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Abstract

Population protocols are a model for distributed systems of tiny agents. These tiny
agents are indistinguishable and one can imagine them as floating around aimlessly,
with interactions happening when two agents meet. While individual agents possess
only very limited memory and computational capacity, the system as a whole is capable
of performing classical distributed tasks such as leader election and majority voting.
In this thesis, we present a tool that is capable of simulating and verifying population
protocols. In two case studies, we demonstrate how the tool can be used to implement,
verify and compare existing and newly devised protocols.
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1 Introduction

Population protocols are a model for distributed networks of tiny, passively-mobile
agents. It differs from other models for distributed networks in that agents are assumed
to have very low memory and computational power. They consist of anonymous agents
and a transition relation between those agents. At each point in time, every agent
is in one of finitely many states. One can imagine the agents as wandering around
blindly. Periodically, two agents bump into each other. When they do, they interact and
update their states according to the transition relation. Moreover, there are two essential
properties of the model:

• agents are anonymous: when two agents meet, the transition can only depend on
the states of the two agents, as there are no other identifying features.

• agents are passively-mobile: agents have no way of influencing when and with
which other agent they interact.

For example, population protocols can be used to simulate sensors that are carried by
birds, and the population protocol model has some similarity to chemical reactions [14].
Population protocols are in fact capable of solving many classical tasks in distributed
computing such as leader election [2] and majority voting [1, 4].

In 2004, the population protocol model was first introduced in a preliminary version
by Angluin, Aspnes, Diamadi, Fischer and Peralta in [2]. In the years before that, a
similar probabilistic model to study trust in a social network was introduced by Diamadi
and Fischer in [13]. In [3], a model of urn automata is presented, which also shares
some similarity with the population protocol model.

Much work was focused on characterizing predicates computable by population
protocols. By now, it is known that the computable predicates are exactly the semilinear
predicates [6]. These are equivalent to the predicates that can be defined in Presburger
arithmetic [6, 17]: the first-order theory of natural numbers with addition and order.

While early work relied on a fairness assumption which ensures that possible in-
teractions cannot be avoided forever, more recent work [12, 5] introduces underlying
probability distributions that probabilistically determine which interactions happen
between agents in each step. This allows to quantify the expected number of steps
needed to solve a task or compute a function. Angluin, Aspnes and Eisenstat give
measures of the expected number of steps for a special class of protocols in [5]. There
has also been work on finding lower bounds for the number of steps needed for various
tasks, such as for majority voting in [1].

While there has been much work on population protocols, there are few tools that
are capable of simulating and verifying them. In [20], Sun, Liu, Dong and Chen give
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1 Introduction

a model checker that can be used to verify correctness of protocols for fixed sizes.
Clément, Delporte-Gallet, Fauconnier and Sighireanu use the model checkers SPIN
and PRISM for the same purpose of verifying protocols for fixed sizes [12]. In [11]
Chatzigiannakis, Michail and Spirakis present the tool bp-ver, a dedicated tool for
verification of population protocols. Another tool exists in peregrine, which Blondin,
Esparza, Jaax and Meyer use to verify correctness of protocols for all sizes [10], but only
for a subclass of protocols.

While a few tools allow verification of protocols, none that we know of are capable
of simulating protocols using some underlying probability distribution, although this
can be a useful way to obtain a measure of performance of protocols. We present in
this thesis a new tool that for the simulation and verification of population protocols.
It differs from existing tools in that it allows storing and manipulating population
protocols.

One can specify a population protocol in the tool, and simulate executions of it,
starting at a given initial population of agents. The tool also provides a way of verifying
correctness of a protocol for a given initial population. Additionally, computations of
the protocol, using a given probability distribution, can be simulated and key statistics
such as the average number of steps until convergence can be extracted. In addition, an
export of protocols to the model checker PRISM is supported.

It is easy to see that the probability distribution that determines the interactions has
a large impact on convergence times. We investigate the question of how probability
distributions and convergence times are connected, as it can be helpful in understanding
which classes of protocols have especially fast convergence times.

The goal of this thesis is to describe the tool, and demonstrate its usefulness. We
use it to measure the average number of steps until convergence for protocols from the
literature. In addition, we propose a new protocol, called prime-flock-protocol. We use
the tool to verify correctness of the prime-flock-protocol up to a certain size. As finding
a correct protocol can be non-trivial, the tool can be used to easily implement a protocol
that one suspects to be correct and give some first confidence in its correctness. For
completeness, we also give a formal proof for the correctness of the prime-flock-protocol.
In addition, we use the tool to measure the average number of steps to convergence
of protocols from the literature. This can give an idea of how efficient protocols are
under given probability distributions, and we can compare other protocols to the new
prime-flock-protocol.

Outline. The rest of this thesis is structured as follows. We give some preliminary
definitions in Chapter 2, and then define population protocols in Chapter 3. In Chapter 4,
we give different criteria for fairness and explain how Markov chains can be used to
describe protocols. In addition, we investigate the connection between probability
distributions and fairness. We describe the tool we developed in Chapter 5, and present
two case studies for the tool in Chapter 6. In Chapter 7, we give our conclusions and
discuss avenues for future research and development of the tool.

2



2 Preliminaries

A multiset M over a set S is a mapping S → N, where each s ∈ S is assigned a
multiplicity. Informally, a multiset is a set allowing multiple occurrences of the same
element. |M|s = M(S) denotes the multiplicity of s in M. Denote by |M| := ∑s∈S |M|s
the total number of elements in M. Note that we can naturally treat a set K as a multiset
by having that ∀s : K(s) = 1 if s ∈ K and K(s) = 0 otherwise. Let O be a multiset, then
M\O denotes the multiset M′ where for all e ∈ S, |M′|e = max(0, |M|e − |O|e).

By pop(S) we denote the set of all multisets over the set S.

2.1 Graphs

Formally, a finite graph is a pair G = (V, E), where:

• V is a finite set of nodes, and

• E ⊆ V ×V is a set of edges, such that (v, w) ∈ E means that there is an edge from
v to w. We also write v→ w for this.

Note that for our purposes, graphs are considered to be directed. Therefore it may be
the case that (v, w) ∈ E but (w, v) /∈ E.

We say that there is a path from v to w if v = w or there is a sequence of nodes x1x2...xn

such that v→ x1 → ...→ xn → w.
A set C ⊆ V is a strongly connected component (SCC) of G if C is a maximal set such

that for all nodes v, w ∈ C there is a path from v to w and a path from w to v. A bottom
strongly connected component (BSCC) of G is then an SCC of G from which there are no
outgoing edges. More formally, an SCC C is a BSCC if ∀v ∈ C, ∀w ∈ V : v→ w implies
w ∈ C. We can also lift the reachability relation to SCCs, i.e. for two SCCs C and D,
C → D iff ∃v ∈ C, ∃w ∈ D : v→ w.

The topological ordering of the SCCs of a graph G is a relation < over the SCCs of G
such that for any two SCCs C and D with C 6= D: C → D ↔ C < D.

2.2 Markov Chains

A Markov chain is a tuple M = (S, P, ιinit) where:

• S is a set of finitely many states

3



2 Preliminaries

• P: S× S → [0, 1] is the transition probability distribution, where P(s, s′) = ρ means
that when in state s, the probability of moving to state s′ is given as ρ, and

• ιinit : S→ [0, 1] is the initial distribution, where ιinit(s) = ρ means that the probabil-
ity of the initial state being s is ρ.

For P(s, s′) we also sometimes write P(s′|s). Note that P and ιinit are probability
distributions, therefore it must be the case that ∑s∈S ιinit = 1 and for all states s, it holds
that ∑s′∈S P(s′|s) = 1.

A run in a Markov chain is an infinite sequence of states R = s0s1s2 · · · . To denote the
state at index i in the Markov chain, we use Ri. We denote by in f (R) the largest set of
states that occur infinitely often in R.

In the scope of this thesis, the definitions we have given so far for Markov chains will
be sufficient. We refer to [9] for much more information.

.
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3 Population Protocols

3.1 Motivation

Population Protocols are models that can be used to describe distributed computing.
They consist of a finite number of agents, with each agent having only a limited amount
of computational power and storage capacity. In the canonical example for such a system,
the agents are sensors that are attached to birds. Each small sensor is only capable of
storing a small amount of data and receiving and sending communication over short
distances. When two birds get close to each other, the sensors can communicate, and
change their states according to their current states. Even though the sensors are not
capable of controlling when and with which other sensor they interact and only have
minimal storage, the system as a whole is still capable of performing significant tasks
under certain constraints. Among others, tasks such as leader election [2], majority
voting [1, 4, 8], threshold predicates and remainder predicates [7] can be solved.

3.2 Definitions

In population protocols, computations take place in discrete-time steps. At every point
in time, each agent assumes one state out of a finite set of states. When two agents meet,
a transition function determines how the agents will change their states, depending
on their states at the time of meeting. Another function determines what input (e.g.
real-world data gathered from a sensor) corresponds to which initial state in the protocol.
Lastly, a function is needed to map states of the protocol to their output value.

Formally, a protocol P is defined as a tuple (Q, Σ, ι, δ, ω, Y) where:

• Q is a finite set of states

• Σ is a finite input alphabet

• ι : Σ→ Q is a mapping from inputs to states

• δ ⊆ Q2 × Q2 is a transition relation, with transitions of the form (a0, b0, a1, b1)

meaning that a pair of agents in states a0 and b0 can interact to change their states
to a1 and b1.

• ω : Q→ Y is a mapping from states to the output range Y and

• Y is a finite set of outputs
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3 Population Protocols

Generally, we will not give Y explicitly, since it is sufficient to give ω, as one can
simply deduce Y from the image of ω under Q.

We will consider a protocol called 4-state majority as an example to better illustrate the
concepts of population protocols. This protocol is also given in [8]. In the beginning, each
agent in the system is either coloured red (R) or blue (B), and the protocol determines
whether the number of red agents is at least as high as the number of blue agents. This
protocol is given as follows: The input alphabet is Σ = {R, B}, and the states are given
as Q = {R, B, 1, 0}. The input relation ι is then given as ι = id, the identity relation. The
output function ω maps states R and 0 to 1 and states B and 1 to 0. The protocol has
four transitions:

R, B→ 0, 1

R, 1→ R, 0

B, 0→ B, 1

0, 1→ 0, 0

Intuitively, the protocol works by having agents in states B and R interact via the
transition R, B→ 0, 1 until there are only agents in states 0, 1 and either R or B. From
there on, agents in states 0 and 1 will then be converted by the remaining agents in
states R or B, until only agents in states B and 1 or R and 0 remain.

Note that as is the case in the 4-state majority protocol, transition functions are not
necessarily symmetrical, i.e. a0, b0 might not have the same resulting states as b0, a0.

To highlight this asymmetry, for a transition a0, b0 → a1, b1 we call a0 the initiator and
b0 the responder.

In addition, transitions can be nondeterministic, i.e. there can be two transitions
t = a0, b0 → a1, b1 and t′ = a0, b0 → a2, b2 in the protocol. Similarly, there might not be
any transition for a given pair a0, b0. It is then assumed that there is a silent transition
a0, b0 → a0, b0. For example, in the 4-state majority protocol, since there is no transition
given for the pair R, R, we assume that there is a transition R, R→ R, R.

Let t = a0, b0 → a1, b1 be a transition, then we denote the pre of t as pre(t) = (a0, b0).
Similarly, the post of t is given by post(t) = (a0, b1).

To describe our system, we need to describe which state each agent is in. Since
the agents in the system are anonymous, only the amount of agents in each state is
important. Therefore, it is sufficient to use a multiset to describe the system at a certain
point in time. We call a multiset of the states of the agents in the system a configuration
or population. An example for a configuration in the 4-state majority protocol would be
{|R, R, B, 0, 1|}, where there are two agents in state R, and one agent in state 0, B and 1
respectively.

We call the states in the image of ι under Σ initial states. By initial configuration, we
denote a configuration that only contains initial states. We denote the set of initial
configurations of a protocol P by Pinit. Initial states of the 4-state majority protocol are
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3.2 Definitions

only R and B, initial configurations are those that contain any amount of R’s and B’s,
but no 1’s and 0’s.

A transition a0, b0 → a1, b1 is called enabled in a configuration C if |C|a0 ≥ 1 and
|C|b0 ≥ 1 if a0 6= b0, or |C|a0 ≥ 2 otherwise.

Let C and C′ be configurations, and let t = a0, b0 → a1, b1 be a transition. We say
that applying t to C results in C′ if (C\{|a0, b0|}) ∪ {|a1, b1|} = C′. To denote that C′ is
reachable from C via t, we also write C t−→ C′. Note that t−→ defines a transition relation
over configurations.

