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Abstract

Under the aspect of gamification I developed a system for checking equivalence of

various representations of regular and ω-regular languages. Playing this game, the user is

shown a representation of an (ω-)regular language and is supposed to give an equivalent

representation of another kind. If the input is incorrect, the user is shown a word that

distinguishes the given representation from the entered one and the user can try again. The

game supports (non-)deterministic finite state automata, regular expressions, monadic

second order logic (MSOL) formulas, Büchi automata, ω-regular expressions, and linear

temporal logic (LTL) formulas. Additionally, a data structure and a parser for MSOL

formulas were developed.

Inhaltsangabe

Unter dem Aspekt der Gamification habe ich ein System zur Überprüfung der

Äquivalenz von verschiedenen Repräsentationen regulärer und ω-regulärer Sprachen

entwickelt. Im Verlauf des Spiels sieht der Spieler eine Repräsentation einer (ω-)regulären

Sprache und soll dazu eine äquivalente Repräsentation einer anderen Form eingeben.

Ist die Eingabe nicht korrekt, so wird dem User ein Wort gezeigt, das die beiden

Repräsentationen unterscheidet und der User kann einen neuen Versuch starten. Es werden

(nicht-)deterministische endliche Automaten, reguläre Ausdrücke, Monadic Second Order

Logic (MSOL) Formeln, Büchi-Automaten, ω-reguläre Ausdrücke und Linear Temporal

Logic (LTL) Formeln unterstützt. Zusätzlich habe ich eine Datenstruktur und einen Parser

für MSOL-Formeln implementiert.



Contents

1 Introduction 3
1.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Functional requirements . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Non functional requirements . . . . . . . . . . . . . . . . . . . . . . 5

2 Theoretical foundation 7
2.1 Regular languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 ω-regular languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 The conversion game 14
3.1 Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.1 Menu structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.2 Game process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.3 Game logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.4 User interface design . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Modifying the existing conversion game modes . . . . . . . . . . . . . . . . 18
3.2.1 (De-)Activating and adding MSOL macros . . . . . . . . . . . . . . 18
3.2.2 Changing available levels . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Adding new functionalities to the conversion game . . . . . . . . . . . . . . 20
3.3.1 Adding new representations of (ω)-regular languages . . . . . . . . 20
3.3.2 Adding new game modes . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Implementation of the Monadic Second Order Logic 26
4.1 Data structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Conversion to FSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4 Help, editor, and input dialog . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Conclusion 30

1



CONTENTS 2

List of figures 33

List of tables 34

Appendices 34

A UML class diagrams 35

B User Manual 38

C JFLAP Copyright 45



Chapter 1

Introduction

Computer Science students often have more difficulties with automata theory courses than

with other computer science lectures[Gram 99]. According to Gramond and Rodger this

has two reasons. Firstly, the automata theory traditionally requires more mathematical

basics than other courses. Without those, students can’t follow the important proofs.

Secondly, immediate feedback when working with automata theory problems is crucial,

yet not given if students try to solve these with pencil and paper. Even animations can be

useless, if they are simply shown to the students as the solution[Lawr 94]. They need to

work on problems and receive immediate feedback in order to understand the concepts of

automata theory. For example, Rodger has found that access to the JFLAP tool [Rodg 06]

made automata theory course concepts easier to comprehend and rendered the course more

enjoyable to the students[Rodg 09].

In order to achieve higher student engagement, the education sector increasingly

implements gamification [Kapp 12]. Searching the literature, one finds multiple definitions

for gamification, mostly depending on the context. The most commonly used one can be

found in [Dete 11] where Deterding et al. define gamification as
”
the use of game design

elements in non-game contexts“. The higher engagement can be explained by Deci and

Ryan’s model of extrinsic and intrinsic motivation[Ryan 00a]. According to their model,

games may trigger the latter. That means that students don’t play the game because

they are forced to or because they are offered a reward for doing so, but rather because

it’s actually fun. They also found out that intrinsic motivation may lead to better long

term learning outcomes in academic contexts[Ryan 00b]. McGrath and Bayerlein show

the benefits of gamification in the context of online learning in [McGr 13].

3
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On the other hand, it still isn’t clear how exactly gamification influences engagement

with contents and subsequently learning outcome in educational context. A literature

review[Hama 14] showed that gamification mostly provides positive effects on engagement

but varies greatly on the context it is used in. Koivisto and Hamari have shown

that aspects such as age and gender have an effect on the benefits of gamifying

exercises[Koiv 14]. Some researchers even sound a note of caution when it comes to

gamification. When focusing solely on the game or offering to great rewards, the extrinsic

motivation is augmented and the intrinsic one is reduced[Ryan 00a]. For example,

Hanus[Hanu 15] conducted a longitudinal study where he found out that a lecture which

was completely focused on scoring high in a course intern game led to lower motivation

and satisfaction of the students and even to worse exam results compared to the non

gamified pendant.

Nevertheless, gamification offers a good opportunity to bring variety to university courses

if used moderately.

1.1 Related work

There already is a number of simulation tools for (ω-)regular languages. For example, the

language emulator tool [Viei 04] can simulate all kinds of finite word automata as well as

regular expressions but doesn’t offer the functionality of comparing. Rodger’s open source

project JFLAP [Rodg 06] incorporates functionalities for comparing (non-)deterministic

finite word automata as well as converting regular expressions, DFAs, and NFAs into

one another. Norton[Nort 09] has implemented an extension for JFLAP that gives

feedback on comparing two finite word automata. The second generation of the GOAL

project[Tsai 13](http://goal.im.ntu.edu.tw) handles (non-)deterministic finite word

automata and regular expressions as well as Büchi automata, ω-regular expressions,

and linear temporal logic formulas. A comparison of any two representations returns

a distinguishing word in the case of nonequivalence.

Yet none of these offer the combined functionality of converting one representation into

another in the form of a dialog with immediate feedback. Moreover, monadic second order

logic formulas are handled in none of the mentioned.

http://goal.im.ntu.edu.tw
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1.2 Problem definition

The scientific findings mentioned above suggest an experimental use of a conversion game

for various kinds of representations of (ω-)regular languages as a supplement for the

automata theory lecture. Considering the lack of such a feature in all related work, the

goal of this project is to implement such a system. Beforehand, the following requirements

have been laid down in consultation with Prof. Esparza:

1.2.1 Functional requirements

The tool must contain an ordinary checking mode. It allows the user to input two

representations of (ω-)regular languages and the systems computes if they are equivalent.

If they are representations of different languages, the system ought to return a word of

minimal length that distinguishes the languages. This way the user cannot only play with

given representations but also work with examples that come to his/her mind.

Secondly, the system must implement an exercise mode. In this mode the system proposes

a representation of an (ω-)regular language. The user is then challenged to give an

equivalent representation of another kind. If the user’s input proves not equivalent to

the given representation, the system must return a word of minimal length distinguishing

the given from the entered representation and display it along with a note about which

language contains it. Afterwards, the user must have the possibility to easily modify

his input to try again. To help the user keep track of his past tries, a history must be

available that displays the distinguishing word of each guess. In order to help the students

of the lecture
”
Automata theory“[Espa 12], all language representations occurring in that

course must be dealt with. These are (non-)deterministic finite state automata, regular

expressions, and monadic second order logic formulas for regular languages as well as

Büchi automata, ω-regular expressions, and linear temporal logic formulas for ω-regular

languages.

