A Tool for Verification and Simulation of
Population Protocols

Philip Offtermatt

3.8.2017

TUTI

Overview

Population Protocols: models for distributed
systems of mobile agents

Can solve many classical distributed tasks:
e Leader election
e Majority voting

Creating new protocols is error-prone

Contribution: A Python library for
» Specification
» Simulation

» Verification

o

What are Population Protocols?

Population protocols:

e Models for distributed systems

e Agents have limited computational power
e Agents are passively mobile

e Agents are anonymous

What are Population Protocols?

Population protocols:

e Models for distributed systems

e Agents have limited computational power
e Agents are passively mobile

e Agents are anonymous

What are Population Protocols?

Population protocols:

e Models for distributed systems

e Agents have limited computational power
e Agents are passively mobile

e Agents are anonymous

[

What are Population Protocols?

Population protocols:

e Models for distributed systems

e Agents have limited computational power
e Agents are passively mobile

e Agents are anonymous

[

What are Population Protocols?

e Agents are in one of finitely many states

What are Population Protocols?

e Agents are in one of finitely many states
e Configuration: Multiset of states of agents

What are Population Protocols?

e Agents are in one of finitely many states

e Configuration: Multiset of states of agents
e When agents interact their states change

What are Population Protocols?

. 2

e Agents are in one of finitely many states
e Configuration: Multiset of states of agents
e When agents interact their states change

What are Population Protocols?

e Agents are in one of finitely many states

e Configuration: Multiset of states of agents
e When agents interact their states change

What are Population Protocols?

e Agents are in one of finitely many states

e Configuration: Multiset of states of agents
e When agents interact their states change
e Agents have output true/false

What are Population Protocols?

e Agents are in one of finitely many states
e Configuration: Multiset of states of agents
e When agents interact their states change

e Agents have output true/false

What are Population Protocols?

e Agents are in one of finitely many states
e Configuration: Multiset of states of agents
e When agents interact their states change

e Agents have output true/false
e Consensus: All agents have same output

Population Protocols

Definitions

Protocol P = (Q, 1,4, w)

Q: a finite set of states

I C Q: the set of initial states

§ C Q2 x @2 : the transition relation

w: Q — {0,1} : the output function

Transition t = a,b — a', b’ is enabled in C if C ={a,b,...}

= Applying t to C results in C' ={a’,b',... }

The Flock-Of-Birds Predicate

» Birds with normal or elevated temperature
» Given N, are there at least N birds with elevated temperature?

> Example for N =3

The Flock-Of-Birds Predicate

v

3

» Birds with normal or elevated temperature
» Given N, are there at least N birds with elevated temperature?

> Example for N =3

The Flock-Of-Birds Predicate

linear flock-of-birds protocol

N =3

Yy Yy

Transitions:

ONOR X Y7
OFORC X JIUR

Initial states:

Output Function:

.—>1
@0

©0-9 @
©.0-@ @

©0- 9@
OROM X _

©0-9 @

OROM X _

©0-9 @

OROM X _

©.0-9 @

©0- 9@

©.0-9 @

©0- 9@

©.0-9 @

©0- 9@

©.0-9 @

©0- 9@

©.0-9 @

©0- 9@

©.0-9 @
OROM X _

-
Well Specification and Correctness
Execution: infinite sequence of subsequent configurations from

some initial configuration C

Convergence: outputs of agents stabilize to consensus
("lasting consensus”)

Fairness: execution is fair if all configurations that are reachable
infinitely often appear infinitely often

Well Specification: all fair executions starting at same initial
configuration converge to the same value
Fixed-Size Well Specification: well specified up to given size

Computing a predicate f : /" — {0,1}: all fair executions from
initial configuration C converge to f(C)

-
Well Specification and Correctness

Execution: infinite sequence of subsequent configurations from
some initial configuration C

Convergence: outputs of agents stabilize to consensus
("lasting consensus”)

Fairness: execution is fair if all configurations that are reachable
infinitely often appear infinitely often

Well Specification: all fair executions starting at same initial
configuration converge to the same value
Fixed-Size Well Specification: well specified up to given size

Computing a predicate f : /" — {0,1}: all fair executions from
initial configuration C converge to f(C)
= Automatically verifying a protocol?

Existing Tools

v

bp-ver: fixed-size verification through graph exploration
Chatzigiannakis, Michail and Spirakis SSS'10
Verification with PRISM/SPIN
Clment, Delporte-Gallet, Fauconnier and Sighireanu ICDCS'2011
PAT: Model checker with global fairness
Sun, Liu, Dong and Chen TASE'2009

v

v

» peregrine: parametric verification for a subclass of protocols
Blondin, Esparza, Jaax, Meyer PODC'2017

A New Library For Population Protocols

Available under
gitlab.lrz.de/ga96jib/tool_for_population_protocols

Features:

e Specifying protocols

e Specifying configurations

e Simulating protocols

e Verifying protocols

e Exporting protocols to PRISM /peregrine

gitlab.lrz.de/ga96jib/tool_for_population_protocols

A New Library For Population Protocols

output_function = lambda x: x ==
transitions = [(k, j, k + j, 0) if k + j < N else (k, j,
< N, N) for k in range(N + 1) for j in range(N + 1)]
initial_states = {0, 1}
flock = Protocol(transitions, initial_states,
— output_function)