We can naturally extend the relation t−→ to include configurations reachable via all
transitions as follows: →:=

⋃
t

t−→. For two configurations C and C′, we say that C′ is
reachable from C in one step if C → C′.

By ∗−→, we denote the reflexive transitive closure of→. For two configurations C and
C′, if C ∗−→ C′, we say that C′ is reachable from C.

A computation, run or execution is an infinite sequence C0C1C2..., where for all n ≥ 0,
Cn → Cn+1. As an example, the run

{|R, B, B|}{|0, 1, B|}{|0, 0, B|}{|0, 1, B|}{|0, 0, B|} · · ·

would be a run in the 4-state majority, since {|R, B, B|} is a configuration in which
transition R, B → 0, 1 is enabled, which leads to {|0, 1, B|}, from which 0, 1 → 0, 0 is
enabled, which then again leads to {|0, 0, B|}, from which B, 0→ B, 1 is enabled, which
leads back to {|0, 1, B|}, and so on. We denote the set of all runs of a protocol P by
Paths(P).

Let π be an execution. Then by π(i) = C, we denote that the i-th configuration in the
execution is C.

We say a configuration C is in a consensus if:

∃y ∈ Y : ∀s ∈ C : ω(s) = y

We say that a configuration that is not in a consensus is in a dissensus. Let C be
a configuration in a consensus. Then we denote by O(C) the output value of the
configuration. Formally, O(C) = y if ∀s ∈ C : ω(s) = y. Note that the output value of C
is undefined when C is in a dissensus.

For the 4-state majority, we have that R and 0 give output 1, and B and 1 give output
0. Therefore, all configurations that either contain only R’s and 0’s or B’s and 1’s
are in a consensus. For example, the configuration {|1, 1, B|} is in a consensus with
O({|1, 1, B|}) = 0. On the other hand, configuration {|0, 1, B|} is in a dissensus, as states
B and 1 have an output of 0, while state 0 has an output of 1.

Since computations are infinite, instead of requiring termination, we look at conver-
gence of the protocol. We say that a computation π converges to an output value y if
there exists i ≥ 0 so that for all j ≥ i, it holds that O(π(j)) = y. We write O(π) = y for
this. This means transitions will still occur, and the states of agents can still change,
but their output values must remain the same. We also say that the computation has
reached a lasting consensus.

7



3 Population Protocols

Let P be a protocol. A stable configuration is a configuration C such that:

∃y ∈ Y : O(C) = y ∧ ∀π ∈ Paths(P) : ∀i ≥ 0 : π(i) = C → ∀j ≥ i : O(π(j)) = y

Informally, when an execution reaches a stable configuration with output value y, then
at that point, the execution has also converged to y. As an example, the configuration
{|1, 1, B|} is a stable configuration in the 4-state majority. The only enabled transitions
are transitions involving only agents in states 1 and B, and none of these change the
states of the involved agents. Therefore, the output will also not change, and the
consensus is lasting.

To define correctness of a protocol, a notion of fairness is needed. Without fairness,
there might be an execution where only two agents interact, while the rest of the agents
does not take part. This means that no meaningful computation that depends on all
agents can take place. For example, consider the execution

{|R, B, B|}{|0, 1, B|}{|0, 1, B|} · · ·

, that initially uses the transition R, B→ 1, 0 to obtain {|0, 1, B|}, and then only uses silent
transitions (for example, pairs the agents B and 0) although the transitions B, 1→ B, 0
and 0, 1→ 0, 0 are enabled in every step.

We call an execution π fair if for all configurations C and C′, if C appears infinitely
often in π and C → C′, then C′ appears infinitely often in π. Informally, if a configuration
can be reached infinitely often, then it should also be reached infinitely often. This
would mean the aforementioned example of

π = {|R, B, B|}{|0, 1, B|}{|0, 1, B|} · · ·

would not be a fair execution, since from {|0, 1, B|}, which occurs infinitely often in π,
{|0, 0, B|} is reachable, but does not occur infinitely often in π.

This gives rise to the definition of well-specification. Informally, well-specification
means the protocol will converge to the same output value in all fair executions on the
same input. More formally, a protocol is well-specified if for all initial configurations C,
there exists y ∈ Y such that for all executions π, if π(0) = C, then O(π) = y.

Closely related to well-specification is the notion of the computed function of a protocol.
Let i be the extension of the input function ι to multisets, where ι is applied to each
element in the multiset. We say that a protocol computes a function f : pop(Σ)→ Y if
for every multiset of inputs M ∈ pop(Σ), all fair executions π such that π(0) = i(M),
the protocol reaches a lasting consensus with value f (M).

A terminal configuration is a configuration from which only silent transitions are
enabled, i.e. once a terminal configuration is reached, the system will stay in that
configuration. For example considering again 4-state majority, {|1, 1, B|} is a terminal
configuration, but {|0, 1, B|} is not, since in the second case, the non-silent transitions
B, 0→ B, 1 and 0, 1→ 0, 0 are enabled.

We call an execution that reaches a terminal configuration a silent execution, since after
reaching the terminal configuration, only silent transitions can occur.

8



3.3 Examples of Population Protocols

Similarly, a silent protocol is one such that all fair executions starting from any initial
configuration are silent.

3.3 Examples of Population Protocols

To illustrate the concept of population protocols further, the following section is dedi-
cated to introducing several classes of problems than can be solved using population
protocols.

As mentioned above, the predicates computable by population protocols are precisely
those definable in first-order Presburger arithmetic. The two following protocols are
especially important for this, as these are the basic building blocks from which all other
predicates computable by population protocols can be derived from them. This can be
done using the fact that population protocols are closed under conjunction and negation.
For more information on this, see [6].

3.3.1 Threshold

One class of problems that can be solved using population protocols are threshold
predicates of the form a1x1 + a2x2 + ... + adxd < c, with parameters a1, ..., ad, c ∈ Z, and
x1, ..., xd ∈N being the input variables.

One protocol to compute threshold predicates is described by Angluin, Aspnes,
Diamadi, Fischer and Peralta in [2].

To describe the protocol, first define the state space Q = {0, 1} × {0, 1} × {u ∈ Z :
−s ≤ u ≤ s}, where s = max(|c| + 1, maxi|ai|). Each state has 3 components, with
the first component indicating whether the state is a "leader", the second component
indicating the output of the state, and the third component indicating the value of the
state. The input function ι(xi) gives xi agents with initial state (1, 0, ai). Define

q(u, u′) = max(−s, min(s, u + u′))
r(u, u′) = u + u′ − q(u, u′)
b(u, u′) = 1 if q(u, u′) < c, else 0
Then the transitions of the protocol are given as:

(l, x, u), (l′, x, u′)→ (1, b(u, u′), q(u, u′)), (0, b(u, u′), r(u, u′))

with u, u′ ∈ [−s, s], (l, l′) ∈ {(0, 1), (1, 1), (1, 0)}, x ∈ Q
Intuitively, when two agents meet and at least one of them is a leader, exactly one of

the two agents will be a leader after the transition takes place. Therefore, whenever two
leaders meet, the number of leader decreases by one. In addition, the leader will collect
the values of both agents, up to the upper and lower limits of s and −s respectively.
Then both agents adopt the output of the leader. Between two non-leaders, only silent
transitions occur.

9



3 Population Protocols

In an initial configuration, every agent is a leader. Transitions involving two leaders
will reduce the number of leaders, until there is only one leader left. That leader will then
have collected enough information to have an accurate output in the second component,
and will then convert all agents to that output. For a more detailed description of the
protocol, including a correctness proof, see [2].

3.3.2 Remainder

Remainder predicates are of the form a1x1 + a2x2 + ... + adxd ≡ c (mod m). A protocol
to compute remainder predicates is given in [2], and adopted here.

The protocol is similar to the protocol for threshold predicates. We define b = 1 if
u + u′ = c (mod m), else 0. The transitions are given by

(l, ∗, u), (l′, ∗, u′)→ (1, b, (u + u′) mod m), (0, b, 0)

with u, u′ ∈ [m,−m], (l, l′) ∈ {(0, 1), (1, 0), (1, 1)}.
The input function is defined as ι(xi) = (1, 0, xi · ai mod m). This is a slight variation

to the protocol given in [2], where there are initially xi many agents in state (1, 0, ai).
As with threshold, the first component is a leader bit, the second component stores

the current output of the agent, and the last component holds the value of the agent.
The intuition is similar to the protocol for threshold, where one agent collects the

values of both agents, whereas the other agent is assigned 0, and the number of leaders
will reduce, until there is only one leader left that also holds the collective value (mod
m) and can therefore decide whether the predicate is true.

The output function is given as ω((∗, b, ∗)) = b and maps agents to their output bits.
We again refer to [2] for a more detailed description.

3.3.3 Majority

While Threshold and Remainder protocols can be used as the building blocks to obtain
a protocol for every predicate definable in Presburger arithmetic, this generally does
not yield in the fastest or most efficient protocol. For this reason, there are many
dedicated protocols for special cases. One such special case is the majority predicate.
The aforementioned 4-state majority protocol is one protocol able to compute the
predicate.

A formal definition of the predicate is given as follows: Define the input Σ as {R, B}
and the output range Y as {0, 1}. The function we want to compute is then given as
f : pop(Σ) → Y, where f (X) = 1 if |X|R ≥ |X|B else 0, i.e. the function returns 1 if
initially, there are at least as many R’s as B’s in the system, otherwise it returns 0.

Apart from the 4-state majority protocol, there are more protocols that compute the
majority predicate.
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3.3 Examples of Population Protocols

3-state Majority

A protocol that has especially fast convergence, but is only approximate (in that there
are fair runs that converge to the wrong value) is given in form of the 3-state majority
protocol, as introduced by Angluin, Aspnes and Eisenstat in [4].

As always for the majority protocol, we assume Σ = {R, B}. We then have ι(R) =
x, ι(B) = y.

The transitions of the protocol are best given as a matrix. Reading line i, column j
with entry (k, l) as i, j→ k, l, the matrix looks like this (adopted from [4]):

x b y
x (x, x) (x, x) (x, b)
b (b, x) (b, b) (b, y)
y (y, b) (y, y) (y, y)

The basic idea is that there are undecided agents in the blank states b, and decided
agents in states x and y. When x or y initiate an interaction with b, they convert that
agent to their respective state, whereas when they initiate an interaction with an agent
in the opposing state, they reduce that agent to state b.

The output function ω then maps x to 1 and y and b to 0. The choice for b does not
actually matter, since if there are only agents in state b and either x or y, then the agents
in state b will eventually be converted to x or y respectively. In addition, the case of a
full configuration of agents in state b is not possible, since the last agent in state x or y
will never be converted to b.

The protocol is only approximately correct. Consider the case where all but one agents
begin in state x, with the one spare agent beginning in state y. Then consider the fair
execution where transitions only happen with y as the initiator, which then converts all
other states to y, first from x to b, and then from b to y. This execution converges to the
wrong output. As seen from this example, the protocol is only approximate, in that not
all fair executions reach a lasting consensus with the correct value. However, assuming a
probabilistic scheduler that chooses pairs of agents to interact based on some probability
distribution (for example, picking uniformly at random among agents), the protocol
has a high probability to converge to the right output for a given input, as long as the
majority is sufficiently large [4].

Average and Conquer

Another protocol that can provide an exact solution to the majority problem is the Average
and Conquer (AVC) protocol. It was proposed by Alistarh, Gelashvili and Vojonović in
[1].

The AVC protocol depends on two parameters, an odd integer m > 0 and an integer
d > 0. There are multiple subsets of states for the protocol:

Strong States: {−m,−m + 2, ...− 3, 3, ..., m− 2, m}
Intermediate States: {−11,−12, ...,−1d, 11, 12, ...1d}
Weak States: {−0,+0}

11



3 Population Protocols

Each state has a sign (±1), and a weight, (0 or an odd integer up to m). The intuition
behind the states is that the sign determines which output the state currently has,
whereas the weight determines the level of confidence in the output.

We will not go into full detail on the transitions (for a more in-depth explanation of
the protocol, see [1]), but the basic principle is that when two states meet either

• a strong state and a non-weak state meet, in which case the states average their
values (and if the average is even, round the weight of one agent up and that of
the other down);

• a weak state meets a non-weak state, in which case the weights remain the same,
but the weak state changes its sign to match that of the non-weak state;

• Two intermediate states meet, in which case, if one of the states is either −1d or 1d,
both states are downgraded to 0, otherwise both states are downgraded from +1i
to +1i+1 (or respectively from −1i to −1i+1).

The output function depends only on the sign, where ω(s) = 1 if sign(s) = +1,
ω(s) = 0 otherwise. The input function ι maps R to +m and B to −m.