1.2.2 Non functional requirements

It is crucial that the user can concentrate on the task of converting one representation to

another. Therefore, he must not be frustrated by a cumbersome user interface. The UI

design has to be comfortable for the user. A graphical user interface for drawing automata

is required to ensure convenient automaton handling.
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Furthermore, the user must not be kept waiting by the computation of the equivalence.

Small examples (automata with less than ten states) have to require less than a second

for being compared. As the system is intended to be used supplementary for a university

course (as opposed to being used in research), large examples don’t need to be considered.

To enable the user to start playing conversion games quickly, a user manual that is to be

offered alongside the system must be provided.

Course contents are not fixed forever. In order to ensure easy future enhancement of the

system with new language representations or new types of conversion games, a modular

implementation is necessary.



Chapter 2

Theoretical foundation

As the implemented conversion game is intended to serve as support for students attending

the lecture
”
Automa Theory“, the theoretical approach behind this game will follow

the corresponding script[Espa 12]. The following sections briefly explain the concepts of

regular and ω-regular languages. Furthermore, the theory behind the representation forms

that are so far implemented in the conversion game will be examined. For more details

please refer to the aforementioned script.

2.1 Regular languages

Regular languages are a subset of formal languages. They are defined over a set, whose

elements are called letters. A word is formed by a finite, possibly empty sequence of letters.

The empty word is commonly denoted as ε.

A language is called regular if it is represented by a regular expression. But they can

also be represented by (non)deterministic finite automata and monadic second order

logic sentences. All of these ways of representations are equal in terms of power. That

means that there is no MSOL sentence, finite automaton or regular expression, for whose

language there is no instance of any of the other representation forms. Hence, MSOL

sentences, regular expressions, and finite automata represent the same class of formal

languages, namely the regular ones. In this introduction we will look at the regular

language Lexample := {w ∈ Σ∗ | w starts and ends with an a or is the empty word} as

an example where we assume the alphabet Σ = {a, b}.

7
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Regular expressions

Regular expressions over an alphabet Σ are defined by the grammar

r := ∅ | ε | a | r1r2 | r1 + r2 | r∗

where a is a letter of the alphabet (a ∈ Σ) and r1, r2 are regular expressions over

Σ themselves. The regular language L(r) represented by the regular expression r is

inductively defined as:

L(∅) = ∅
L(ε) = {ε}
L(a) = {a}
L(r1r2) = L(r1)L(r2) = {uv | u ∈ L(r1), v ∈ L(r2)}
L(r1 + r2) = L(r1) ∪ L(r2)

L(r∗) = L(r)∗

One correct regular expression for the example language Lexample is the following:

ε+ a+ a(a+ b)∗a.

Deterministic finite automata

A deterministic finite automaton (DFA) is a quintupel A = (Q,Σ, δ, q0, F ), where

• Q is a set of states,

• Σ is an alphabet,

• δ : Q× Σ→ Q is a transition function,

• q0 is the initial state, and

• F is a set of final states.

We say that A accepts the word w = a0a1a2...an ∈ Σ∗ if there exists a finite sequence

q0 → q1 → ... → qn+1 where qn+1 is a final state (qn+1 ∈ F ) and ∀ 0 ≤ i < n :

δ(qi, ai) = qi+1. The regular language accepted by the DFA A is denoted by L(A) = {w ∈
Σ∗ | w is accepted by A}. The DFA in figure 2.1a represents Lexample.
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Nondeterministic finite automata

A nondeterministic finite automaton (NFA) is a quintupel A = (Q,Σ, δ, q0, F ), where

• Q is a set of states,

• Σ is an alphabet,

• δ : P(Q)× (Σ ∪ {ε})→ P(Q) is a transition function,

• q0 is an initial states, and

• F is a set of final states.

The initial set of states is Q0 = {q0}. We say that A accepts the word w = a0a1a2...an ∈
Σ∗ if there exists a finite sequence Q0 → Q1 → ... → Qn+1 where Qn+1 ∩ F is not

empty (Qn+1 ∩ F 6= ∅) and ∀0 ≤ i < n : δ(Qi, ai) = Qi+1. Again L(A) = {w ∈ Σ∗ |
w is accepted by A} indicates the regular language accepted by the NFA A. An NFA

accepting Lexample is given in figure 2.1b. As figure 2.1b has been created with JFLAP,

the ε is represented by a λ.

(a) DFA representing Lexample (b) NFA representing Lexample

Figure 2.1: DFA and NFA representing the example language Lexample

Monadic second order logic

Regular languages can also be expressed in monadic second order logic (MSOL) over an

alphabet Σ. First order variables ranging over the possible positions of letters in a word

are denoted by lower case letters: x ∈ N0. Second order variables are sets of first order

variables and denoted by upper case letters: X ∈ P(N0) An MSOL formula is defined

inductively by the grammar

ϕ := Qa(x) | x < y | x ∈ X | ¬ϕ | ϕ1 ∨ ϕ2 | ∃x : ϕ | ∃X : ϕ
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where a is an arbitrary letter of the alphabet and ϕ1, ϕ2 are MSOL formulas themselves.

The intended meaning of the predicate Qa(x) is that the letter at position x is an a. As

usual in predicate logic, variables within the scope of an existential quantifier are called

bounded, otherwise free. We call a formula without free variables a sentence.

For our purposes we only look at the interpretation of MSOL sentences on words. We

inductively define when a word w = a0a1a2...an ∈ Σ∗ satisfies (�) an MSOL sentence as

w � Qa(x) iff ax = a

w � x < y iff x < y

w � x ∈ X iff x ∈ X
w � ¬ϕ iff w 3 ϕ

w � ϕ1 ∨ ϕ2 iff w � ϕ1 or w � ϕ2

w � ∃x : ϕ iff |w| ≥ 1 and ∃i ∈ {1, . . . , n} : w � ϕ[i/x]

w � ∃X : ϕ iff |w| ≥ 1 and ∃S ⊆ {1, . . . , n} : w � ϕ[S/X]

where w � ϕ[i/x] means that w satisfies the sentence ϕ, but with all occurrences of x

replaced by i and, similarly, w � ϕ[S/X] means that w satisfies the sentence ϕ, but with

all occurences of X replaced by S. Macros for easier construction of MSOL formulas can

be defined without great effort. Some of the most commonly used ones are

ϕ1 ∧ ϕ2 := ¬(¬ϕ1 ∨ ¬ϕ2) ϕ1 → ϕ2 := ¬ϕ1 ∨ ϕ2)

first(x) := ¬∃y : y < x last(x) := ¬∃y : y > x

Lastly, we define the language L(ϕ) accepted by the MSOL sentence ϕ as the set of words

over the given alphabet that satisfy ϕ: L(ϕ) = {w ∈ Σ∗ : w � ϕ}. In order to stay uniform

here is an MSOL formula that accepts Lexample: (¬∃x : first(x)) | (∃x : first(x)∧ a(x))∧
(∃x : last(x) ∧ a(x)). As stated before, the set of languages accepted by MSOL sentences

is equivalent to the set of regular languages.

2.2 ω-regular languages

So far we only considered regular languages consisting of arbitrarily long, but finite words.