C = Population([0, 1, 1, 1, 1])

flock.average_convergence_steps(initial_population = C,
< num_iterations = 50)

flock.well_specified(size = 10, expected_output = lambda
< x: x.amount (1) >= N]

export.export_to_prism(flock, initial_population = C)

A New Library For Population Protocols

Available under
gitlab.lrz.de/ga96jib/tool_for_population_protocols

Features:

e Specifying protocols

e Specifying configurations

e Simulating protocols

e Verifying protocols

e Exporting protocols to PRISM /peregrine

= Tested on existing protocols

= Devised a new protocol as a case study

gitlab.lrz.de/ga96jib/tool_for_population_protocols

A New Protocol For Flock-Of-Birds

Problem: existing protocols for flock-of-birds need an amount of
states linear in N.

Goal: find a protocol that needs less states

e
A New Protocol For Flock-Of-Birds

Problem: existing protocols for flock-of-birds need an amount of
states linear in N.

Goal: find a protocol that needs less states
= Prime-Flock-protocol

e
The Prime-Flock-Protocol

Example: N=12=_2 . 2 . 3
N
P P2 P3

Existing approach:

e
The Prime-Flock-Protocol

Example: N=12=_2 . 2 . 3
N
P P2 P3

Existing approach:

e
The Prime-Flock-Protocol

Example: N=12=_2 . 2 . 3
N
P P2 P3

Existing approach:

e
The Prime-Flock-Protocol

Example: N=12=_2 . 2 . 3
N
P P2 P3

Existing approach:

e
The Prime-Flock-Protocol

Example: N=12=_2 . 2 . 3
N
P P2 P3

Existing approach:

=N W b

e
The Prime-Flock-Protocol

Example: N=12=_2 . 2 . 3
N
P P2 P3

Existing approach:

=N W~ o

e
The Prime-Flock-Protocol

Example: N=12=_2 . 2 . 3
N
P P2 P3

Existing approach:

=N W s~ oo

e
The Prime-Flock-Protocol

Example: N=12=_2 . 2 . 3
N
P P2 P3

Existing approach:

N W~ oo N

e
The Prime-Flock-Protocol

Example: N=12=_2 . 2 . 3
N
P P2 P3

Existing approach:

H N WS~ OO N

e
The Prime-Flock-Protocol

Example: N=12=_2 . 2 . 3
N
P P2 P3

Existing approach:

H N WS~ oo N 0o

e
The Prime-Flock-Protocol

Example: N=12=_2 . 2 . 3
N
P P2 P3

Existing approach:

o

H N WS OO N0 O =

e
The Prime-Flock-Protocol

Example: N=12=_2 . 2 . 3
N
P P2 P3

Existing approach:

[y
=

—
o

©o

H N WS~ OO N

e
The Prime-Flock-Protocol

Example: N=12=_2 . 2 . 3
N
P P2 P3

Existing approach:

12
11
10

©o

H N WS~ OO N

The Prime-Flock-Protocol

Example: N=12=_2 . 2 . 3
= =~
P P2 P3
Existing approach: Prime-Flock-protocol:
12
11
10
9
8
7
6
5
4
3
2
1 [h=n

The Prime-Flock-Protocol

Example: N=12=_2 . 2 . 3
= =~
P P2 P3
Existing approach: Prime-Flock-protocol:

12
11
10
9

= NN W s oo N

The Prime-Flock-Protocol

Example: N=12=_2 - 2 . 3
= =~
P P2 P3
Existing approach: Prime-Flock-protocol:

12
11
10
9

1~2:1~p1:12

= NN W s oo N

The Prime-Flock-Protocol

Example: N=12=_2 . 2 . 3
= =~
P P2 P3
Existing approach: Prime-Flock-protocol:

12
11
10
9

1~2:1~p1:12

= NN W s oo N

The Prime-Flock-Protocol

Example: N=12=_2 - 2 . 3
= =~
P P2 P3
Existing approach: Prime-Flock-protocol:

12
11
10
9

1~2-2:1-p2-p1:13

= NN W s oo N

The Prime-Flock-Protocol

Example: N=12=_2 . 2 . 3
= =~
P P2 P3
Existing approach: Prime-Flock-protocol:

12
11
10
9

2~2~2:2‘p2-p1=23

1~2-2:14p2-p1:13

= NN W s oo N

The Prime-Flock-Protocol

Example: N=12=_2 . 2 . 3
= =~
P P2 P3
Existing approach: Prime-Flock-protocol:
12

—_
—
w

22-2

—
o

2~2~2:2‘p2-p1=23

1~2-2:14p2-p1:13

N WS~ OO N 0o

The Prime-Flock-Protocol

Example: N=12=_2 . 2 . 3
= =~
P P2 P3
Existing approach: Prime-Flock-protocol:

12
11
10
9

12=1-p3-p2-p1 =N

= NN W s oo N

The Prime-Flock-Protocol
N=p1-p2--pn

States:
117217 .. '7(p1 - 1)1
12a227 .. '7(p2 - 1)2

10,20,y (Pn— 1)n

N
Transitions:
i, dk = (i +J)k, 0 i +j < pk
i Jk = Lin, ((F44) — Pic)k i+J > pk

N,x — N,N Vx € Q

The Prime-Flock-Protocol
N=p1-p2--pn

States:
117217 .. '7(p1 - 1)1
12a227 .. '7(p2 - 1)2

10,20,y (Pn— 1)n

N
Transitions:
i, dk = (i +J)k, 0 i +j < pk
i Jk = Lin, ((F44) — Pic)k i+J > pk
N,x — N,N Vx € Q

Q[in 0(27:1 pi)

The Prime-Flock-Protocol
N=p1-p2--pn

States:
117217 .. '7(p1 - 1)1
12a227 .. '7(p2 - 1)2

10,20,y (Pn— 1)n

N
Transitions:
i, dk = (i +J)k, 0 i +j < pk
i Jk = Lin, ((F44) — Pic)k i+J > pk
N,x — N,N Vx € Q
Q[in 0(27:1 pi)

Proof = Thesis

Probability Distributions

How do we choose the next transition in each step?
Uniform rules scheduling: Choose uniformly at random among
enabled transitions

Uniform pairs scheduling: Choose two agents uniformly at random
from configuration, then choose uniformly at random among
transitions for the states of these agents

= Compare convergence behaviour of protocols for both

Comparing Protocols For Flock-Of-Birds

Uniform rules scheduling

120 - 1 |OFlock.i

I Prime

80 |- 4
60 - M :

40t |

ol HDDHHUHHUHH LI } }

4 6 8 10 12 14 16
Configuration size

Average number of steps to convergence

Comparing Protocols For Flock-Of-Birds

Uniform pairs scheduling

OFlock.i
0 Thr
I Prime

1,400 |- —

1,200

1,000

800 |- b
600 |- b
400 |- b

200 -

ol ool b DHUD Iy HM H H

4 6 8 10 12 14 16
Configuration size

Average number of steps to convergence

Summary

> New Python library for specifying, simulating and verifying
population protocols

» New protocol computing the flock-of-birds predicate that uses
less states than existing protocols

Outlook - future work

v

multiple transitions in one step

v

export to more model checkers
» optimizing verification

flock-of-birds: lower bound for states?

v

Thank you!

Comparing Protocols For The Majority Predicate

Uniform rules scheduling

0 AVC

y 400 110 3-state
a:)o] 4-state
g I 4-state: no tiebreaker
S 300 8
8
a
3
v 200 |- *
5
3
IS
2 100 *
(9]
: [ﬂ
[
< ol E.umu[h.[m.ﬂﬂu il H,I d |HH|H[|H |U|HUIH[|DH]JL£. |

T

T T T T T T T T T T
0 2 4 6 8 10 12 14 16 18 20
Initial Amount of R's

Comparing Protocols For The Majority Predicate

Uniform pairs scheduling

0 AVC
o 18 | | 0 3-state
a:)o 10] 4-state
2 Lo | I 4-state tiebreaker
* | il mﬂuﬂl et

T T T T T
0 2 4 6 8 10 12 14 16 18 20
Initial Amount of R's

Exporting Protocols to Prism

R : [0..4] init 2;
B : [0..4] init 2;
"o" : [0..4] init 0;
"i" . [0..4] init O

Exporting Protocols to Prism
Arbitrary Probability Distributions

[JR=2&B=2&"0"=0¢& "1" =0 —>
1.0: (R’=R-1) & (B’=B-1) & ("0"’="0"+1) & ("1"’="1"+1);
[JR=1&B=1¢&"0"=1¢g"1"=1->

0.25: (R’=R-1) & (B’=B-1) & ("0"’="0"+1) & ("1"’="1"+1) +
0.5: (||1|l;=||1n_1) & (IIOIIJ=IIOII+1) +

0.25: (uon;=non_1) & (lllu;=n1u+1)
[JR=0&B=0&"0" =2¢g "1" =2 ->

1.0: (non;=non+1) & (u1u;=u1u_1);

Exporting Protocols to Prism

Nondeterministic Endocing for Uniform Distributions

[JR>1&B> 18&"0" <=3¢&"1" <=3 ->
(R’=R-1) & (B’=B-1) & ("0"’="0"+1) & ("1"’="1"+1);
[JR> 1&"1" >=18&"0" <=3 ->
("mo=rqn-1) & (non;=nou+1);
[1 B> 1&"0" > 1&"1" <=3 ->
(mo"="0"-1) & (n1u:=n1u+1);
[] " >=1 & "1" >=1 & "0" <= 3 ->
(mo" ="0"+1) & (u1n7=n1u_1);

Exporting Protocols to Prism

Deterministic Endocing for Uniform Distributions

p - apply A
i:=0

p:apply tiA
i:=0

p = apply toA
i=0

e(ty) = 1 if t. is enabled, else 0
p=(i+1)/T, where T =5 e(ty)