Compared with the 4-state majority protocol, the AVC protocol needs more states, but
has the advantage of faster convergence.

3.3.4 Flock of Birds

A special case of threshold predicates is known as the flock-of-birds predicate. The name
comes from the original scenario the protocol was proposed for. Consider a flock of
birds, where each bird either has normal or elevated temperature, and fix some natural
number N. The question is: are there more than N birds with elevated temperature?

For all of the following protocols, we have Σ = pop({0, 1}), with 0 indicating a bird
with normal temperature, and 1 a bird with elevated temperature. In addition, the
output range is given as Y = {0, 1}. The predicate can then be given as f (X) = 1 if
|X|1 ≥ N, else 0.

flocki

This protocol was introduced in [11] by Chatzigiannakis, Michail and Spirakis. Consider
for the states Q = {0, 1, ..., N}. The input function ι is given by ι(0) = 0, ι(1) = 1, and
the output function ω(s) = 1 if s = N otherwise 0.

The transitions are defined by

k, j→ k + j, 0 if k + j < N

k, j→ N, N else

for k, j ∈ Q.
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3.3 Examples of Population Protocols

Intuitively, whenever two agents interact, the values of the agent’s states are collected
into one of the agents, whereas the other is reduced to state 0. When one agent reaches
state N, it will then convert all other agents to that state.

Note that the amount of states is linear in N.

Threshold(N)

The Threshold(N) protocol is very similar to the f locki protocol, but uses a different
transition function. It was proposed by Clément, Delporte-Gallet, Fauconnier, and
Sighireanu in [12].

ι, ω and Q are the same as in the f locki protocol, but the transition relation δ differs.
The transitions are as follows:

q, q→ q, q + 1 for 1 ≤ q < N

N, q→ N, N for 0 ≤ q < N

Intuitively, when two agents with the same state meet, one of them gets promoted
to the next state, while the other stays in the current state. For an agent to reach state
N, there must be at least one agent for every state greater than 0 and less than N, i.e.
N or more agents that started in state 1 (since agents in state 0 only have meaningful
interaction with agents in state N).

Note that again, the number of states is linear in the size of N.
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4 Fairness

4.1 Global Fairness and Variations

As mentioned in Section 3.2, in order to ensure meaningful computations take place in a
protocol, we need a notion of fairness. Without such a notion it could be the case that
only two agents interact, while the rest does not take part in the computation. Recall
the example we gave in Section 3.2 for such an execution, where only silent transitions
are taken, even though non-silent transitions are enabled. In such a case, it cannot be
expected that the protocol gives the correct output. We define global fairness (as briefly
described in Chapter 3) as follows:

• (I): Let P = (Q, Σ, ι, δ, ω, Y) be a population protocol. For all configurations C,
C′ ∈ Pop(Q), all executions π: If C occurs infinitely often in π and C → C′, then
C′ occurs infinitely often in π.

While this definition is sufficient by itself, there are several subtle variations of global
fairness. For one, consider the variant where we formulate fairness in the following way:

• (II): Let P = (Q, Σ, ι, δ, ω, Y) be a population protocol. For all configurations C,
C′ ∈ Pop(Q), all executions π: If C occurs infinitely often in π and C ∗−→ C′, then
C’ occurs infinitely often in π.

Although the notions look similar, they differ: In (I), we consider only configurations
reachable in one step (→) whereas in (II), we consider all configurations reachable in
any number of steps ( ∗−→). These differing notions exist since it can be easier to reason
using (II), but (I) is the most basic definition. We will make use of this later, e.g. in
Section 6.2.

Proposition 1. For every execution E: E satisfies fairness as defined in (I) if any only if E
satisfies fairness as defined in (II).

Proof. We first show that (II) implies (I), i.e. when the condition in (II) is satisfied, the
condition from (I) is also satisfied. Let E be an execution that is fair as given in (II). Then
it is trivial that E satisfies fairness as given in (I). This is the case since by definition, if
C → C′ holds, then C ∗−→ C′ holds.

Now let E be an execution that satisfies fairness as given in (I). Let C, C′ be configura-
tions so that C ∗−→ C′, and the length of the shortest path from C to C′ is n. In addition, C
appears infinitely often in E. Proof by induction over n: Start with n = 0. Then C = C′.
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Then both notions of fairness are trivially satisfied. Now assume that for some fixed n, it
holds for all configurations C and C′, if C appears infinitely often in E, and C ∗−→ C′, and
the length of the shortest path between C and C′ has length n, then C′ appears infinitely
often in E. Now let C′ be reachable from C via a shortest path with n + 1 steps. Consider
now the subpath (of the path from C to C′) with length n, so that the subpath starts at C
and ends at Cn, and therefore Cn → C′. Then by the induction hypothesis, as C occurs
infinitely often in E, Cn must appear infinitely often in E. Since Cn → C′, under (I), Cn

occurring infinitely often implies C′ occurring infinitely often, so C occurring infinitely
often implies C′ occurring infinitely often. Therefore, C′ must occur infinitely often in E.
Therefore, the two notions of fairness are equivalent.

There is a third notion of fairness that again slightly differs, but is equivalent:

• (III): For every configuration C′, if π contains infinitely many configurations
C1, C2, ... in the execution such that C1

∗−→ C′, C2
∗−→ C′, ..., then C′ occurs infinitely

often in π.

It can be shown that fairness as described in (III) is equivalent to (I) by using the
fact that in population protocols, the population never changes sizes, and therefore,
there are only finitely many different configurations from which any configuration C′ is
reachable. From this, it follows that at least one of them must appear infinitely often by
the pigeonhole principle.

Another notion of fairness is given as follows:

• (IV) For all transitions t, for all executions C0C1...: If there is an infinite set of
natural numbers N such that in ∀n ∈ N : in Cn, t is enabled, then there exists an
infinite set of natural numbers U such that ∀u ∈ U : Cu

t−→ Cu+1.

Intuitively, if a transition is enabled infinitely often, it should occur infinitely often.
We call this local fairness. Local fairness is not equivalent to global fairness as given

in (I). The following example illustrates this.
Consider a protocol with the transitions
a, a→ b, b
b, b→ a, a
Then, starting from configuration {a, a, a, a}, the execution alternating between
{a, a, b, b} and {a, a, a, a} uses both transitions infinitely often, since both are enabled
infinitely often. This satisfies local fairness. However, this execution is not globally fair,
since the configuration {b, b, b, b} is reachable from {a, a, a, a}, and {a, a, a, a} appears
infinitely often. When we talk about fairness in the context of population protocols, we
will always be talking about global fairness.

In the following, we want to give a criterion that can be used to determine whether a
given run is fair. For this, we need to define the reachability graph of a protocol.

For a protocol P, the reachability graph with respect to some configuration C is given
by PC = (V, E) where:
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4.2 Fairness and Probability Distributions

• V = {C′|C ∗−→ C′}.

• E = {(s, s′)|s, s′ ∈ V ∧ s→ s′}.

It is easy to see that each infinite run of the protocol starting at C corresponds to an
infinite path over PC, starting at C, as each node corresponds to one configuration. This
leads to a criterion for deciding whether a given run is fair.

Lemma 1. A run R starting from some configuration C in a population protocol P is fair iff
R visits all nodes of some BSCC ∆ of PC infinitely often: in f (R) = ∆ ∈ bsccPC

Proof. ⇒: Consider a run R such that in f (R) 6= ∆ for all BSCCs ∆. Observe first that
in f (R) cannot contain nodes from two BSCCs Θ, Ξ with Θ 6= Ξ, since from Θ, by
definition there are no outgoing edges to Ξ, and vice versa. Similarly, once an SCC Θ is
left by the run, the run cannot reach it again, as there are no cycles between SCCs, which
contradicts nodes from multiple SCCs appearing infinitely often. Using that, in f (R)
must be a proper subset of some BSCC, or a subset of some SCC that is not a BSCC.
We show that there is a node v reachable from some node u ∈ in f (R) that is not in
in f (R). If in f (R) is a proper subset of some SCC Θ, we have that v ∈ Θ\in f (R). Such
a v exists, as Θ\in f (R) 6= ∅. If in f (R) is a subset of an SCC Θ that is not a BSCC, by
definition, from nodes in Θ, a node v outside of Θ must be reachable - otherwise, Θ
would be a BSCC. Since v /∈ Θ, but in f (R) ⊆ Θ, it follows that v /∈ in f (R). Therefore,
we know that u ∈ in f (R), v /∈ in f (R), but u→ v. This contradicts fairness.
⇐: Now consider a run R such that there exists a BSCC ∆ : in f (R) = ∆. By definition

of BSCCs, from nodes in ∆, no nodes outside of ∆ are reachable. Therefore, the only
nodes reachable from in f (R) are in ∆. Since ∆ = in f (R), fairness is ensured.

We can see from Lemma 1 that the BSCCs of the reachability graph of a protocol are
closely related to fairness.

4.2 Fairness and Probability Distributions

In many practical applications, we cannot guarantee the fairness condition directly.
Instead, there is an underlying probability distribution that determines which transitions
occur. We are interested in investigating the connection between probability distributions
and fairness, to see what criteria ensure that a distribution is fair. Our goal is to
find a class of probability distributions that ensures that executions following such a
distribution are fair with probability 1.

Formally, by probability distribution we mean a function λ, where λ(t|C) is the proba-
bility of picking transition t when the system is in configuration C. Since probabilities
should sum up to one, we require that ∑t λ(t|C) = 1 for all configurations C. In addition,
λ(t|C) ∈ [0, 1] for all t, C.

We call a probability distribution λ admissible if it is of the following form:
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λ(t|C) =
{

αt,C if t is enabled in C

0 otherwise
In words, an admissible probability distribution ensures that in a configuration C,

transitions that are not enabled in C have probability 0 to occur. This is a rather obvious
requirement to have, since only enabled transitions can occur. Note that the reverse does
not have to hold: There can be enabled transitions that have probability 0 of occurring.

In the following, we are only considering admissible probability distributions.
Note that this requirement is not strong enough to ensure fair runs with probability 1.

An example is given as a protocol with the following transitions:

a, a→ b, b

b, b→ a, a

a, a→ c, c

Consider now the probability distribution such that λ((a, a, b, b)|{a, a}) = 1 and
λ((b, b, a, a)|{b, b}) = 1. Assume for all other configurations a uniform distribution over
all enabled transitions. Then, when {a, a} is the initial configuration, with probability 1,
the execution starting at {a, a} will alternate between {a, a} and {b, b}, with {c, c} never
occurring in the execution, even though the configuration {a, a} occurs infinitely often,
and {c, c} is reachable from it. This contradicts fairness.

On the other hand, requiring each enabled transition to have a strictly positive
probability is too strong, since there are probability distributions that lead to fair
executions with probability 1 and that assign some enabled transitions probability 0.

Consider for example a protocol with the transitions

a, a→ b, b

a, a→ c, c

with a being the only initial state. Let λ((a, a, b, b)|C) = 1 and λ((a, a, c, c)|C) = 0 for
all configurations C that contain at least two agents with state a. Then starting from
any initial configuration, only the transition a, a → b, b will be used until there is at
most one agent in state a, with the rest being in state b. Then that configuration is
also the only configuration appearing infinitely often, and it is also terminal (since only
silent transitions are enabled). Therefore, fairness is satisfied, since any configuration
reachable infinitely often is reached infinitely often.

4.3 A Necessary and Sufficient Criterion for Fairness

In the following, we will show a criterion for probability distributions that is neces-
sary and sufficient to ensure that executions following that distribution are fair with
probability 1.
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4.3 A Necessary and Sufficient Criterion for Fairness

We extend our definition of the reachability graph of a protocol to take probability
distributions into account. Markov chains as described in Section 2.2 give an angle of
attack for this.

For a given protocol P = (Q, Σ, ι, δ, ω, Y), a probability distribution λ and an initial
configuration C, we define the Markov Chain induced by P with respect to λ and C as
MP,λ,C = (S, P, ιinit), where:

• S = {C′ : C ∗−→ C′},

• P(s, s′) is the probability of picking a transition that changes the system to config-
uration s′ when in configuration s, i.e. P(s, s′) = ∑

t∈δ∧s
t−→s′

λ(t|s),

• ιinit(s) =
{

1, if s = C
0, if s 6= C

Let s ∈ S be a state. Then by PathsM(s), we denote the set of infinite paths in the
Markov chain that start at s.

Denote by bsccMP,λ,C and bsccPC the BSCCs of the Markov chain and the reachability
graph of the protocol respectively.