Now we are going to look at languages of infinite words. We define an ω-word over an

alphabet Σ to be an infinite sequence of letters in Σ: w = a1a2.... By Σω we denote the

set of all ω-words over Σ. A subset Lω ⊆ Σω is called an ω-language. The ω-iteration of

any formal language L is the ω-language Lω = {w1w2w3... | ∀i ∈ N : wi ∈ L}. We call

an ω-language Lω ω-regular if it is described by an ω-regular expression s (as described

below). It can be shown that ω-regular expressions, nondeterministic Büchi automata, and
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linear temporal logic are equally powerful in expressing regular languages. As an example

we take Lω := {w ∈ Σ∗ | w starts with an a and contains infinitely many b’s} over the

alphabet Σ = {a, b}.

ω-regular expressions

One way of describing an ω-languages lies in giving an ω-regular expression. All ω-regular

expressions over an alphabet Σ are defined by the grammar

s := rω | rs1 | s1 + s2

where r is a regular expression over Σ and s1, s2 are ω-regular expressions themselves.

The language Lω(s) ⊆ Σω described by an ω-regular expression s is inductively defined

as

Lω(rω) = (L(r))ω,

Lω(rs1) = L(r)Lω(s1), and

Lω(s1 + s2) = Lω(s1) ∪ Lω(s1).

The ω-regular expression a(a∗b)ω represents exactly Lω.

Linear Temporal Logic

Unlike all representations hitherto, linear temporal logic (LTL) formulas are not

constructed over an alphabet but over a set of atomic propositions AP . These are

combined by the usual boolean operators and the temporal operators X (
”
next“) and

U (
”
until“). Valid LTL formulas are given by the grammar

ϕ := true | p | ¬ϕ | ϕ1 ∧ ϕ2 | Xϕ | ϕ1Uϕ2

where p ∈ AP .

LTL formulas are interpreted over so called computations, which are infinite sequences

σ = σ0σ1σ2... where ∀i : σi ⊆ P(AP ). Each σi is called a configuration. Furthermore, by

σj we denote the suffix σjσj+1... of σ. We inductively define that a computation σ satisfies

an LTL formula ϕ (σ � ϕ) after the following fashion:
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σ � true

σ � p iff p ∈ σ0
σ � ¬ϕ iff σ 2 ϕ
σ � ϕ1 ∧ ϕ2 iff σ � ϕ1 and σ � ϕ2

σ � Xϕ iff σ1 � ϕ

σ � ϕ1Uϕ2 iff ∃k ≥ 0: σk � ϕ2 and σi � ϕ1 for every 0 ≤ i < k

where p is an atomic proposition. Similarly to the MSOL formulas there are macros for

LTL formulas. The most often used ones are Fϕ := true Uϕ and Gϕ := ¬F¬ϕ. That

means that σ � Fϕ iff there exists a k >= 0 such that σk � ϕ and σ � Gϕ iff σk � ϕ for

all k >= 0.

The set of all computations that satisfy an LTL formula ϕ is denoted by L(ϕ). LTL

formulas can also be used to describe ω-languages, though a little less intuitively. To

do so, we see an ω-word w = w0w1w2... as a computation σ = σ0σ1σ2... where each

letter wk corresponds to a configuration σk. Moreover, we define an atomic proposition

for each symbol that appears in the alphabet of the ω-language. In our example that

would be AP = {a, b}. Now each proposition is assigned the following meaning: σk fulfills

z ∈ AP if and only if wk = z. That implies that each configuration can only fulfill one

atomic proposition. Consequently, an ω-word is accepted by an LTL formula constructed

as described if it satisfies the formula.

However, it can be shown that LTL formulas have the same expressive power regarding

ω-languages as NBAs and ω-regular expressions. A correct LTL formula for our example

Lω is ϕ = (a ∧ ¬b)G F (¬a ∧ b).

Nondeterministic Büchi automata

Nondeterministic Büchi automata (NBAs) have the same syntax as NFAs. That is, they

are denoted by a quintuple (Q,Σ, δ, q0, F ), where

• Q is a set of states,

• Σ is an alphabet,

• δ : Q× Σ→ P(Q) is a transition function,

• q0 is an initial states, and

• F is a set of accepting states.
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Unlike in the case of finite words, we now call F the set of accepting states. We say

that an NBA accepts an ω-word w = a0a1a2... if there exists an infinite sequence

ρ = q0 → q1 → q2 → ... such that ∀i ∈ N0 : qi+1 ∈ δ(qi, ai) and F ∩ inf(ρ) 6= ∅ where

inf(ρ) = {q ∈ Q | qi = q for infinitely many i}. Consistently, we define the language

L(A) accepted by an NBA A as the set of ω-words that are accepted by the automaton:

L(A) = {w ∈ Σω | A accepts w}. For example, figure 2.2a shows a classic Büchi

automaton for Lω.

Figure 2.2: Büchi automata for the example language ω

(a) Classical BA for Lω (b) Propositional BA for Lω

However, in the ω-regular case the alphabet may be replaced by a set of atomic

propositions AP = {p1, p2, ..., pn} and the transition function by one of the form

δ : Q×P(AP )→ Q where AP = AP ∪{¬p | p ∈ AP}. This kind of representation is used

when considering computations. Let SAPi be the set of satisfied atomic propositions

in configuration σi. For all i ∈ N and for all 1 ≤ k ≤ n SAPi must exclusively

satisfy either pk ∈ SAPi or ¬pk ∈ SAPi. We say that a BA with propositional

alphabet accepts the computation σ = σ0σ1σ2... if there exists an infinite sequence

ρ = q0 → q1 → q2 → ... such that ∀i ∈ N0 : qi+1 ∈ δ(qi, SAPi) and F ∩ inf(ρ) 6= ∅
where inf(ρ) = {q ∈ Q | qi = q for infinitely many i} and SAP .

Considering the existence of a symbol a ∈ Σ at position i ∈ N0 as the atomic proposition

a ∈ AP fulfilled at configuration σi, we get the Büchi automaton for the example language

in figure 2.2b.



Chapter 3

The conversion game

The main feature of this work is the conversion game. It allows students to rationally

guess a representation of a (ω)-regular language based on another representation of the

same language. For example, the student is shown a deterministic finite automaton and is

supposed to give a regular expression that accepts the same language as the automaton.

This chapter explains all its functionalities and how to add and change game types.

3.1 Functionality

Throughout the project the requirements (see section 1.2) have served as a guide for the

implementation. The following sections describe which functionalities have been realized

and how.

3.1.1 Menu structure

This conversion game has been implemented as an extension to JFLAP. Therefore a menu

item
”
Conversion Game“ has been appended at the bottom of the existing JFLAP menu.

Once selected, the user has to choose if he wants to play a conversion game with regular

or with ω-regular languages. He then has the choice which kind of representation to guess

and which to guess for. As one can see in table 3.1 guessing the same kind of representation

as is already given is not supported as it makes no sense. Furthermore, guessing an NFA

for a DFA is not offered since every DFA already is an NFA by definition.

