
jMoped: A Test Environment for Java Programs

Dejvuth Suwimonteerabuth, Felix Berger, Stefan Schwoon, and Javier Esparza

Technische Universität München, Germany

http://www7.in.tum.de/tools/jmoped/

Introduction

jMoped supports unit testing of Java programs using model-checking techniques.
Given a Java method and a (finite) range of inputs, it performs a reachability anal-
ysis to check the program for these inputs. Highlights include:

• Symbolic testing: uses a BDD-based model checker for testing a large set of inputs.

•Generates coverage information from model-checking results.

•Tests for common Java errors (assertion violations, null-pointer exceptions, etc).

•Eclipse plug-in for browsing Java files, controlling the model checker, and viewing
coverage information.

•Generates JUnit test cases for faulty inputs.

jMoped

mark with mark with mark with

backward analysis

create test case create call trace

ranges
Java source

not covered

covered

exception error

Figure 1: Overview of jMoped.

jMoped supports almost all fundamental features of Java, e.g. assignment, method
call, recursion, exception, inheritance, abstraction, and polymorphism. On the other
hand, it does not handle negative numbers, floats, and multi-threading programs.

Figure 2: A small Java code demonstrating jMoped features.

jMoped works smoothly with small programs, which could be numerically intensive,
have many boundary cases, and make use of many features of the language. For
larger programs, where analysing the entire state space is infeasible, jMoped offers
an option to abstract some parts of the code or even the whole Java library.

Background

The tool consists of three parts: a graphical user interface (Eclipse plug-in), a trans-
lator, and a model-checker at the back-end.

plug-in javac translator Moped

Remopla

Reachable stack symbols

Java source Bytecode

code status

Figure 3: Overview of the architecture.

The model checker at the back-end is Moped, a model checker for symbolic pushdown
systems (SPDS). Remopla is the language of Moped, which is essentially a shorthand
for describing SPDS.

module int fac(int n(5)) {
int m(5);

if

:: (n==0 || n==1) -> return 1;

:: else -> m = fac(n-1); return n*m;

fi;

}

Figure 4: A factorial program written in Remopla language.

The translator translates Java bytecodes into Remopla. Usually, one bytecode in-
struction is translated to one Remopla statement. The translation idea is summarized
in the following table.

Bytecode Remopla

Stack of frames SPDS stack
(Bounded) Operand stack Local variable
Local variable Local variable
Static field Global variable
Object manipulation Heap simulation

The heap is simulated to handle objects. The simulation is achieved via a global
array and a pointer:

•Every time a new object is created, it occupies some parts of the array.

•The pointer is always updated to the next available block of the array, which is
determined by the size of the objects.

•E.g., int[] a = new int[3];

ptr

3

a ptr

.

Also, every class is assigned a unique id :

•Used mainly for supporting polymorphism when there is a need to differentate
types of objects that are stored in the array.

•Virtual fields of an object are kept in the heap, thus they determine the size of the
object in the array.

•E.g., class C { int v; } and C a = new C();

ptr

id

a ptr

.

Working with jMoped

Figure 5 shows an example when running with a Quicksort implementation found
on the web. To start jMoped, users select a method from which the analysis should
start. Here, the method sort starting at line 43 was chosen.

Figure 5: A view of the plug-in. The left-hand side is the plug-in interface,
while the right-hand side shows parts of the code and the analysis results.

jMoped has two modes of operation.

(i) Exhaustively explores the program for all inputs within the bounds provided by
the user. This is done in two steps. First, the program (which reads inputs
from its user) is transformed into another program that nondeterministically
generates an input. Then, the checker exhaustively explores all behaviours of
the transformed program.

(ii) Performs backward analysis starting from an instruction.

jMoped graphically displays its progress with the following markers.

not covered covered
assertion error null-pointer exception
array bound violation heap overflow

After the analysis, users can either create a call trace or a JUnit test case that
reaches a given statement or violates some assertion.

Figure 6: Options available when the red marker is clicked.