It can be shown that the following holds:

Theorem 1. For every Markov chain M = (S, P, ιinit), for every state s ∈ S: Pr(π ∈
PathsM(s)|in f (π) ∈ bsccM) = 1

Intuitively, this means that for each state in the Markov chain, paths starting at that
state have probability 1 to reach precisely all nodes of some bottom strongly connected
component infinitely often. A proof is given in [9].

Let P be a population protocol and let C be a configuration. Further, let λ be a
probability distribution and let M = MP,λ,C be the Markov chain induced by P with
respect to λ and C. Denote by FP,C be the set of fair executions in P that start at C. Let
FP,λ,C = PathsM(C) ∩ FP,C be the set of fair runs in M. From Lemma 1, we know that

FP,C = {π ∈ Paths(C)|∃S ∈ bsccP : ∀C′ ∈ S : C′occurs infinitely often in π}

Using results given in [9], this is sufficient to show that the set Fλ,C,P is measurable.
Then we define the following: a probability function λ gives rise to fair executions of

P if and only if for all configurations C: Pr(π ∈ Paths(C)|π ∈ FP,λ,C) = 1.
We can use this fact, together with Theorem 1 and Lemma 1 to prove the following:

Proposition 2. Given a protocol P and a probability distribution λ, λ gives rise to fair execu-
tions of P if and only if:

∀C ∈ Pinit : bsccMP,λ,C ⊆ bsccPC

19
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Proof. Let P be a protocol, let C be a configuration and let λ be a probability distribution.
We write M for MP,λ,C for sake of brevity.
⇒ : Assume λ gives rise to fair executions of P. By Theorem 1, it holds that Pr(π ∈

PathsM(C)|in f (π) ∈ bsccM) = 1. Next, note that for every BSCC ∆ ∈ bsccM: Pr(π ∈
PathsM(C)|in f (π) = ∆) > 0. This is the case since every BSCC in M must be reachable
from the initial state C by definition of M. Additionally, Lemma 1 gives us that a
run π is fair iff there is some BSCC ∆ ∈ bsccPC such that in f (π) = ∆. Assume for
contradiction that there is some Θ such that Θ ∈ bsccM but Θ /∈ bsccPC . Then we
have that Pr(π ∈ PathsM(C)|in f (π) = Θ) > 0. By Lemma 1, a run π is fair iff
in f (π) ∈ bsccPC . As Θ /∈ bsccPC holds, it follows that Pr(π ∈ Paths(C)|π /∈ FP,λ,C) ≥
Pr(π ∈ PathsM(C)|in f (π) = Θ) > 0. This contradicts that λ gives rise to fair executions.
⇐ : Assume that it holds that for all configurations C ∈ Pinit : bsccM ⊆ bsccPC . Then

from Theorem 1 we have that Pr(π ∈ Paths(C)|in f (π) ∈ bsccM) = 1. From bsccM ⊆
bsccPC it follows that Pr(π ∈ Paths(C)|in f (π) ∈ bsccPC) = 1. Using Lemma 1, we can
then follow that 1 = Pr(π ∈ Paths(C)|in f (π) ∈ bsccPC) = Pr(π ∈ Paths(C)|in f (π) ∈
FP,λ,C).

From Proposition 2, it can easily be seen that a probability distribution that assigns a
positive probability to each enabled transition gives rise to fair runs with probability 1,
as the BSCCs of the Markov chain are then equal to the BSCCs of the reachability graph
of the protocol.

Two distributions have been studied in the literature:1

Uniform rules scheduling is the probability function where in configuration C, if there
are n transitions enabled, we assign each of those transitions probability 1/n, i.e. we
choose uniformly at random among enabled transitions.

Uniform pairs scheduling is the probability function where we choose uniformly at
random among agents. More formally, assume we are in configuration C. Then, a pair
(a, b) has probability

|C|a
|C| ·

|C\{a}|b
|C\{a}|

Due to nondeterminism, there might be multiple possible transitions for (a, b). Once we
have chosen a pair, we then choose uniformly at random over the possible transitions
for that pair. More formally, the full probability for a transition t = a, b → a′, b′ in a
configuration C is given as

P(t|C) = |C|a|C| ·
|C\{a}|b
|C\{a}| ·

1
|T|

where T is the set of all possible transitions for (a, b), i.e. T = {t|pre(t) = (a, b)}.

1In [12], schedulers implementing these distributions are called random pairing scheduler and random ruling
scheduler respectively.
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5 A Tool for Population Protocols

Even though population protocols have been researched for a decade, there are very
few tools for simulating and verifying them. Some of the tools we are aware are the
following:

• In [11], Chatzigiannakis, Michail and Spirakis give the tool bp-ver, which is capable
of verifying protocols for fixed sizes using graph exploration algorithms.

• In [12], Clément, Delporte-Gallet, Fauconnier and Sighireanu use the model check-
ers SPIN and PRISM to verify protocols for fixed sizes, and compare run times for
both model checkers.

• In [20], Sun, Liu, Dong and Chen introduce the model checker PAT, which can be
used for verifying protocols for fixed sizes as it supports global fairness.

• In [10], Blondin, Esparza, Jaax and Meyer give the tool peregrine, which is capable
of verifying a restricted class of protocols for all infinitely many input sizes.

We have developed a tool that allows specifying protocols and populations as well
as their manipulation, verification and simulation. It was written using the Python
programming language [19] and the PyCharm development environment [15]. It can be
accessed on https://gitlab.lrz.de/ga96jib/tool_for_population_protocols.

5.1 Data Structures for Populations and Protocols

There are two underlying components in the tool: protocols and populations.
Populations store the current configuration. They are represented as a dictionary

with the states keys, and their respective multiplicity as entries. For example, the
configuration {|R, R, R, B, B, 0, 1|} would be encoded by the following dictionary:

{'1': 1, '0': 1, 'B': 2, 'R': 3}

Note that there might be more states in the protocol, for example, there could be a
state X that is a state of the protocol, but the configuration does not contain it. It would
not appear in the dictionary, as we only have entries for states that are contained at least
once in the configuration.

Populations also come in two variations, mutable populations, and frozen populations.
The two versions only differ in a few methods: While items can still be added to and
removed from a mutable population, a frozen population cannot be modified once it is
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created. The frozen version is needed when one wants to use a population in a set or as
a key of a dictionary, since Python does not allow that for mutable objects.

Protocols store information about the population protocol that hold independently of
the current configuration, such as the transition relation, the output function, and the
set of initial states. The states are not represented explicitly, as they can be derived from
the transitions. This is also the reason why configurations do not have entries for states
that are not present in the configuration; the full state space is not stored explicitly. The
transitions are stored in a dictionary in the following way: Let a0 and b0 be a pair of
agents, and let the transitions where a0 is the initiator and b0 is the responder be given
as

a0, b0 → a1, b1

a0, b0 → a2, b2

...

a0, b0 → an, bn

Assuming there are no other transitions in the protocol, the dictionary for the transition
relation is then as follows:

{('a0', 'b0'): [('a1', 'b1'), ('a2', 'b2'), ..., ('an', 'bn')]}

Observe that non-determinism is in this case handled by storing a list instead of only
a single pair. If there is no explicit transition with a0, b0 as pre, we assume there is a
silent transition. This is achieved by accessing elements of the dictionary using the
following method:

def __getitem__(self, item):

return self.transitions.get(item, [item])

The get method of dictionaries returns the entry for item when there is one, otherwise
it defaults to the second argument, i.e. [item], a list containing only the item itself.
Therefore, when there would not be a transition for a given pair, there is a silent
transition by default.

In the following, we are going to consider the 4-state majority protocol as an example.

5.2 Generating a Protocol

To generate a protocol, one can supply a collection of transitions. A transition a0, b0 →
a1, b1 is encoded by the tuple (a0, b0, a1, b1). In addition, initial states and an output
function can be given, respectively as a set and a function over the states of the protocol.
Recall that transitions need not be deterministic, i.e. it is possible to have two transitions
(a0, b0, a1, b1) and (a0, b0, a′1, b′1).

Recall that the transitions for 4-state majority were defined as follows:
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R, B→ 1, 0

R, 0→ R, 1

B, 1→ B, 0

1, 0→ 1, 1

As an example, the function used to generate this protocol in the tool is as follows:

def get_4state_majority_protocol():

transitions = [("R", "B", "0", "1"), ("R", "1", "R", "0"),

("B", "0", "B", "1"), ("0", "1", "0", "0")]

initial_states = ["a", "b"]

output_function = lambda x: True if x == "a" or x == "0" else False

return Protocol(transitions, initial_states, output_function)

For example, the transition R, B→ 0, 1 corresponds to the tuple (”R”, ”B”, ”0”, ”1”).
As mentioned before, the initial states are simply given as a set, which in this case
contains only R and B.

The output function simply gives True for R and B, and False otherwise, which
corresponds to the output function of the 4-state majority, where we had ω(R) = 1,
ω(0) = 1, ω(B) = 0 and ω(1) = 0.

5.3 Generating a Population

A population can be generated by supplying a collection containing the elements in the
configuration, e.g. a list.

The following code-snippet shows an example of code used to generate a population
for the 4-state majority:

population = p.FrozenPopulation([R, R, R, B, B, B])

This corresponds to the initial configuration {|R, R, R, B, B, B|}. This instantiates a
frozen version of the population, which cannot be modified after creation. If we wanted
to create a mutable population with the same elements, we simply write Population
instead of FrozenPopulation:

population = p.Population([R, R, R, B, B, B])

5.4 Simulating a Protocol

There are different functions to simulate runs on a protocol.

23



5 A Tool for Population Protocols

1 def average_convergence_steps(self, initial_population, num_iterations=5,

↪→ stable_configurations=None, probability_function=None):

2 ...

3 for i in range(num_iterations):

4 count = 0

5 current_population = initial_population

6
7 # simulate protocol until a stable configuration is reached

8 while not (current_population in stable_configurations):

9 # pick transition according to probability function, then

↪→ update current population using that transition

10 current_population = self.successor_transition(

↪→ probability_function(current_population),

↪→ current_population)

11 count += 1

Listing 5.1: Average convergence steps method of the Protocol class, shortened for
presentation here.

Average number of steps to convergence (Listing 5.1). This function measures how
many steps are on average needed for runs in the protocol to converge. We say that a
run has converged once it reaches a stable configuration. The number of steps needed
to convergence is then the number of steps until a stable configuration is reached.

In the following, we will give a brief explanation of the code of the function.
Observe first the parameters.

• self is needed since it is a method of a class (for specifics on this, see [19]),

• initial_population is the population from which executions should start,

• num_iterations is how many runs should be simulated,

• stable_configurations are the stable configurations reachable from the specified
initial population, and

• probability_function is the probability function to be used.

Each run starts at the specified initial population, and then goes on until it has reached
a stable configuration for the first time, at which point the run is completed and the
steps the run needed to converge are stored. At the end, the average over the runs as
well as the standard deviation are computed using the stored values. In each step the
probability function chooses a transition to be taken based on the current population,
and the successor_transition method then returns the resulting population.

For details on how the stable configurations can be computed, see Section 5.7.
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Failure ratio. It is straightforward to adapt the method for computing the average
steps until convergence for the computation of the failure ratio. Instead of measuring
the number of steps for each run, we count how many runs reach a stable configuration
with the correct output value, and how many runs reach an incorrect one. For this, it is
additionally needed that the user supplies which output should be seen as correct for
the protocol with regards to the given initial configuration. Again, a method for this can
be found in the protocol class of the tool.

5.5 Verifying a Protocol

Additionally to simulation, the tool can be used for verification. The tool offers ways to
check a protocol for well-specification for all inputs of a given size. Well-specification is
a property of the BSCCs of the reachability graph, since fair runs will eventually end up
in some BSCC and visit all nodes there infinitely often, as we have shown in Section 4.1.
Therefore, we can simply check if all BSCCs of the reachability graphs for all inputs of
the given size only contain populations with the same consensus value.

The tool also allows to check whether the protocol computes a given function for
a given size of inputs. By abuse of notation, we say a protocol is-well-specified for
a size s if for all initial configurations C with |C| = s, there exists y ∈ Y such that
for all executions π, if π(0) = C, then O(π) = y. Informally, this means we relax
well-specification to well-specification for initial populations of some given size.

For this, the correct output for a given input population will be computed using
the function and compared to the consensus values of the BSCCs of the reachability
graph starting at the population. The protocol then computes the function for the given
size if for all input populations of that size, all BSCCs contain only configurations in a
consensus with the correct value, i.e. the result of applying the function to the input
population.

Lastly, the tool also has a function to check whether a given protocol is silent up to a
given size. For this, the BSCCs are computed for all initial populations up to the given
size. If all BSCCs reachable from an initial population contain a single node, then the
protocol is silent for that population.