14
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Table 3.1: Supported conversion games

(a) Regular languages

DFA NFA RE MSOL
DFA 7 3 3 3

NFA 7 7 3 3

RE 3 3 7 3

MSOL 3 3 3 7

(b) ω-regular languages

BA ORE LTL
BA 7 3 3

ORE 3 7 3

LTL 3 3 7

After having chosen the game type, the user can select one of the given levels (see figure

3.1). A question mark in the corresponding button signals that the level is accessible but

not yet solved. Already solved (and therefore also accessible levels) bear a checkmark.

Blocked levels have to be made accessible by solving the antecedent one and are marked

with a cross. The user also has the option to create a conversion game himself. To do

so, the
”
Self created“ button has to be clicked and an instance of the chosen kind of

representation must be entered.

Figure 3.1: Menu for choosing a game level

3.1.2 Game process

All games have the same process and basic frame structure in common.

The user is given a representation of an (ω)-regular language. The task is to give an

instance of another kind of representation that accepts the same language as the given

one. The attempt to do so is called a try in this context. In each try the user can propose a

solution. The level is considered solved if the input is correct. Moreover, the stage is marked

solved in the level choice menu and the user is asked if he wants to start a new game,

review the game just solved, or quit the game. If not, the user is shown a distinguishing

word and which representation contains it and which one doesn’t. Furthermore, an entry

in the game history is created. The user can always go back to previous tries and check
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his solution proposed at that point. Combined with the game history this proves to be

a convenient way to switch between past tries and check which word distinguishes which

guess from the given representation. This offers a chance to include earlier attempts in

the considerations for the next try.

3.1.3 Game logic

At the heart of the whole game lies the comparison of the given representation and the

one entered by the user. At this point GOAL comes into play. The second generation

of GOAL [Tsai 13] provides the functionality of comparing two finite word automata or

two Büchi automata with each other as long as they have the same type of alphabet.

Therefore, all representations are first converted to automata. GOAL can compare these

and return a distinguishing word if the representations are not equivalent.

For converting automata between JFLAP and GOAL format the methods

• ToGOALConverter#convert(automaton: FiniteStateAutomaton,

alphabet: AlphabetType, isBuchi: boolean): FSA and

• FromGOALConverter#convert(automaton: FSA): FiniteStateAutomaton

have been implemented. Comparing regular language representations poses no problem,

nor does the comparison of Büchi automata with LTL formulas or ω-regular expressions. If,

however, an ORE is to be compared to an LTL formula, it gets a little more complicated.

An ORE can only be converted to a BA with classical alphabet, while LTL formulas

can only be converted to BAs with propositional alphabet. Therefore, the LTL formula

is extended by an appendix that makes sure, that each configuration satisfies exactly

one atomic proposition. This will result in every transition fulfilling only one atomic

proposition after conversion to a BA with propositional alphabet. For instance, if an LTL

formula ϕ over the alphabet Σ = {a, b, c} is to be compared to an ORE, the appendix

ρ = G((a ∧ ¬b ∧ ¬c) ∨ (¬a ∧ b ∧ ¬c) ∨ (¬a ∧ ¬b ∧ c)) will be added by a conjunction and

the LTL formula ϕ ∧ ρ will be converted to a BA with propositional alphabet (see figure

3.2a). Afterwards the transitions are renamed with the only satisfied atomic proposition

(for example, ’a ∧ ¬b ∧ ¬c’ are renamed ’a’), thus rendering the alphabet classical (see

figure 3.2b). Now it can be compared to the BA that is equivalent to the ORE.

It should also be noted that the alphabet of the given language is always determined

automatically except for the case that an MSOL formula is given, where the alphabet is

passed alongside the formula.
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Figure 3.2: Difference between classical and propositional alphabet a ∧X b ∧XXG c

(a) Step 1: propositional alphabet (b) Step 2: classical alphabet

3.1.4 User interface design

In order to provide a uniform appearance, all types of conversion games have the same

window structure. The top area shows a textual description of the game, e.g.
”
Guess the

regular expression for the shown DFA“. The alphabet the language is constructed over is

shown beneath this instruction if it doesn’t emerge clearly from the given representation.

One more line further down feedback appears after clicking the compare button. This can

be either a success message, or a distinguishing word with a note which representations

accepts the word and which not.

Figure 3.3: Structure of the conversion game UI

In the central area there always is an element that allows the user to enter his proposed

solution. Should an automaton be the given representation, it is displayed in the central
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area to the left, while the input field will be displayed on the right. In the bottom part of

the window three buttons are placed. The
”
Compare“ button triggers the comparison of

the given and the guessed representation. If the input proves syntactically incorrect (e.g.

the user automaton has no initial state), the user is shown an error message and asked

to resolve the problem. To restore the guess from the previous guess one can press the

”
Reset“ button. Note that this button is disabled for the first guess. Lastly, in the case

of the conversion game history window having been closed or minimized, the
”
Restore

History“ button can be clicked to make the conversion game history visible again.

3.2 Modifying the existing conversion game modes

There are several ways of modifying the existing game modes. The two most important

are described in more detail below.

3.2.1 (De-)Activating and adding MSOL macros

It requires little effort to deactivate macros that have been added for convenience. Within

the parse(String formula) method every macro hast an according section where the

matcher for the specific pattern is built. To deactivate a certain macro, that section

has to be commented out alongside the following handling of a possibly found match.

For example, if one wants to deactivate the ’second(x)’ macro, the following code in the

MSOLParser class has to be commented out:

matcher = SecondPattern.matcher(formula);

if(matcher.find()){

MSOLVariable variable =

new MSOLVariable(matcher.group (2));

return new MSOLSecond(variable);

}

In order to reactivate a deactivated macro, just remove the comment symbols. On the

other hand, for adding a new macro one has to implement the according logic first. A

new class should be created within the conversion game.MSOL.macros package. If the

macro is an operator on subformula(s) (just like the negation or the alternation), the new

macro has to be implemented as a subclass of MSOLNode. If, however, the new macro is an

operator on variables and/or sets (like x ∈ X or first(x), it must be implemented as a

subclass of MSOLLeaf. Particularly, the toString() and toFSA(Set<String> alphabet)
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methods have to be overridden. Moreover, it is crucial to add any free variables or sets

that might appear in the new macro to the corresponding freeVariables or freeSets

set, respectively, in the constructor.

To make the parser recognize the macro in the user input, within the MSOLParser class a

pattern has to be compiled from a proper regular expression:

private static Pattern newMacroPattern =

Pattern.compile(""+/* Regular expression for macro */);

}

Additionally, some code has to be added to the parse(String formula) method:

matcher = newMacroPattern.matcher(formula);

if(matcher.find()){

// build the MSOL formula from the found match

// return the parsed MSOL formula

}

Be careful to place this code according to the precedence of the operator. The higher the

precedence, the later the recognition code must appear. For example, the alternation (’|’)
recognition has been placed after the existential quantifier (’E’) recognition but before

the negation (’∼’) recognition.

3.2.2 Changing available levels

One can also change the preset levels for each game mode. To do so, the corresponding

files in the data folder need to be edited. For games whose given representations are

MSOL formulas (ω)-regular expressions, or LTL formulas, the preset levels can directly

be edited by changing the corresponding
”
expressions.txt“ or

”
formulas.txt“ text file in the

data/guessXXXForXXX folder. Be cautious to enter expressions and formulas correctly:

Different levels are separated by semicolons. For MSOL formulas a dot separates the

expression or formula from the alphabet within one level description. Commas separate

the individual symbols within the alphabet. If we consider formula an MSOL formula

and nonMSOL either an (ω)-regular expression, or an LTL formula, the text files holding

the preset levels must be written according to levels as in figure 3.4.

