pair of words, or enter
a checking configuration by changing the control state from g to c and pushing the symbol
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Fig. 6 Configurations reachable from cZ(A,A)(A,•)(•,A)(B,B)Z

Z on top of the stack. The transition probabilities do not matter here, and hence we assume
they are distributed uniformly. This “guessing phase” is formalized below. Note that a pair
(xi, yi) needs to be pushed “from right to left” because the top of the stack is on the left-hand
side (we use x̂i and ŷi to denote the reverse of xi and yi , respectively). Since transition prob-
abilities are distributed uniformly, we do not write them explicitly. The symbol “|” separates
alternatives.

gX →g1
1X | · · · | g1

nX,

g
j

i X →g
j+1
i

(
x̂i (j), ŷi (j)

)
X,

gm+1
i X → cZX | gX.

Here 1 ≤ i ≤ n, 1 ≤ j ≤ m, x̂i (j) and ŷi (j) denote the j th letters in x̂i and ŷi , respectively,
and X ranges over the stack alphabet.

Obviously, a configuration of the form cZα is reachable from gZ iff α ≡
(a1, b1) · · · (a�, b�)Z and there is a sequence i1, . . . , ik such that a� · · ·a1 = xi1 · · ·xik and
b� · · ·b1 = yi1 · · ·yik . The crucial part of the construction is the next phase which verifies
that the guess was correct, i.e., that the words stored in the first and the second component
of stack symbols are the same when “•” is disregarded. First, we erase Z from the top of the
stack and change the control state to either v or v̂, which intuitively means that we are going
to read the letters stored either in the first or in the second component of stack symbols,
respectively. Then, we start to erase the symbols from the stack one by one according to the
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following transition rules (again, the transition probabilities are distributed uniformly):

cZ →vε | v̂ε, v(A, z)→ tY | vε, v̂(z,A)→ rY | v̂ε, tY → tY,

v(B, z)→ rY | vε, v̂(z,B)→ tY | v̂ε, rY → rY.

v(•, z)→vε, v̂(z,•)→ v̂ε,

vZ → tY | rY, v̂Z → tY | rY,

Here z ranges over Σ . We claim that a checking configuration satisfies the formula
♦=1/2 tY iff the previous guess was correct. To get some intuition, let us evaluate
the probability of reaching a configuration with the head tY for, e.g., a configuration
cZ(A,A)(A,•)(•,A)(B,B)Z. By inspecting the part of MΔ reachable from cZ(A,A)(A,•)

(•,A)(B,B)Z (see Fig. 6), one can easily confirm that this probability is equal to

1

2

((

1 · 1

2
+ 1 · 1

22
+ 0 · 1

23
+ 1 · 1

24

)

+
(

0 · 1

2
+ 0 · 1

22
+ 1 · 1

23
+ 1 · 1

24

))

which can be written in binary as follows: 1
2 (0.1101 + 0.0011). The first three digits after

the binary point in 0.1101 and 0.0011 reflect the structure of the words AA•B and A•AB

stored in the stack, and the last 1 is due to the Z at the very bottom. Note that the role of A in
the two words is dual—in the first case, it generates 1’s, and in the second case it generates
0’s (similarly for B). The symbol • is just popped from the stack with probability one,
which does not influence the probability of reaching a configuration satisfying tY . Note that
the probabilities 0.1101 and 0.0011 are “complementary” and their sum is equal to 1. This
“complementarity” breaks down iff the words stored in the first and the second component
of stack symbols are not the same, in which case the sum is different from 1.

The above construction does not directly work for pBPA, because here we cannot carry
any information down the stack when popping the symbols. It is possible to overcome this
problem, but the constructed formula becomes more complicated and it is expressible only
in PCTL∗.
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16. Brázdil T, Kiefer S, Kučera A, Hutařová Vařeková I (2010) Runtime analysis of probabilistic programs
with unbounded recursion. CoRR abs/1007.1710
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