We will present the procedure used to compute BSCCs of reachability graphs in
Section 5.7.

5.6 Using a Model Checker to Analyse Convergence Properties

Simulating a protocol to find the expected steps until convergence or the failure ratio
is only an approximation of the real value that gets better with larger sample size.
For exact results, we used the PRISM probabilistic model checker [18]. PRISM allows
deterministic Markov chains as input models, so we used the fact that a protocol, a
scheduler and an initial configuration induce a Markov chain (see Section 4.3) to obtain
a representation that we could use for PRISM.
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We introduce a method to export a protocol to the PRISM language, and use the PRISM
property specification language to give properties that represent well-specification. PRISM
also allows to check quantitative properties, which we use to compute the expected
number of steps to convergence.

Roughly speaking, PRISM models consist of a finite number of variables, each with
their respective bounds, and commands. Commands consist of a guard that determines
when the command should be usable, and one or more updates, each with a probability,
that describe changes to variables. Consider the following example:

[] x=0 -> 0.8:(x'=0) + 0.2:(x'=1);

This command means that the command describes the behaviour of the system when
x = 0. If that is the case, there is a probability of 0.8 for x to remain at 0 and a probability
of 0.2 for x to be changed to 1. The "[]" at the beginning can be ignored for our purposes.
See [18] for a more detailed explanation of the PRISM language.

In addition, so-called rewards can be assigned to states, depending on conditions. For
example, one could assign a reward of 1 for each state that has x = 0, and reward 0 to
the rest. For us, rewards are going to be steps, so that we can look at the cumulative
rewards to obtain the number of steps needed, i.e. the expected number of steps until
convergence.

Our export function to PRISM comes in two variations, one for arbitrary distributions,
and one for uniform distributions.

Both approaches have in common that each state of the protocol is encoded as a
variable that can assume values between 0 and the size of the initial configuration. These
variables encode the current multiplicity of agents with the respective state in the current
configuration. Since population sizes do not change, this suffices to be able to represent
all configurations reachable from the initial configuration. Initially, all variables therefore
have a value that equals their multiplicity in the initial configuration.

The variables and their initial values for the 4-state majority with an initial population
of {|R, R, B, B|} are depicted in Listing 5.2.

R : [0..4] init 2;

B : [0..4] init 2;

"0" : [0..4] init 0;

"1" : [0..4] init 0;

Listing 5.2: Snippet of the exported Markov chain for the 4-state majority protocol,
starting from {|R, R, B, B|}.

There is also a slight variation to this variable initialization. Imagine one wants to
export Markov chains for all initial populations of a given size. Instead of generating a
model for each, we use another capability of PRISM to achieve this in an easier manner,
as one can specify ranges for initial values of variables. We simply specify that the sum
of the multiplicities of all initial states must equal the desired population size, while the
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multiplicities of non-initial states are initially 0. An example of this is given in Listing 5.3
for the 4-state majority protocol and all initial populations of size 4.

R : [0..4];

B : [0..4];

"0" : [0..4];

"1" : [0..4];

...

...

...

init R+B = 4 & "0" = 0 & "1" = 0 endinit

Listing 5.3: Snippet of the exported Markov chain for the 4-state majority protocol for
all initial populations of size 4.

5.6.1 Arbitrary Probability Distributions

In the approach for arbitrary distributions, the PRISM model contains one command for
each configuration C′ that is reachable from C. The guard of the command ensures that
the command is only usable when the system is in the respective configuration, i.e. each
variable has a value equal to its multiplicity in C′. The updates are then the transitions
leaving C′ in the Markov chain MP,λ,C, with their respective probabilities. These updates
change the values of the variables according to the transition. Note that in P, there
might be multiple transitions that lead to the same resulting configuration, in which
case the probabilities of those transitions need to be summed into a total probability, as
defined in Section 4.3.

Each state is assigned a reward of 1, since each command represents one step of the
protocol.

As an example, we are going to examine the commands and states of the exported
Markov chain for the 4-state majority protocol, starting from the initial configuration
C0 = {|R, R, B, B|}, as seen in Listing 5.4.

Note that this is only a snippet, and the whole model has 8 commands, one for
each configuration reachable from C0. This approach needs exactly one command per
reachable configuration, and each command will have as many updates as there are
transitions with positive probability.

5.6.2 Uniform Rules Scheduling

Our approach for using arbitrary probability distributions requires the whole reachability
graph to be built, and generates one command per configuration. This means that the
exported model can get large even for relatively small populations. For this reason, we
implemented a special case for uniform rules scheduling. We tested and implemented
two different approaches for this.
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[] R = 2 & B = 2 & "0" = 0 & "1" = 0 ->

1.0: (R'=R-1) & (B'=B-1) & ("0"'="0"+1) & ("1"'="1"+1);

[] R = 1 & B = 1 & "0" = 1 & "1" = 1 ->

0.25: (R'=R-1) & (B'=B-1) & ("0"'="0"+1) & ("1"'="1"+1) +

0.5: ("1"'="1"-1) & ("0"'="0"+1) +

0.25: ("0"'="0"-1) & ("1"'="1"+1)

[] R = 0 & B = 0 & "0" = 2 & "1" = 2 ->

1.0: ("0"'="0"+1) & ("1"'="1"-1);

Listing 5.4: Snippet of the variables of the exported Markov chain for the 4-state majority
protocol, with the initial configuration of {|R, R, B, B|}.

Nondeterministic encoding. This approach makes use of the fact that PRISM, when
confronted with overlapping guards (i.e. multiple commands are enabled in a state),
resolves this nondeterminism by choosing uniformly at random among the enabled
commands. Therefore, we specify for each transition one command. The guard of that
command evaluates to true if and only if the transition is enabled, and there is a single
update with probability 1 that describes how the transition changes the configuration.

In Listing 5.5, we illustrate the exported model of the 4-state majority protocol with
the initial configuration {|R, R, B, B|}. Note that the four commands in the snippet are
already all the commands that are needed.

Note that the guards contain two parts: one ensures that the transition is enabled, e.g.
in the first command, that there is at least one agent in state R and one agent in state
B. The other part ensures that the variables are not incremented above their bounds,
i.e. the size of the initial configuration. This requirement is needed even though no
configuration can violate it, since otherwise, PRISM will report the guards as too weak.
This is due to PRISM checking the guards for states that are not reachable from the
configuration, but within the bound of the variables.

Again, each state corresponds to one step, so we set the reward of each state to 1.

[] R >= 1 & B >= 1 & "0" <= 3 & "1" <= 3 ->

(R'=R-1) & (B'=B-1) & ("0"'="0"+1) & ("1"'="1"+1);

[] R >= 1 & "1" >= 1 & "0" <= 3 ->

("1"'="1"-1) & ("0"'="0"+1);

[] B >= 1 & "0" >= 1 & "1" <= 3 ->

("0"'="0"-1) & ("1"'="1"+1);

[] "0" >= 1 & "1" >= 1 & "0" <= 3 ->

("0"'="0"+1) & ("1"'="1"-1);

Listing 5.5: Snippet of the exported Markov chain for the 4-state majority protocol,
starting from {|R, R, B, B|} and using uniform rules scheduling with the
approach for arbitrary distributions.
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One downside to this approach is that it exploits an implicit behaviour of PRISM
that may be changed in future versions. An upside is that the size of the model is
reduced drastically, requiring one command per transition instead of one per reachable
configuration, and it does not require computing the reachability graph.

Deterministic encoding. We present an alternative approach that allows us to export a
protocol, using uniform rules scheduling as probability distribution, without generating
the reachability graph. For this approach, we make use of two additional counters, n and
i. For this, we assume that we have numbered the transitions in some way, so that they
are given as t0, t1, t2, .... The approach works by considering the transitions in succession.
The counter n stores which transition is currently in consideration. Initially, n = 0, since
we are considering the first transition. We then check whether transition tn is enabled. If
it is not, we increase n by 1 and move on to consider the next transition. If tn is enabled,
we choose transition tn with probability 1/T, where T is the number of currently enabled
transitions. On the other hand, with probability 1− (t/T) = (T − 1)/T, we do not take
the transition (even though it is enabled) and go on to consider the next transition. Since
we check transitions in succession we need to take into account conditional probabilities,
i.e. if we were to simply always assign probability 1/T to choosing a transition that is
enabled, we would have that the first enabled transition has probability 1/T to be taken,
whereas we have a probability of 1/T to move to the next transition. Due to conditional
probabilities, we would then have a conditional probability of ((T − 1)/T) · (1/T) to
take the second enabled transition, i.e. the probability of not taking the first enabled
transition times the probability of taking the second enabled transition. This would
result in the cumulative probabilities not equalling a uniform distribution. To adjust for
this, we used another counter i. Since using only n, we have no information about how
many enabled transitions were considered (but not taken), we use i to store exactly that
information.

At first, i is 0. When we check an enabled transition, the probability to take that
transition is then 1/T− i. When we do not take an enabled transition, we increment i.
In general, the probability for the k-th enabled transition to be taken is:(

k−2

∏
i=0

(T − i)− 1
T − i

)
· 1

T − (k− 1)
=

1
T

This describes the cumulative probability not to take any of the first k− 1 transitions
times the probability to then take the k-th transition. By this we have that our distribution
does in fact model a uniform distribution over enabled transitions, since the probability
for all enabled transitions is 1/T. When a transition is finally taken, we apply the
transition to update the current configuration. After that, we start again at n = 0, i = 0.
For a visualization of the concept, see Figure 5.1.

In this model, not every state corresponds to a step in the protocol. To address this
issue, we assign a reward of 1 to all states with n = 0, and a reward of 0 to all other
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n=0 n=1 n=2 . . .

t0 t1 t2

e(
t 0
) e(t1 )

e(t2 )

ρ : apply t0∧
i := 0

ρ : apply t1∧
i := 0

ρ : apply t2∧
i := 0

1− e(t0) 1− e(t1) 1− e(t2)

1−
ρ: i+

+

1−
ρ: i+

+

1−
ρ: i+

+

Figure 5.1: Illustration of the approach for deterministic encoding of uniform rules
scheduling.
e(tx) = 1 if tx is enabled, else 0;
ρ = (i + 1)/T, where T = ∑x e(tx), i.e. T is the number of currently enabled
transitions.

states. This is because we set n to 0 when we apply a transition, so it is sufficient to
count the number of times where n = 0 to get an accurate number for the steps taken.

Problems with different encodings. A problem we encountered was that of numerical
errors. We compared our approach for arbitrary distribution, choosing uniform rules
scheduling as the distribution, with the nondeterministic and deterministic encodings
for uniform rules scheduling. While arbitrary distribution and nondeterministic en-
coding for uniform rules scheduling gave the exact same results when calculating the
average number of steps until convergence, the deterministic encoding for uniform
rules scheduling gave slightly differing numbers. The difference was rather small, on
the scale of 10−7 for populations of size 20. After some investigation, we suspect the
numerical instability of the calculations PRISM uses to be the cause of this. While the
difference was negligible in our case, this is still an area of concern. However, setting
the stopping threshold for the numerical approximation in PRISM lower, which leads to
more accurate computations, seems to solve this problem.

5.6.3 Specifying Properties in PRISM

We are mainly interested in two general classes of properties that we can specify in
PRISM: probability-based properties and reward-based properties. PRISM’s property specifica-
tion language (see [18]) allows us to specify both.

Probability-based properties are properties that are expressed as a probability, such as
the probability to reach a configuration in a consensus with a certain value. In the scope
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of this thesis, the probability-based properties we are interested in are well-specification
and failure probabilities. well-specification can be specified as the following formula:

P=? [ (F G "output_true")|(F G "output_false") ]

where all configurations that are in a consensus with value 1 (resp. 0) satisfy "out-
put_true" (resp. "output_false"). Informally, the formula gives the probability of: In
a run on the protocol, is there a point from which on all configurations satisfy "out-
put_true" (resp. "output_false"). This property therefore gives the probability of reaching
a lasting consensus with value 1 or value 0. For well-specified protocols, we expect this
probability to be 1 (assuming 0 and 1 are the only outputs).

Reward-based properties are properties that are expressed as a cumulative reward, e.g.
the expected number of steps to reach a consensus. Reward-based properties differ
from probability-based properties: PRISM does not allow the G operator in the former,
nor does it allow a negated F operator, while it is usable in the latter. It is difficult to
specify a lasting consensus in LTL without these operators, as there is no way to ensure
a consensus that has been found is actually lasting.

We overcame that problem in our implementation by precomputing all stable config-
urations, and creating new labels that are satisfied when the current configuration is
stable. This is identical to how we identified stable configurations when we measure
average steps to convergence, presented in Section 5.4. Even though this approach makes
computing reward-based properties possible, it requires computing the reachability
graph and identifying the strongly connected components.