Naturally, one can also change the preset levels of games that have automata as their

given representation. To change the automaton given in level X, it is necessary to open the

automaton saved in the file
”
levelX.jff“ in the folder data/guessXXXForXXX/automata.
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Figure 3.4: Grammar for the text file which stores (ω)-regular expression or LTL/MSOL formulas

alphabet := symbol ( ”,” symbol)∗

MSOL := formula ”.” alphabet
levels := MSOL ( ”;” MSOL)∗ | nonMSOL ( ”;” nonMSOL)∗

When the editing is done, the automaton can be saved back to the same file. Of course,

it is possible to remove automata from the folder as well as adding new automata. One

must only make sure that the automata file names are successively named
”
level0.jff“,

”
level1.jff“, and so on.

In any case of editing preset levels or changing available macros it is necessary to edit

the
”
version.txt“ text file. If the user has previously downloaded an older version of the

conversion game, a higher version number will result in updating the preset levels and

resetting the progress.

3.3 Adding new functionalities to the conversion

game

The modular design of the implementation allows easy adding of new kinds of

representations and types of conversion games. The implementation structure of the game

can be examined in the class diagram in Appendix A. An API documentation for GOAL

is available at [GOAL].

Furthermore, a logger has been implemented. To use it, set up a static field in the class

that references it:

private final static Logger LOGGER =

Logger.getLogger(Logger.GLOBAL_LOGGER_NAME);

}

By default the logging is written to the Logging.txt file. Detailed MSOL conversion infos

can be obtained by setting the logging level to Level.FINER.

3.3.1 Adding new representations of (ω)-regular languages

It proves easy to add new kinds representation of (ω)-regular languages. Obviously, one

must first implement the logic of the desired representation form. In the context of the
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conversion game, the most important task is to implement a working editor for that

representation. For easy integration in the existing conversion game window structure it

should be implemented as a subclass of JComponent.

Comparisons between two (ω)-regular languages are so far always made by comparing

their DFA, or BA respectively, representations. Therefore, it is essential to provide a

method that transforms an instance of the newly added representation form to a finite

state automaton, be it an NFA in the regular case or a BA in the ω-regular case. Note that

in the regular case it suffices to transform to an NFA, as the intern comparison between

two NFAs or DFAs first converts both automata to DFAs if necessary.

Furthermore, a method that retrieves the alphabet of the language represented by an

instance of the new representation form must be implemented. This proves especially

important when comparing to MSOL or LTL formulas.

Lastly, a dialog for entering a self created instances of the new representation form should

be implemented in order to allow the user to play conversion games aside from the preset

ones.

3.3.2 Adding new game modes

This section describes how to add a new game type to increase the number of available

games for the user. We assume that the user is supposed to work out an XXX

representation for a given YYY representation of an (ω)-regular language.

Subclass of GameFileHandler

First of all, a subclass of GameFileHandler is necessary. This class will handle loading

the given levels as well as saving and loading the level progress state file. A constructor

without parameters needs to set up the correct path to the text file that saves the progress

for this type of conversion game:

public XXXForYYYGameFileHandler (){

STATES_PATH = "/data/guessXXXForYYY/levelStates.txt";

}

The string in this example is the proposed path for storing the progress states in, as

it will be appended to the standard JFLAP conversion game data path, which can be

found in GameFileHandler#STANDARD JFLAP PATH. One must also store the path to
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the given representations as a constant in a private static field. The main part of the

implementation is writing the loading method for the given representations. A method,

named getYYYRepresentations(): YYY[] or similarly, has the task of retrieving the

given representations from the proper folder within the data folder and returning them

as an array. The only abstract superclass method can then be easily overridden in the

following way:

public Object [] getObjects (){

return getYYYRepresentations ();

}

Subclass of ConversionGame

A new conversion game type is bound to be a subclass of the ConversionGame

class. A private field for the given representation has to be created. A constructor

with the following three parameters has to be set up: the given representation(LTL,

FiniteStateAutomaton, ...), the alphabet/atomic propositions(String[]) of the

represented language and the level that is to be played(int). Firstly, the latter

two arguments have to be passed to the superclass constructor super(level: int,

alphabet: String[]). The remaining one is used to set up the field that stores the

given representation.

public GuessBAForLTLGame(YYY yyy), String [] alphabet , int level){

super(level , alphabet);

this.given = yyy;

}

As a subclass of ConversionGame, the following abstract methods must be overridden:

isCompareActionApplicable(): boolean Checks if the user entered input is a valid

representation. If so, this method must return true. Otherwise, false must be returned

and the user should be shown an error message. For games, where the user must

guess an NFA for some other representation, the input automaton must be checked for

invalid labels (AutomatonChecker#hasInvalidLabels(FiniteStateAutomaton fsa)),

for determinism (AutomatonChcker#isDFA(Automaton automaton)), and for existence

of an initial state (FiniteStateAutomaton#getInitialState()). If the user is supposed

to enter an (ω)-regular expression, an MSOL formula, or an LTL formula, the user input

should be parsed. If an error/exception occurs, an according feedback needs to be shown

to the user.
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createFileHandler() Every game type has its own subclass of a GameFileHandler.

This method creates a new instance of the proper GameFileHandler and assigns it to the

according field of the superclass.

newStep(): ConversionGameStep This method is responsible for creating a new

conversion game step. The implementation should take the user input from the previous

guess and set it as initial input for the newly created step. For the first step an empty

input has to be set.

getFeedback(distinguisher: String): String This method is used in the superclass

method checkEquivalence() after a possible distinguisher has been found. Using

the Equivalence.Result this method must find out which representation accepts the

distinguishing words and must then return an according feedback.

getAutomata(): Pair<FiniteStateAutomaton,FiniteStateAutomaton> Every

type of game has two certain representations of languages: the given one and the user

entered one. This method converts both (if necessary) to finite state automata and returns

them.

getProperGOALFSAs(automata: Pair < FiniteStateAutomaton, FiniteState-

Automaton>): Pair<FSA, FSA> As the comparison of finite state automata is

handled by GOAL, the JFLAP format automata have to be converted to GOAL format.

To do so, the method ToGOALConverter#convert must be used. Depending on the

type of automata, the arguments vary. For Büchi automata the last argument must be

true, whereas for finite word automata it must be false. In case of Büchi automata,

the second argument indicates if the automaton has an AlphabetType.CLASSICAL or

AlphabetType.PROPOSITIONAL alphabet.

Subclass of ConversionGameStep

Consequently, an according subclass of ConversionGameStep must be implemented.

Therein, a constructor with the two parameters, one for the game the new step belongs

to and one for the initial user input, has to be created. The constructor must call the

superclass constructor super(game: ConversionGame) and has to create a Component

that contains a proper editor for the user input and, if necessary, a display for the given

representation. The area that has to be built can be seen in figure 3.5. As each instance

of a subclass of ConversionGameStep is initialized with a BorderLayout layout manager

the built component needs to be added with the BorderLayout.CENTER constraint:
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public GuessXXXForYYYStep(

GuessXXXForYYYGame game , XXX xxx){

super(game);

// build your component here

this.add(comp , BorderLayout.CENTER);

instruction.setText(

"Guess the XXX for: "+game.getYYY.toString ());

}

Furthermore, the abstract superclass methods setUserInput(Object object) and

getUserInput(): Serializable have to be overridden. The former type checks the

passed argument and sets it as current user input. When setting an automaton as user

input, the existing automaton editor has to be removed and a new one has to be created

and added. Make sure to call validate() at the end of the method body. The latter

simply returns the user input object.

Figure 3.5: The marked area has to be constructed individually for each subclass of
ConversiongameStep

Subclass of ChooseNewGame

In order to create the according level choosing menu, the developer has to create a subclass

of ChooseNewGame. A constructor without parameters (see listing 3.1) must first call the

superclass constructor super(). Then a new instance of the proper GameFileHandler has

to be instantiated and stored in the fileHandler field. After that the superclass method

initialize() has to be invoked. Secondly, as ChooseNewGame implements the interface

ActionListener, but doesn’t override the actionPerformed(e: ActionEvent), the

subclass must do this. A click on a level button must result in the according level being

loaded. The source of the ActionEvent argument will always be a LevelJButton, which

has been implemented to enrich the standard JButton with an extra field for the level it

ought to lead to. Note that -1 indicates that the user wants to create a level himself. After

having loaded the chosen level or having accepted the user input, the alphabet (or the set
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of atomic propositions) has to be determined. So far, for MSOL formulas the alphabet has

to be given explicitly by adding it in the text file (see figure 3.4), or letting the user enter

it. For all other kinds of representation that are supported so far, methods for automatic

recognition of the alphabet or set of atomic propositions exist (see GOAL and JFLAP

documentation). Passing the representation loaded or created by the user, the retrieved

alphabet/atomic propositions, and the level obtained from the button, an instance of the

newly created subclass of ConversionGame may be instantiated. It can then be passed to

FrameFactory#createFrame(object: Serializable). Lastly, the menu window must

be disposed by invoking dispose().

Listing 3.1: Constructor in subclass of ChooseNewGame

public NewGuessXXXForYYYGame (){

super();

fileHandler = new XXXForYYYGameFileHandler ();

initialize ();

}

Code modifications in existing classes

To bring all together, a few lines have to be added to existing classes. Firstly,

in the ConversionGameEnvironment#actionPerformed(e: ActionEvent) method the

following line has to be added;

if(game instanceof GuessXXXForYYYGame) newGame =

new ChooseXXXForYYYGame ();

The proper place is marked in the source code. Secondly, within the ChooseGameType

class a constant describing the game type has to be created:

private static final String

GUESS_XXX_FOR_YYY = "Guess XXX for YXY";

Moreover, in ChooseGameType#actionPerformed(e: ActionEvent) the line

if(command.equals(ChooseGameType.GUESS_XXX_FOR_YYY))

newConvGame = new ChooseXXXForYYYGame ();

is necessary in the place marked in the source code.
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Implementation of the Monadic

Second Order Logic

Neither GOAL, nor JFLAP provide a functionality for dealing with MSOL formulas.

As the initial requirements include comparing MSOL formulas against other kinds of

representation, the need of implementing MSOL formulas as a whole new kind of

representation within JFLAP emerged. In doing so, the following features have been

implemented:

• data structure for MSOL formulas

• a parser that constructs MSOL formulas from strings

• a method that converts an MSOL formula to a finite state automaton

• an MSOL help panel, editor, and input dialog

The following describes these features in more detail. For a description of how to add and

(de-)activate MSOL macros please refer to section 3.2.1.

4.1 Data structure

To get an overview of the implemented classes, please look at the UML class diagram in

figure A.2 within the appendix. To make adding new MSOL macros as easy as possible,

a common abstract superclass MSOLFormula has been implemented. Hierarchically below

that there are two more abstract subclasses MSOLNode and MSOLLeaf. While new macros

that handle subformulas (like the alternation or the negation) must be implemented as

26
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subclasses of the former, whereas ones that contain only variables and sets (like x < y or

first(x)) have to be made subclasses of the latter.

4.2 Parser

Table 4.1: Strings recognized by the MSOL parser

description
notation in

lecture notes

representation in

conversion game

atomic predicate Qa(x) a(x)

membership x ∈ X x in X

smaller than x < y x<y

negation ¬ϕ1 ∼ ϕ1

alternation ϕ1 ∨ ϕ2 ϕ1 | ϕ1

existential quantifier

(variables)
∃x : ϕ1 Ex:ϕ1

existential quantifier

(sets)
∃X : ϕ1 EX:ϕ1

universal quantifier ∀x : ϕ1 ’Ax:’ϕ1

bigger than x > y ’x>y’

equals x = y ’x = y’

n bigger than x = y + n ’x = y + n’

implication ϕ1 → ϕ2 ϕ1’=>’ϕ2

equivalence ϕ1 ↔ ϕ2 ϕ1’<=>’ϕ2

conjunction ϕ1 ∧ ϕ2 ϕ1’&’ϕ2

even number even(x) ’even(x)’

odd number odd(x) ’even(x)’

even set Even(X) ’Even(X)’

odd set Odd(X) ’Odd(X)’

first first(x) ’first(x)’

second second(x) ’second(x)’

last last(x) ’last(x)’

The MSOLParser class

implements the functionality of

parsing MSOL formulas from

Strings. The implementation is

merely a makeshift solution as

the available time did not allow

to engage deeply with the art

of creating an excellent parser.

Assuming that a is a letter

of the considered alphabet

and ϕ1, ϕ2 represent correct

MSOL formulas, it recognizes

the formulas in table 4.1. The

parser essentially compares the

input string against regular

expression patterns for each

operator. This is done in

an order according to the

precedence of the operators.

The lower the precedence,

the earlier the input string is

compared against the according

pattern. This ensures that the

logic implicitly expressed by

the order and the parentheses

is maintained.

Note that most of the

recognized expressions are

macros for easier input of

MSOL formulas. As described in section 2.1, the atomic predicate, the membership
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predicate, the
”
smaller than“ predicate, the negation, the alternation, and the existential

quantifiers would suffice to represent all regular languages.

A special exception MSOLParseException has been implemented to indicate an error

occurring while parsing a string for an MSOL formula. The parser recognizes lower case

letters as variables and upper case letters except A and E (as they represent the existential

and universal quantifier) as sets. The parser additionally checks if a any character is used

for a symbol as well as for a variable. If that is the case, a MSOLParseException is

thrown. The parser does not check whether the formula contains free variables. To test

a MSOL formula for free variables one must call the containsFreeVariables() method

on it. Checking for free variables is already included in the MSOLEditor#getFormula()

method.

How to make the parser recognize new macros and how to (de-)activate the recognition

of existing ones is described in section 3.2.1.

4.3 Conversion to FSA

The main functionality of the implemented system is comparing various kinds of

representations of regular languages against each other. As distinguishing the according

FSAs is the easiest way of comparing two regular languages, a method for converting an

MSOL formula to an equivalent FSA is crucial.