An example for a reward-based property is given as follows:

R=? [ (F "stable_true")|(F "stable_false") ]

where stable configurations in consensus with value 1 satisfy "stable_true", and stable
configurations in consensus with value 0 satisfy "stable_false". This gives the expected
number of steps until a stable configuration is reached.

5.7 Finding Strongly Connected Components of the
Reachability Graph

When we want to know whether a protocol is silent or well-specified for a certain
size, we need to identify the bottom strongly connected components of the reachability
graph of the protocol. For this, we used Tarjan’s algorithm for strongly connected
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components [21] to identify them, but added a slight modification that allows to obtain
the bottom strongly connected components without having to check every strongly
connected component for outgoing edges. The algorithm is given in Listing 5.6, with our
modification in orange. The algorithm follows Tarjan’s algorithm, but has an additional
variable for each node that indicates whether or not the node is marked.

In the following, we give an explanation of why the modification identifies the bottom
strongly connected components.

When Line 21 is called, v has a successor w that is indexed, but not on the stack. Let
∆ be the SCC of w. Then ∆ must already be completed. This follows from the fact that
nodes get indexed and put on the stack when they are first visited, and the only way
to remove a node in ∆ from the stack is when ∆ is completed, and all nodes of ∆ are
removed from the stack. Therefore, from the SCC that contains v a node in ∆, reachable.
Therefore, the SCC of v cannot be a BSCC.

Lines 33-36 are called when an SCC is completed and mark the node on top of the
stack. Since a node on the stack is reachable from the nodes under it in the stack, that
also means that from the SCC of w, the SCC of v is reachable, i.e. the former SCC cannot
be a BSCC.

On the other hand, the algorithm in Listing 5.6 examines every edge at least once. Let
∆ be an SCC, from which another SCC Θ is reachable. Then we know that Θ will be
completed before ∆, since Tarjan’s algorithm completes the SCCs in topological order.
This means that either from ∆, the algorithm explores Θ and puts it on the stack, which
leads to Lines 33-36 marking some node in ∆, or Θ is explored and completed from
some SCC other than SCC ∆, in which case, Line 21 will mark a node in ∆ when the
edge from ∆ to Θ is explored.

In addition to the code shown here, in the actual implementation, the algorithm calls
a "stopping criterion" each time an SCC is found, which allows us to potentially stop the
algorithm early. For example, when checking whether a protocol is silent, we can stop
after finding a single BSCC containing more than one configuration, instead of waiting
for the algorithm to return the set of SCCs.
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1 input: a graph (V, E)
2 output: a set of strongly connected components
3
4 Stack S = ()
5
6 def strongconnect(v):
7 v.index = index
8 v.lowlink = index
9 v.marked = false

10 index += 1
11
12 S.push(v)
13
14 for (v, w) in E do:
15 if w.index is undefined:
16 strongconnect(w)
17 v.lowlink = min(v.lowlink, w.lowlink)
18 else if S.contains(w):
19 v.lowlink = min(v.lowlink, w.index)
20 else:
21 v.marked = true
22
23 if v.lowlink = v.index:
24 start new SCC c
25 c.bottom = true
26 do:
27 w = S.pop()
28 c.add(w)
29 if w.marked:
30 c.bottom = false
31 while(w != v)
32 add c to the set of SCCs
33 if S is not empty:
34 w = S.pop()
35 w.marked = true
36 S.push(w)
37
38 index = 0
39 for all v in V:
40 if v.index is undefined:
41 strongconnect(v)

Listing 5.6: Tarjan’s algorithm for strongly connected components. Modifications are
given in orange.
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We conducted two case studies for our tool.
In the first case study, we used the tool to simulate and verify several protocols given

in Section 3.3. The research question we investigated was:
How do different probability distributions influence time to convergence for different

protocols?
In the scope of this question, we implemented the 4-state, 3-state and AVC majority

protocols, as well as a modified 4-state protocol, where we remove the "tiebreaker"
transition 0, 1→ 0, 0. We used these implementations to measure the average number
of steps until convergence for these protocols, using different probability distributions.
The results show that different probability distributions vastly influence convergence
times for the same inputs. It can then be helpful to investigate how distributions may be
adapted to give faster convergence, or provide a better failure ratio.

Secondly, we propose a new protocol for the flock of birds predicate (see Section 3.3.4),
with the objective to use less states than existing protocols. We use the tool to check
well-specification of the new protocol, and additionally give a formal proof. Lastly,
will compare convergence times of the new protocol and existing protocols for the
flock-of-birds predicate.

All tests were run on the same machine with an Intel Core i5-4210U CPU, as well as 8
GB of RAM, with a timeout set to 1 hour.

6.1 Simulating established Protocols

6.1.1 Majority Problem

We defined the majority problem in Section 3.3.3, and gave several protocols for it:
4-state, 3-state and AVC majority. In first tests, we could see that convergence for the
4-state protocol can be very slow for cases where R < B, but where the majority is very
small, e.g. there are 10 agents in state R and 11 agents in state B. This is the case since
for the protocol to converge, all agents in state R must initiate an interaction with an
agent in state B, so that there are no more agents in state R. Therefore, there will at
some point only be one agent in state B left, while the rest of the agents are in states
0 and 1. Due to the "tiebreaker" transition 0, 1→ 0, 0, the protocol has a bias towards
converting agents to state 0 instead of state 1, and that bias gets stronger when there
are more agents in states 0 and 1, and less agents in state B. This is due to the fact that
progress converting agents to state 1 achieved by the transition B, 0→ B, 1 is likely to be
reverted by the transition 0, 1→ 0, 0.
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To get experimental data on the impact of this tiebreaker, we add a second version of
the 4-state majority, that does not have the tiebreaker transition. Then, the transitions
are given as follows:

R, B→ 0, 1

R, 1→ R, 0

B, 0→ B, 1

All other properties remain unchanged. Note that this protocol is still guaranteed to
converge for all initial configurations C where |C|R 6= |C|B. For the forthcoming graphs,
we used the tool to export the protocols to PRISM, and then used PRISM to compute
the expected number of steps until a stable configuration is reached.

Parameters. For the AVC protocol, we used m = 3, d = 1. The value for d was chosen
as 1 since first exploratory tests led to the conclusion that increasing d does not lead
to better convergence behaviour1, but lead to larger numbers of states, and therefore
time and space requirements. Higher values for m on the other hand did give lower
convergence times, but due to memory constraints, higher values led to PRISM running
out of memory during model checking. We decided on m = 3, as this is enough to lead
to improvements in convergence behaviour over both variations of the 4-state majority
protocol. For our measurements, we computed the convergence times for all initial
configurations of size 21.

Procedure. This was done by generating the protocol, then exporting it to PRISM for
all initial configurations, and lastly invoking PRISM to verify the following property:

R=? [ (F "stable_true")|(F "stable_false") ]

This property gives the average steps until a stable configuration of output True or
False is reached. We used a time limit of 1 hour for separate initial population. We ran
the measurements twice, once for uniform rules scheduling, and once for uniform pairs
scheduling.

Results. The results of the measurements for uniform pairs scheduling can be seen
in Figure 6.1, while the results for uniform rules scheduling are shown in Figure 6.2.
The graphs are to be read as follows: Each group of bars is for one initial population of
size 21. The bottom axis describes how many agents started with input R, with the rest
starting with input B. The height of the bars represents the expected number of steps to
reach a stable configuration.
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Figure 6.1: Comparison of average number of steps to convergence of protocols for the
majority problem, using uniform pairs scheduling.
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Figure 6.2: Comparison of average number of steps to convergence of protocols for the
majority problem, using uniform rules scheduling.
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Observe that regardless of the probability distribution, as per our expectations, the
4-state majority protocol with tiebreaker takes significantly more time to reach a stable
configuration when there is a slight majority in favour of B in the initial configuration.
In the case of uniform pairs scheduling, the time to convergence in the worst case (i.e.
10 R’s and 11 B’s) is large enough that for all practical concerns, it does not converge.
On the other hand, uniform rules scheduling gives better convergence times for nearly
all protocols and cases, and leads to even the 4-state majority with tiebreaker being able
to converge in a number of steps only around 4 times as large as the number for the
other protocols. It seems to be that this is the case due to uniform pairs scheduling
leading to many silent transitions, while silent transitions will never occur in uniform
rules scheduling. Note also that for uniform pairs scheduling, the AVC protocol lead
to the best results, while for uniform rules scheduling, the 4-state majority protocol
without tiebreaker has the best convergence time. In addition, it can be observed that
with uniform pairs scheduling, the 4-state majority with tiebreaker converges faster than
the 4-state majority protocol without a tiebreaker in the cases where there is a majority
in favour of R.

Conclusions. Experiments indicate that probability distributions, especially those that
assign probability 0 to silent transitions, can have significant impact on convergence
time. This is the case even when considering only the rather simple distributions of
uniform pairs scheduling and uniform rules scheduling. The results raise the question
of finding an efficient way to handle ties in an exact protocol.2

6.1.2 3-state Majority

In the following, we want to focus on the 3-state majority protocol. It is unique among
the protocols that we considered, since it is only approximately correct. As there is
only a small number of states, and therefore, reachable configurations, we could handle
larger population sizes than for the other protocols. Instead of using PRISM, in this
study, we used the tool to simulate the protocol with different probability distributions.

Parameters. For the measurement, we considered initial configurations of size 50. We
set the number of simulations per initial population to 104, and computed the average
out of these runs.

Procedure. The measurement was done by generating the protocol within the tool,
and using the methods for computing the average number of steps to convergence as
well as failure ratio. These methods simulate the protocol until a stable configuration is

1This was also observed in [1].
2For parallel steps, i.e. where as many agents as possible interact in each step, Alistarh et al. [1] gave a

lower bound for worst case convergence steps of an exact protocol in Ω(log n), with n being the number
of agents.
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reached, and are described in more detail in Section 5.4. We did this once for uniform
pairs scheduling, and once for uniform rules scheduling.

Results. The results for the average number of steps until a stable configuration is
reached can be seen in Figure 6.3, while the failure ratios can be seen in Figure 6.4. Note
that the colors of the bars indicate the probability function that they belong to, as per
the legends of the figures. Again, the x-axis describes the population distribution, where
an x-value of n describes that n agents have input R, while 50− n agents have input
B. The height of the bars represents the average number of steps and the failure ratio
respectively.

Observe that as there is no bias in the 3-state protocol, the graphs are symmetrical
around x = 25. As is expected without bias, the failure ratio is 0.5 in that case, as it
is equally likely to reach a consensus of either 0 or 1. Considering failure ratio, it is
clear that uniform pairs scheduling is strictly superior to uniform rules scheduling, as
the failure ratio of the latter is higher for all initial configurations. To understand why,
recall the states of the 3-state majority problem, i.e. x, y and b. Consider now the case
where there is one agent in the blank state b, one agent in state y, and the remaining
48 agents in state x. Recall that when an agent in a non-blank state (either x or y)
initiates an interaction with an agent in state b, it converts the agent in the blank state
to its respective state. Using uniform rules scheduling, the transitions x, b→ x, x and
y, b→ y, y are equally likely to occur, whereas with uniform pairs scheduling, it is vastly
more likely that x, b→ x, x occurs. This means that using uniform rules scheduling, even
with fairly significant majorities in favour of either R or B, there is still a non-negligible
chance to converge to the wrong result. On the other hand, for uniform pairs scheduling,
the probability approaches 0 faster as the majority gets more significant. For the average
number of steps to convergence, we observe that the convergence behaviour for uniform
rules scheduling is worse than for uniform pairs scheduling when the amounts of R’s
and B’s are close to each other. When the majority is very distinct in favour of either R
or B, uniform pairs scheduling takes more steps than uniform rules scheduling. The
latter fact can be explained by considering the transitions that need to happen when
there are very few states of the colour with less states, i.e. the minority. With uniform
pairs scheduling, it is very likely that instead of a transition that makes progress taking
place, a silent transition between two states of the majority colour happens. For uniform
rules scheduling, these transitions have probability 0 to occur. On the other hand, when
there is only a slight majority, uniform rules scheduling is likely to schedule transitions
that reverse progress that was already made towards a stable configuration. Uniform
pairs scheduling is less likely to schedule these transitions as more and more agents are
converted to the majority.