The functionality is implemented in the MSOLFormula#toFSA() method. In this case,

only the symbols appearing in the formula are considered the alphabet. For conversion

under an additional alphabet, the methods MSOLFormula#toFSA(alphabet: String[])

and MSOLFormula#toFSA(alphabet: Set<String>) may be used. Figure 4.1 makes

the difference clear. When converting the MSOL formula (∃x : first(x) ∧ ¬b(x)) ∧

(a) Result when calling toFSA()
(b) Result when calling
toFSA(new String[]{"a","b","c"})

Figure 4.1: Conversion of (∃x : first(x) ∧ ¬b(x)) ∧ (∃x : last(x) ∧ ¬a(x))
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(∃x : last(x) ∧ ¬a(x)) (representing the language that contains all words that don’t

start with a b and don’t end with an a), figure 4.1a shows the result of a call of

toFSA() on the formula, whereas figure 4.1b shows the result of a call of toFSA(new

String[]{"a","b","c"}) on the formula.

The implementation follows exactly the same pattern as the proof in [Espa 12] that for

each regular language L there is a MSOL formula that accepts exactly L.

4.4 Help, editor, and input dialog

Figure 4.2:
orange: MSOLHelp;
green: MSOLEditor;
blue: MSOLInputDialog

A simple help for entering MSOL formula is provided in

the JScrollPane subclass MSOLHelp. Where included in the

GUI design, it shows the user the notations and availbale

macros for MSOL formulas. The help text can easily be

edited by changing the static String field MSOL HELP TEXT

within the class.

In order to deal properly with String representations of

MSOL formulas, an editor has been implemented as a

subclass of JPanel. Instances of MSOLEditor contain a text

area for the user input and the help text mentioned above.

The method getStringInput() returns the literal String

entered by the user, whereas getFormula() immediately

tries to parse the input String and throws an exception if

there are free variables in the input or some other error

occurs while parsing.

The MSOLInputDialog is basically an MSOLEditor wrapped

in a modal dialog. If the user enters a syntactically incorrect

formula, the user is shown an according error message and

prompted to try again. Figure 4.2 shows the individual parts.
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Conclusion

In the progress of this bachelor’s project a system for checking equivalence of various

representations of regular and ω-regular languages has been developed.The ordinary

checking mode is already included in the JFLAP project. The whole exercise mode has

been implemented relying on JFLAP[Rodg 06] and GOAL[Tsai 13]. It offers a gamified

dialog where the user is shown a representation of an (ω-)regular language and is supposed

to give a representation of another kind for the same language. Immediate feedback on the

correctness is shown upon input and saved in a game history which allows the user to easily

include his previous guesses in his considerations for next one. (Non-)deterministic finite

automata, regular expressions, and monadic second order logic formulas are supported for

regular languages. ω-regular languages may be represented by Büchi automata, ω-regular

expressions, and linear temporal logic formulas.

For the sake of gamifying the system, game design elements have been implemented.

Examples include the existence of levels, immediate feedback upon input, and interactive

activities. A user manual has been created allowing the students to quickly start playing.

The exercise mode is organized in subsequent levels. By default, levels are only accessible

if all previous levels have already been solved before.

As discussed in chapter 1, this systems can be used for gamifying an automata theory

course. As this game only covers a small part of the lecture and is intended to be used

as a supplement, the danger of undermining the intrinsic motivation of the students is

minimal. It merely brings variety to the course contents.

It is recommended that the value of the conversion game in terms of learning outcome and

student satisfaction be evaluated in future use. Further work on the conversion game may

30



CHAPTER 5. CONCLUSION 31

include developing more macros for the MSOL representation. The MSOL representation

would also benefit from a more solid parser.

Programmers are welcome to modify and reuse the code written for this project, as long

as it is not sold for commercial purposes. Please be sure to acknowledge the author. The

original JFLAP code is copyrighted as in appendix C.
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Appendix A

UML class diagrams

All diagrams obey the rules of UML 2.0. To learn more about UML, please refer to

www.uml.org. The class diagram in A.1 shows the structure of the general game process.

Class diagram A.2 shows the data structure of the MSOL implementation. In order to

make the borders of the own implementation clearer, standard Java classes as well as

classes from JFLAP have been colored. JFLAP classes bear the color red, whereas the

standard Java classes are painted blue.
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Appendix B

User Manual

This guide aims to explain the practical use of the conversion game for (ω-)regular

languages. It was designed for supplementary use for the lecture
”
Automata Theory“. If

you get lost with some notations, you can look them up in the according script [Espa 12].

Starting a game

Firstly, a Java 8 runtime environment is required. You can get it at https://www.java.

com/de/download/. You can download the enhanced JFLAP version from the website of

the TUM Chair for Foundations of Software Reliability and Theoretical Computer Science

(https://www7.in.tum.de/tools/index.php?id=tools&arg=).

To start a new conversion game, select the bottom button of the menu, namely

”
Conversion Game“ (see figure B.1a). After that you can choose which type of game

you want to play (see figure B.1b). In table B.1 you can see the available conversion

games.

(a) Click the marked button to start
a new conversion game

(b) Choose your game type from the
drop out menu

38
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DFA NFA RE MSOL
DFA 7 3 3 3

NFA 7 7 3 3

RE 3 3 7 3

MSOL 3 3 3 7

BA ORE LTL
BA 7 3 3

ORE 3 7 3

LTL 3 3 7

Table B.1: Available conversion game types

Once you’ve selected your desired game type, you can choose which of the preset levels

you want to play (see figure B.2). Buttons bearing a question mark lead to accessible

but not yet solved levels. Already solved levels are signaled by a check mark. Disabled

buttons with a cross mark indicate levels that are still blocked. Usually you can activate

these levels by solving the precedent ones. You also have the freedom to create your own

conversion game by clicking the
”
Self created“ button. A dialog for entering your own

representation of an (ω-)regular language will then appear.

Figure B.2: Menu for choosing a game level

After having chosen the game level or having entered your own representation, the game

starts. All games have the same process and basic frame structure in common.

Figure B.3: The after game dialog

You are given a representation

of an (ω)-regular language. The

task is to enter an instance of

another kind of representation

that accepts the same language

as the given one. The attempt

to do so is called a try in this

context. In each try you can

propose a solution. The level is

considered solved if the input is

correct. A dialog will ask if you want to start a new game, review the game just solved, or

quit the game(see figure B.3). If not, you will get feedback in the form of a distinguishing

word and a note about which representation contains it and which one doesn’t. Then
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Figure B.4: Structure of the conversion game UI

another tab will be created where you can enter a fresh guess. Furthermore, an entry in

the game history is created. You can always go back to previous tries by clicking on the

tabs and check your solution proposed at that point. This offers a chance to include earlier

attempts in the considerations for the next try.

All games have the same basic window structure (see figure B.4). The top area shows

a textual description of the game, the alphabet (if necessary), and textual feedback

after the
”
Compare“ button has been clicked. In the central area there always is an

element that allows you to enter your proposed solution. Should an automaton be the

given representation, it is displayed in the central area to the left, while the input field

will be displayed on the right. In the bottom part of the window three buttons are

placed. The
”
Compare“ button triggers the comparison of the the given and the guessed

representation. To restore the input from the previous guess you can press the
”
Reset“

button. Note that this button is disabled for the first guess. The conversion game history

is placed on the left. It shows you the words that distinguish your previous guesses from

the given representation. Should you at any time close or minimize the conversion game

history window, you can hit the
”
Restore History“ button to make the conversion game

history visible again.
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Kinds of representation

Regular expressions

In this conversion game regular expressions are formed by the grammar

< symbol > := a | ... | d | f | ... | z
< expression > := E | e |< symbol >|< expression > < expression >

| (< expression >)∗ | (< expression >)+ |< expression >?
| (< expression > | < expression >)

Note that for a concatenation of the symbols a and b a space in between is necessary: a b

instead of ab. In this context e stands for the empty word (ε), E for the empty set(∅),
and the vertical bar (|) represents the alternation (+) from the lecture (see page 15 in

[Espa 12]). All other operators coincide with the ones from the lecture. The question mark

(?) is an abbreviation for ”zero or one times”, i.e. if r is a regular expression, r? is an

abbreviation for r|e.