Conclusions. While for 4-state majority with or without a tiebreaker, it seemed that
uniform rules scheduling was mostly superior, the reverse is true for the 3-state majority
protocol. It might warrant further investigation into which criteria make a protocol have
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Figure 6.3: Average number of steps until convergence for the 3-state majority protocol
with different probability distributions.
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Figure 6.4: Failure ratio for the 3-state majority protocol with different probability distri-
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more favourable convergence properties with certain probability distributions. Possible
criteria that lead to better convergence times with uniform pairs scheduling could be
the ratio of silent transitions to non-silent transitions, or the presence of rare states that
need to interact multiple times for convergence. By rare states, we mean states that are
only present in the population with a very small multiplicity, e.g. when there is a single
agent in state B in the 4-state majority. If such agents need to take part in a sequence of
interactions, this slows down convergence greatly. The worst case seems to be when a
rare state needs to take part in a number of transitions, but at the same time, progress
the rare state made through interactions can be reversed by some other transitions.

6.2 A new Protocol for Flock of Birds

In the following, we will show how to use the tool to check and simulate a newly
devised protocol.

In Section 3.3.4, we introduced the flock of birds predicate, and gave two existing
protocols that compute it. Recall that for a given constant N ≥ 0, the predicate evaluates
to true when more than N input values are 1. One downside of the existing protocols
is that they need at least N states. We devised a new protocol for the flock of birds
problem, which we will give in the following. We will then use the tool and PRISM to
check well-specification of our protocol up to a given size, followed by a formal proof of
correctness for the protocol. Lastly, we are going to compare the protocol to the existing
protocols, with respect to expected time to convergence.

6.2.1 The Prime-Flock-Protocol

We describe a new protocol that can compute the flock of birds predicate.
Consider the prime factorization of N = p1 · · · pn s.t. prime factors are in non-

decreasing order, i.e. p1 ≤ · · · ≤ pn. The states of the protocol are given as Q = {ik |
1 ≤ k ≤ n, 1 ≤ i < pk} ∪ {1n+1, 0}. The input function is given as ι(1) = 11, ι(0) = 0,
and the output function as ω(s) = 1 if s = 1n+1 else ω(s) = 0.

For transitions, consider the following relation:

ik, jk → (i + j)k, 0 if i + j < pk,

ik, jk → 1k+1, (i + j− pk)k otherwise,

where k ≤ n, i, j < pk.
There are also transitions 1n+1, x → 1n+1, 1n+1 for all x ∈ Q, i.e. when 1n+1 initiates a

transition, no matter the responder, both agents are put into state 1n+1

Intuitively described, agents have two counters, one that determines which level the
agent is on (with each level being associated with one prime factor, expect for level n + 1,
which is associated with the full number N), and the other counter determining the
progress towards the next level. When two agents on the same level meet, their progress
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counters are summed into one of the agents. If that is enough to get a progress counter
of at least the prime factor associated with the current level, the agent is put into the
next level, while the other agent keeps the surplus progress counter, which is the sum
of the counters minus the prime factor of the current level. Otherwise, one agent stays
on the current level (and now has the added progress counters of both agents), while
the other agent is put into state 0.

One can also think of states as representing numbers. For that, let the value of an
agent in state ij be given as val(ij) = p1 · p2 · · · pj−1 · i and let val(0) = 0.

Let the level of an agent in state ij be lvl(ij) = j and let lvl(0) = 0.
As an example, consider the protocol for N = 45. The prime factorization in non-

decreasing order is given as 45 = 3 · 3 · 5. The set of states is therefore

{11, 21, 12, 22, 13, 23, 33, 43, 14, 0}

We have, for example, val(12) = p1 · 1 = 3, val(23) = p1 · p2 · 2 = 3 · 3 · 2 = 18 and
val(14) = p1 · p2 · p3 · 1 = 3 · 3 · 5 · 1 = 45 = N.

Finally, note that the protocol has a number of states in O(∑n
i=1 pi). The best case is

when N is a power of 2, whereas the worst case occurs when N is a prime number, as
N + 1 states are needed.

6.2.2 Checking Well-Specification

As mentioned in Section 5.5, it is possible to use the tool to check whether a given
protocol computes a function, for a given size. We implemented the prime-flock-protocol,
and then checked whether the protocol computes the following predicate on the initial
configuration C:

|C|11 ≥ N

i.e. are there at least N agents starting in state 11. Observe that due to agents with
input 1 starting in state 11, this is equivalent to asking whether the sum of inputs is at
least N. This means the protocol is correct if it computes the predicate given above for
all sizes.

For the prime-flock protocol, we checked correctness for initial configurations of sizes
5 to 15, with N ranging between 0 and the population size. We got that the protocol
is well-specified in these cases, and that it computes the predicate |C|11 ≥ N. The
limitation of this approach is that as there are infinitely many sizes and therefore initial
configurations, hence we can never fully prove correctness of the protocol using the
approach implemented in the tool. It is nevertheless useful to get some first confidence
in the correctness of the protocol, i.e. that it is correct for at least some sizes and values
of N.

In addition to using the tool to check for correctness, we used Peregrine [16], a tool
that is capable of verifying correctness of silent population protocols for all of the
infinitely many inputs. For more information on how Peregrine works, see [10].
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6.2.3 Proof of Correctness

Previously, we have used the tool to get a first check that for some given sizes, the prime-
flock-protocol is well-specified, and computes the correct function. In the following, we
give a formal proof of correctness.

Let the value of a configuration C be the sum of the values of all agents in that
configuration, i.e. val(C) = ∑

s∈C
val(s) · |C|s.

We now want to prove that the protocol computes the function f (X) = 1 if |X|1 ≥ N,
else 0. First, observe that the only state with output 1 is 1n+1. Therefore, for all
configurations where no agent is in state 1n+1, we know that the configuration is in a
consensus with value 0.

Our goal is to prove the following:

Proposition 3. For every fair execution C0C1C2 . . . , there is some i such that for all j ≥ i,
|Cj|1n+1 = |Cj| if and only if val(C0) ≥ N.

Every fair execution will converge to output 1 if and only if the value of the initial
configuration of that execution is larger or equal to N.

Note that due to ι mapping input 1 to a state with value 1 (in the form of 11) and
input 0 to a state with value 0, proving Proposition 3 is equivalent to showing that the
execution will converge to output 1 if and only if the predicate f is satisfied. We will see
that it is then easy to show that the execution will converge to output 0 if and only if
the predicate f is not satisfied.

To prove this, we first prove the following:

Lemma 2. For all configurations C and C′: |C|1n+1 = 0 and C → C′ implies val(C) = val(C′)

Proof. Let C, C′ be configurations such that |C|1n+1 = 0 and C → C′. We then show that
val(C) = val(C′).

Note that if C T−→ C′ via a silent transition T, i.e. C′ = C, this is trivially satisfied, as

val(C) = val(C) holds. Therefore, focus on C T−→ C′ for a non-silent transition T. The
protocol has three classes of non-silent transitions:

(I) transitions of the form 1n+1, ∗ → 1n+1, 1n+1. Note that since |C|1n+1 = 0, transitions
of this form cannot occur.

(II) transitions of the form ik, jk → (i + j)k, 0 that occur if agents on level k ≤ n with
i + j < pk interact.

We have:

val(ik) + val(jk) = i · p1 · · · pk−1 + j · p1 · · · pk−1

= (i + j) · p1 · · · pk−1

= (i + j) · p1 · · · pk−1 + 0

= val((i + j)k) + val(0).
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Therefore, we have shown that if C
ik ,jk→(i+j)k ,0−−−−−−−→ C′, then val(C) = val(C′).

(III) transitions of the form ik, jk → 1k+1, (i + j− pk)k that occur if agents on level k ≤ n
with i + j ≥ pk interact.

We have:

val(1k+1)+val((i + j− pk)k)

= 1 · p1 · · · pk + (i + j− pk) · p1 · · · pk−1

= 1 · p1 · · · pk + (i + j) · p1 · · · pk−1 − pk · p1 · · · pk−1

= (i + j) · p1 · · · pk−1

= i · p1 · · · pk−1 + j · p1 · · · pk−1

= val(ik) + val(jk).

Therefore, if C → C′ and |C|1n+1 = 0, then val(C) = val(C′).

Next, we show the following:

Corollary 1. For every execution C0C1C2 . . . , if there exists some t such that |Ct|1n+1 > 0,
then val(C0) ≥ N.

Proof. Let C0C1C2 . . . be an execution such that |Ct|1n+1 > 0 for some t. Without loss of
generality, assume t is minimal. Note that if t = 0, then it follows that |C0|1n+1 > 0. This
implies that val(C0) ≥ N, since val(1n+1) = N. Therefore, assume t ≥ 1.

First, note that val(Ct) ≥ N since |Ci|1n+1 ≥ 1 and val(1n+1) = p1 · p2 · · · pn = N.
Recall that for all executions, for all k, it holds that Ck → Ck+1. Additionally, since

t is minimal it holds that |Cj|1n+1 = 0 for all j < t. Then by Lemma 2, we have
shown that for all j with 0 ≤ j < t, it holds that val(Cj) = val(Cj+1). It follows that
val(C0) = val(C1) = · · · = val(Ct−1) = val(Ct) ≥ N.

Note that since all states but state 1n+1 have output 0, if val(C0) < N, we know the
execution has already converged to output 0, since there cannot be a configuration Ci

with C0
∗−→ Ci with |Ci|1n+1 > 0.

Now it remains to show that in all fair executions C0C1C2 . . . , if val(C0) ≥ N, then
there exists some i such that for all j ≥ i, |Cj|1n+1 = |Cj| holds.

Denote by valj(C) the total value of all agents on level j in C, i.e. valj(C) =

∑0<i<pj
val(ij) · |C|ij . Similarly, we can denote the total value of multiple levels by

valj0,j1,...,jx(C) =
x

∑
i=0

valji(C)

.
Let C →j C′ be the transition relation restricted to level j, i.e. {(C, C′)|∃t : C t−→

C′ ∧ ∃i, i′ : pre(t) = (ij, i′j)}.
We show the following:
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Lemma 3. For every fair execution C0C1 . . . , if there is some i such that |Ci|1n+1 > 0, then
there exists some j > i such that for all k ≥ j, it holds that |Ck|1n+1 = |Ck|.

Intuitively, in all fair executions where there is one agent in state 1n+1, the execution
will from some point onwards only consist of configurations that contain only agents in
state 1n+1, and will therefore have converged to output 1.

Proof. Choose the smallest i such that the condition |Ci|1n+1 > 0 is satisfied. Note that
there is no transition of the protocol that changes the state of an agent in state 1n+1,
i.e. for all C, C′ with C → C′, it must hold that |C|1n+1 ≤ |C′|1n+1 . Note also that for
all configurations C with 1 ≤ |C|1n+1 ≤ |C| (i.e. there is at least one agent in state
1n+1, but also at least one agent in some other state s), there is a configuration C′

with |C′|1n+1 = |C|1n+1 + 1 such that C
1n+1,s→1n+1,1n+1−−−−−−−−−→ C′ for some s 6= 1n+1, simply by

choosing for s one of the states present in the configuration other than 1n+1. By doing
this for each state different from 1n+1, i.e. iteratively reducing the number if agents not
in state 1n+1, we can also reach a configuration F containing only agents in state 1n+1,
i.e. |F|1n+1 = |F|. Since F is reachable from all configurations C with 1 ≤ |C|1n+1 ≤ |C|,
together with the fact that for all C, C′, C ∗−→ C′ implies that |C|1n+1 < |C′|1n+1 , we
have that F is reachable infinitely often from any execution that satisfies the condition
∃i : |Ci|1n+1 > 0. Fairness then implies that F must occur infinitely often in the execution.
We conclude the proof by noting that for all configurations F′ such that F → F′ it must
hold that F = F′, as both must consist only of agents in state 1n+1.

Due to this, we know that it is sufficient to show that if in a fair execution, a
configuration with at least one agent in state 1n+1 is reached to show that in the
execution, a consensus with value 1 is reached.

Next, we prove another lemma:

Lemma 4. For all configurations C, C′ and all levels k and j, with j < k: If C ∗−→k C′, then
valj(C) = valj(C′).

Informally, this means transitions between agents on some level k do not influence
agents on levels < k.

Proof. Observe that→k consists only of transitions between agents on level k. There are
two classes of transitions in→k:

(I) transitions of the form ik, jk → (i + j)k, 0. Observe that lvl(ik) = k, lvl(jk) = k,

lvl((i + j)k) = k, lvl(0) = 0 and val(0) = 0, i.e. when C
ik ,jk→(i+j)k ,0−−−−−−−→ C′, then for

all j < k, valj(C) = valj(C′).

(II) transitions of the form ik, jk → 1k+1, (i+ j− pk)k. Observe that lvl(ik) = k, lvl(jk) =
k, lvl(1k+1) = k + 1 and lvl((i + j − pk)k+1) = k. Therefore, it can be that
valk+1(C) 6= valk+1(C′) and valk(C) 6= valk(C′), but for all j < k, valj(C) =

valj(C′).
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We need another lemma, with which we will show that transitions will always lead to
a configuration with equal or greater value:

Lemma 5. For all transitions t ∈ δ, for all configurations C, C′, if C t−→ C′, then val(C) ≤
val(C′).

Proof. Note that in Lemma 2 we have shown that val(C) = val(C′) for transitions of the
forms ik, jk → (i + j)k, 0 and ik, jk → 1k+1, (i + j− pk)k. This satisfies val(C) ≤ val(C′),
so we reuse this result here. Note that even though we made assumptions in Lemma 2
that do not need to hold here (i.e. that |C|1n+1 = 0), we did not use these assumptions
for the cases we want to reuse here, so the argumentation remains valid.

It remains to show this for transitions of the form 1n+1, ∗ → 1n+1, 1n+1, i.e. we want

to show that for all states s and for all configurations C, C′ : C
1n+1,s→1n+1,1n+1−−−−−−−−−→ C′ implies

val(C) ≤ val(C′). Note that for all states s, val(s) ≤ val(1n+1). Then:

val(1n+1) + val(s) ≤ val(1n+1) + val(1n+1).

We will, in the next steps, prove that in all fair executions, we can restrict the values
on levels smaller than n + 1 to a certain threshold:

Lemma 6. For all configurations C and for all levels k so that k ≤ n, there is some configuration
C′ with C ∗−→k C′ and valk(C′) < pk · pk−1 · · · p1.

Proof. For valk(C) < pk · · · p1, this is trivially satisfied. Assume therefore valk(C) ≥
pk · pk−1 · · · p1. We again consider the transitions in ∗−→k, and see that there are two
classes:

(I) Transitions of the form ik, jk → 1k+1, (i + j− pk)k. Observe that this transition only

occurs when i + j > pk. Then we know that for all C, C′ if C
ik ,jk→1k+1,(i+j−pk)k−−−−−−−−−−−→ C′,

then

valk(C′) =

valk(C)− (val(ik) + val(jk)) + val(i + j− pk)k =

valk(C)− (i · pk−1 · · · p1 + j · pk−1 · · · p1) + (i + j− pk) · pk−1 · · · p1 =

valk(C)− (i + j) · pk−1 · · · p1 + (i + j) · pk−1 · · · p1 − pk · pk−1 · · · p1 =

valk(C)− pk · pk−1 · · · p1 < valk(C)

Therefore, by this transition, valk(C′) < valk(C).

(II) Transitions of the form ik, jk → (i + j)k, 0. Then for all C, C′ when C
ik ,jk→(i+j)k ,0−−−−−−−→ C′,

then valk(C) = valk(C′). Therefore, the value on level k remains the same, but
∑0<i<pk

|C′|ik = ∑0<i<pk
|C|ik − 1, so in C′, there is one less agent on level k than in

C.
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Now, we can construct a sequence of transition sequences t0, t1, t2, . . . , t` ∈
∗−→k such

that C
t0−→ C0

t1−→ C1, . . . , C`−1
t`−→ C′, with valk(C′) < pk as follows:

If there are no agents in states ik, jk ∈ C such that i + j ≥ pk, but valk(C) ≥ pk · · · p1,
use a transition of the form ik, jk → (i + j)k, 0. As explained above, this leads to one less
agent on level k.

If there are agents in states ik, jk ∈ C such that i + j ≥ pk, use transition ik, jk →
1k+1, (i + j− pk)k, with the next configuration then being C′ with C

ik ,jk→1k+1,(i+j−pk)k−−−−−−−−−−−→ C′.
As shown above, valk(C′) < valk(C).

Combining these two cases, observe that as long as valk(C) ≥ pk · · · p1, we can first
apply transition ik, jk → (i + j)k, 0 to reduce the number of agents on level k, but retain
the same value on that level. We can repeat this until there are two agents in states
ik, jk with i + j ≥ pk, and then use transition ik, jk → 1k+1, (i + j− pk)k. By Lemma 4,
these transitions do not change the value of levels smaller than k. This procedure can be
repeated until valk(C) < pk · · · p1.

Combined, the lemmas we have proven give the following:

Corollary 2. For every configuration C, if val(C) ≥ N, then there is a configuration C′ such
that C ∗−→ C′ and |C′|1n+1 > 0.

Proof. Let C be a configuration so that val(C) ≥ N.
By Lemma 6, we know that there is a configuration C1 so that C ∗−→1 C1, where

val1(C1) < p1. We then apply Lemma 6 to C1, and know that we can obtain a
configuration C2 so that C1

∗−→2 C2, and val2(C2) < p2. By Lemma 4, we know
that we can find such a configuration C2 that val1(C2) = val1(C1) < p1. We re-
peatedly apply Lemmas 6 and 4, by which we know that there are configurations
C1, C2, . . . , Cn = C′ where for configuration C′, it holds that for all levels k with k ≤ n+ 1,
and C ∗−→1 C1

∗−→2 C2
∗−→3 ... ∗−→n C′.

Therefore, we know that for configuration C′, it holds that for all levels k < n + 1,
valk(C′) < pk · · · p1. Observe that for all transitions t ∈ δ, it holds that for all C, C′,
if C t−→ C′ then val(C) ≤ val(C′), as per Lemma 5. Therefore, val(C′) ≥ val(C) ≥ N.
Observe also that agents on level k have value as multiples of p1 · · · pk−1 by definition.
Therefore, we know that since for all levels k, valk(C′) < pk · · · p1, this is equivalent to
having that valk(C′) ≤ (pk − 1) · pk−1 · · · p1. From this, it follows that:

val0,1,...,n(C′) = 0 + val1(C′) + · · ·+ valn(C′) ≤
(p1 − 1) + (p2 − 1) · p1 + · · ·+ (pn − 1) · pn−1 · · · p1 =

p1 − 1 + p2 · p1 − p1 + · · ·+ pn · pn−1 · · · p1 − pn−1 · · · p1 =

pn · pn−1 · · · p1 − 1

Therefore val0,1,...,n(C′) ≤ pn · · · p1 − 1 = N − 1. Since val(C′) ≥ N and val0,1,...,n(C′) +
valn+1(C′) = val(C′), we know that valn+1(C′) ≥ 1. As the only state on level n + 1 is
1n+1, it follows that |C′|1n+1 ≥ 1.
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Proposition 4. For every fair execution C0C1 . . . , if val(C0) ≥ N, there is some i such that
for all j > i, |Cj|1n+1 > 0.

Proof. Let E = C0C1 . . . be a fair execution. By Corollary 2, we know that from C0,
a configuration C′ is reachable satisfying valk(C′) < pk for all levels k. Assume for
contradiction that in E, there is no such configuration C′, i.e. there is infinitely many
j such that Cj satisfying that for some level k, valk(Cj) > pk · · · p1. Observe that there
is only finitely many configurations that satisfy this criterion, as configurations have a
fixed size and there are only finitely many states for agents. Therefore, there must be
at least one configuration that must occur infinitely often in the E, by the pigeonhole
principle. Denote by K one such configuration that occurs infinitely often K. Observe
that from Corollary 2, we can follow that ∃C′ : K ∗−→ C′ and |C′|1n+1 ≥ 1. Let C′ be such
a configuration. Assume that C′ does not occur in E. This contradicts fairness, since
K occurs infinitely often in E, and K ∗−→ C′, but C′ does not occur infinitely often in E.
Therefore, C′ must occur in E. Then, by Lemma 3, we have proven that for every fair
execution C0C1 . . . Cl−1C′Cl+1 . . . , there is some o > l such that for all m ≥ o, it holds
that |Cm|1n+1 = |Cm|.

Theorem 2. The prime-flock-protocol is correct.

Proof. By Corollary 1 and Lemma 4, we have shown that for all fair executions C0C1 . . . ,
the execution converges to output 1 if and only if val(C0) ≥ N. Corollary 1 on its own
is sufficient to show that for every fair execution C0C1 . . . , the execution converges to
output 0 if and only if val(C0) < N. We conclude our proof by noting that due to the
choice of the input function ι, for every multiset X ∈ pop(Σ) and the corresponding
initial configuration C0 it holds that val(C0) = |X|1.

6.2.4 Comparison of Convergence Properties with Existing Protocols

To get an idea of how the convergence time of the prime-flock-protocol behaves compared
with the convergence time of the existing protocols for the flock of birds predicate, we
used our tool to measure average steps until a stable configuration is reached, similar to
the measurements of Section 6.1. The protocols compared with the prime-flock-protocol
can be found in Section 3.3.4.

Parameters. For this test, we measured average steps until a stable configuration is
reached for population sizes 5 up to 15. For each size, we use the population where all
agents have input 1, since all protocols treat agents with input 0 in a very similar way, but
they slow down measurements. Additionally, all protocols start in a stable configuration
when the input values do not sum up to at least N, therefore, for population size S, we
chose N = S− 1.
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Figure 6.5: Comparison of protocols for flock of birds, using uniform rules scheduling.

Procedure. We used the tool to generate the protocols, then simulate them until a
stable configuration is reached. More details on the simulation process can be found
in Section 5.4. We did separate measurements for both uniform rules scheduling and
uniform pairs scheduling. Lastly, we simulated 1000 runs per population, computed
the average number of steps until convergence, and compute the standard deviation.
Since the population sizes are rather small, 1000 runs per population are enough to get
a good approximation of the actual expected steps.

Results. The measured values under uniform rules scheduling can be seen in Figure 6.5,
whereas the results for uniform pairs scheduling can be seen in Figure 6.6. Note that as
for many of the majority protocols, uniform rules scheduling gives faster convergence.
Moreover for uniform rules scheduling, the prime-flock-protocol is the protocol with the
best convergence times, while for uniform pairs scheduling, this is the f locki protocol.
We suspect that this is the case as for uniform rules scheduling, it leads to better
convergence behaviour if every enabled transition makes progress. The prime-flock-
protocol typically has few transitions enabled, since only agents on the same level
interact, whereas for the f locki protocol, all non-zero agents can interact in each step,
which might mean transitions are chosen that do not make progress.

For uniform pairs scheduling, all protocols exhibit larger convergence times, due to
agents in state 0 not taking part in any non-silent transitions until there is an agent in
state N, and the agents in state 0 then get converted to the correct output.
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6 Case Study
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Figure 6.6: Comparison of protocols for flock of birds, using uniform pairs scheduling.
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7 Conclusion and Future Work

While some tools for the verification of population protocols exist, in this thesis, we
presented a new tool that is not only capable of verifying properties such as well-
specification or average number of steps to convergence, but can also simulate runs of
a protocol. In addition, we gave two case studies for the tool. In the first study, we
measured two properties: average number of steps to convergence and failure ratio of
different protocols. As the study objects, we used different protocols computing the
majority predicate. In the second study, we considered protocols for the flock-of-birds
predicate. A downside of existing protocols is that they have an amount of states linear
in the threshold of the predicate. We proposed the prime-flock protocol, a protocol that
computes the flock-of-birds predicate and uses less states than existing protocols. For
a given threshold N with prime factorization N = p1 · ... · pn, existing protocols need
a number of states in O(N), while the prime-flock-protocol need a number of states
in O(∑n

i=1 pi). Further, we used our tool to gain confidence in the correctness of the
prime-flock-protocol by verifying its correctness for several sizes. Lastly, we gave a
formal proof of correctness as well as measurements for the average number of steps to
convergence of the different protocols that compute the flock-of-birds predicate.

Some open research questions and opportunities for further development of the tool
remain:

Finding a lower bound of states for the flock-of-birds predicate. While we have
given a protocol that generally needs less states than existing protocols, the lower bound
of states for protocols computing this predicate remains an open question.

Exporting protocols using arbitrary distributions in the tool without generating the
reachability graph. For exporting a protocol to PRISM to verify it, there exist multiple
approaches in the tool. We have two approaches for uniform rules scheduling that
do not rely on the reachability graph. On the other hand, the tool needs to generate
the whole reachability graph for a given population when one wants to use arbitrary
probability distributions. There might be a way to extend the deterministic encoding for
uniform rules scheduling so that it can simulate arbitrary distribution, but it remains an
open task to find such a way and implement it.

Implementing support for parallel steps. Currently, the tool does not have a way to
simulate runs where not only a single pair of agents interacts in a step, but where as
many pairs as possible interact at once. As it is common in the literature to specify the

51



7 Conclusion and Future Work

average number of steps to convergence as the number of parallel steps, this could be a
task for future development.

Investigate the connection between probability distributions and convergence be-
haviour. We presented some experimental results on the convergence times of several
protocols with different probability distributions. It remains open to find classes of
population protocols that behave especially favourably with some distributions.
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