Monadic second order logic formulas

The MSOL parser was constructed to accept MSOL sentences as described in the lecture

notes starting from page 163. If we assume that ϕ1 and ϕ2 are correct MSOL formulas,

the parser recognizes input after the following fashion:

description
notation in

lecture notes
representation in
conversion game

atomic predicate Qa(x) a(x)
membership x ∈ X x in X
smaller than x < y x<y

negation ¬ϕ1 ∼ ϕ1

alternation ϕ1 ∨ ϕ2 ϕ1 | ϕ1

existential quantifier
(variables)

∃x : ϕ1 Ex:ϕ1

existential quantifier
(sets)

∃X : ϕ1 EX:ϕ1

where a variable is a lower case letter and a set is an upper case letter except A and E.

Additionally, there must be no free variables and no symbol of the alphabet may appear

as a first order variable. In order to ease constructing MSOL formulas, several macros are

available. Among those are
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description notation in lecture notes pattern (without ’ ’)
universal quantifier ∀x : ϕ1 ’Ax:’ϕ1

bigger than x > y ’x>y’
equals x = y ’x = y’

n bigger than x = y + n ’x = y + n’
implication ϕ1 → ϕ2 ϕ1’=>’ϕ2

equivalence ϕ1 ↔ ϕ2 ϕ1’<=>’ϕ2

conjunction ϕ1 ∧ ϕ2 ϕ1’&’ϕ2

even number even(x) ’even(x)’
odd number odd(x) ’even(x)’

even set Even(X) ’Even(X)’
odd set Odd(X) ’Odd(X)’

first first(x) ’first(x)’
second second(x) ’second(x)’

last last(x) ’last(x)’

where ϕ1 and ϕ2 are correct MSOL formulas.

DFAs, NFAs, and BAs

DFAs, NFAs, and BAs are drawn with the JFLAP automaton drawer. More information

about the usage of this tool can be found at http://http://www.jflap.org/tutorial/.

Note that the undo and redo tools are not supported. When drawing a BA with

propositional alphabet use the tilde
”
∼“ for negation. Please mind the following hints

for common mistakes:

• You can draw an ε-transition by creating a standard transition and leaving the label

empty. It will be displayed as λ.

• Instead of creating a transition with the label ”ab”, create two transitions labeled

”a” and ”b” with a state in between

• If you want several symbols to lead from one state to another, draw one transition

for each of those symbols. Labels like ”a|b” are not supported.

• When drawing a BA with propositional alphabet, you can use ”true” as a label.

ω-regular expressions

ω-regular expression are formed almost the same way as regular expressions. Following

the lecture notes (see page 195), they are constructed following the grammar

ore := ’{’re’}’ | re ore | ore ’|’ ore

http://http://www.jflap.org/tutorial/
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where re is a regular expression as described above. The ’|’ represents the +, while the

curly brackets represent the exalted ω from the lecture notes.

Linear Temporal Logic formulas

The LTL parser was imported from the GOAL project. To understand the notation you

can check the lecture notes starting from page 263. Assuming that ϕ1 and ϕ2 are correct

LTL formulas, it recognizes input after the following fashion:

description notation in lecture notes pattern
true true true

atomic proposition p p
negation ¬ϕ1 ∼ ϕ1

alternation ϕ1 ∨ ϕ2 ϕ1||ϕ1

conjunction ϕ1 ∧ ϕ2 ϕ1&&ϕ1

next Xϕ1 X ϕ1

until ϕ1Uϕ2 ϕ1 U ϕ2

eventually Fϕ1 F ϕ1

globally Gϕ1 G ϕ1

Note that there must be no free variables. To ease the user input when comparing to an

ORE, the atomic propositions can only be fulfilled exclusively. That means the the input

a is short for a && ∼b && ∼c when considering the set of atomic propositions {a, b, c}.

Examples

To make the use of the different kinds of representations clearer, please look at these

two examples. In the regular case we consider the regular language L := {w ∈
Σ∗ | w starts and ends with an a or is the empty word} where we assume the alphabet

Σ = {a, b}. Below you can see an NFA and a DFA representing L.

(a) NFA for L (b) DFA for L

http://goal.im.ntu.edu.tw/wiki/doku.php
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A corresponding regular expression within the conversion game would be written as

e | a | a (a|b)* a. The equivalent MSOL sentence is given by (∼Ex: first(x)) |

(Ex: first(x) & a(x)) & (Ex: last(x) & a(x)).

In the ω-regular case we consider the language Lω := {w ∈ Σ∗ |
w starts with an a and contains infinitely many b’s}. We still assume Σ = {a, b}. Two

according BAs with classical and propositional alphabet are shown below:

Figure B.6: Büchi automata for the example language ω

(a) Classical BA for Lω (b) Propositional BA for Lω

The equivalent ω-regular expression in the conversion game is given by a {a* b}. A

correct LTL sentence for the same language is a && G F b. When comparing BAs with

OREs, the BA will have a classical alphabet as in figure B.6a. On the other hand, when

comparing BAs against LTL formulas, they will have a propositional alphabet as in figure

B.6b.
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JFLAP Copyright

JFLAP 7.0 LICENSE

Susan H. Rodger

Computer Science Department

Duke University

August 27, 2009

Duke University students contributing to JFLAP source include: Thomas Finley,

Ryan Cavalcante, Stephen Reading, Bart Bressler, Jinghui Lim, Chris Morgan,

Kyung Min (Jason) Lee, Jonathan Su and Henry Qin.

Copyright (c) 2002-2009

All rights reserved.

I) You are allowed distribute unmodified copies of JFLAP under the following

two conditions:

1) You must include a copy of this license text.

2) You cannot charge a fee for any product that includes any part of JFLAP,

in source or binary form.

II) You are allowed to distribute modified copies of JFLAP under the

following conditions:

1) You must include a copy of this license text.

2) You cannot charge a fee for any product that includes any part of

your modified JFLAP, in source or binary form.

45



APPENDIX C. JFLAP COPYRIGHT 46

3) If you made the changes yourself,

you must clearly describe how to contact you.

When the maintainer asks you (in any way) for a copy of the

modified JFLAP you distributed, you must make your changes,

including source code, available to the maintainer without fee.

The maintainer reserves the right to include your changes in the

official version of JFLAP.

The current maintainer is Susan Rodger.

If this changes, it will be announced at www.jflap.org.

The name of the author may not be used to

endorse or promote products derived from this software without

specific prior written permission.

THIS SOFTWARE IS PROVIDED ‘‘AS IS’’ AND WITHOUT ANY EXPRESS OR

IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED

WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
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