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Abstract

Presburger arithmetic is the first-order theory of the natural numbers with addition. This
work describes the implementation of a solver for Presburger arithmetic using automata
that are labelled by Binary Decision Diagrams (BDDs). The focus lies mainly on user-
friendliness.

The paper explains algorithms that are used by the solver with an emphasis on the BDD-
parts. Algorithms for a different version of the Presburger arithmetic called bounded
Presburger arithmetic are explained as well.

Finally a short insight into the performance of the solver is given to show that the overall
performance is good, however the minimization algorithm is identified as a bottleneck.

Zusammenfassung

Presburger Arithmetik ist die Theorie erster Ordnung iiber den ganzen Zahlen mit Ad-
dition als Operation. Diese Arbeit beschéftigt sich mit der Implementierung eines Glei-
chungslosers fiir die Presburger Arithmetik, der mit Bindren Entscheidungsbdumen (Bi-
nary Decision Diagrams - BDDs) beschriftete Automaten nutzt und sich vor allem auf
die Benutzerfreundlichkeit konzentriert.

Die Arbeit erklart die wichtigsten Algorithmen die vom implementierten Gleichungsloser
benutzt werden. Das Hauptaugenmerk liegt dabei auf dem BDD-Teil. Algorithmen fiir
eine andere Version der Presburger Arithmetik, der beschrinkten Presburger Arithmetik,
werden ebenfalls erlautert.

Am Ende der Arbeit wird ein Uberblick iiber die Leistungsfihigkeit der entwickelten
Software gegeben um zu zeigen, dass die Gesamtleistung gut ist, der Minimierungs-
Algorithmus jedoch als Schwachstelle identifiziert wurde.
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1. Introduction

Presburger arithmetic is the first-order theory of the natural numbers with addition[I] .
In contrast to the Peano arithmeticﬂ which includes addition and multiplication, Pres-
burger arithmetic is still decidable, however its complexity is doubly-exponential[6]. As
such, writing a performant solver is a tough task and would go beyond the scope of this
work, which is why this implementation of a solver for Presburger arithmetic is not fo-
cused on performance.

The main focus will hence lie on the user experience. The user should be able to in-
put a formula without special knowledge in the field of automata theory or Presburger
arithmetic. All they need to know is some basic knowledge about the syntax of formulae
from Presburger arithmetic. To make the experience as convenient as possible, the actual
solver will run on a server, the client in a web browser. That way the user will not need
to install any special software apart from a modern web browser.

1.1. Presburger arithmetic

There are several slightly different definitions of the Presburger arithmetic. In this work,
the definition from Esparza [4] will be used:

Each formula of Presburger arithmetic is constructed out of an infinitely big set of vari-
ables V={x,y,z,...} and the constants 0 and 1. First we need to define a term:

e The constants 0 and 1 are terms.
e Every variable x € V is a term.
e Assume t and u are terms, then t+u is a term.

An atomic formula is an expression ¢ < u. A formula of Presburger arithmetic has to
comply with the following rules:

e Every atomic formula is a formula.

e If A and B are formulae, then so are =A, AV B and dz : A.
From this definition a few useful macros can be derived:

e n < 1+..+1 (n times) where n € N

® nx < x+...4+x (n times) where n € N and z € V

o t—u <t <uAu <t where t and u are terms

e t<ust<uA-(t=u)where t and u are terms

! Please see [2] for more information on this topic.



1. Introduction

V,A, =, as well as free variables are defined as for usual first-order logic.
The interpretation function I : V' — N is defined as one would expect:

1(0) = 0

I(1) =1

It +wu)=1(t) + I(u)

ITEt<u it I(t) < I(u)

I=-A iff T A

I=AvB if IEAVIERB

I'=3z: A iff Thereis an > 0 so that I[n\z] = A

If a formula A has n free variables, this leads to a solution space Sol(A) which is a
subset of N". Since every number from Sol(A) is a n-tuple, we need a fix mapping from
the variables to the numbers in the tuple. Therefore we need to define an order over the
variables. In this work, the order will be defined by the lexicographical order over the
variable names.

Example The formula x —y = 5 has a solution space of 2-tuples of numbers, where the
first number is substituted for x, the second number is substituted for y. The solution
space is then S = {(n,n —5)jn € NAn > 5} C N2

The formula Jz : 2z = y defines numbers that are divisible by 2. Since the variable x
is bound in this formula, the solution space will only contain values for y, which are the
even numbers: S ={y |yiseven } CN.

1.2. Approach

The usual approach to solve formulae from Presburger arithmetic is to transfer the for-
mula into an automaton, which then recognizes all solutions of the formula [4]. There have
been different approaches with different kinds of automata. While Esparza [4] proposes
usual Nondeterministic/Deterministic Finite Automata (NFAs/DFAs), other libraries like
PresTAF make use of shared automata [

My approach will be almost similar to the one described by Esparza in [4] with the dif-
ference, that transitions will not be labelled with letters from the alphabet, but rather
with Binary Decision Diagrams (BDDs), which then accept or reject the letters from the
alphabet. The advantage of this approach is, that less memory is used in the average
case, and therefore bigger formulae can be solved with the same amount of memory.

2More information on the PresTAF library is available under http://altarica.labri.fr/forge/
projects/altarica/documents,


http://altarica.labri.fr/forge/projects/altarica/documents
http://altarica.labri.fr/forge/projects/altarica/documents

1.3. Overview over the work

1.3. Overview over the work

The work is split into two separate parts.
The first part includes the chapters [ and 5} It will focus on the theoretical aspects
of the task.

e Chapter [2| will start by introducing important data structures such as deterministic
and non-deterministic finite automata (DFAs and NFAs), Binary decision diagrams
(BDDs) and BDD-labelled NFAs and DFAs.

e Chapter [3] will give a concrete goal for the solver using an example.

e Chapter [ will introduce algorithms which are used by the solver. This includes
algorithms to optimize formulae, algorithms for BDD-labelled NFAs and DFAs,
algorithms to compute accepting runs of an automaton and finally algorithms to
transfer a formula into an automaton.

e Chapter 5] presents algorithms to solve formulae from the bounded Presburger arith-
metic, which is a version of the Presburger arithmetic where only limited space is
available for each variable.

The second part of the thesis focuses on the implementation of the solver.

e Chapter [6] will explain the front- and back end of the implemented software and
show the important parts. In order to give a complete view of the solver, the chapter
will close with a big example which will show how a user request is processed.

e Chapter [7] will give an insight into the performance of the implemented solver. It
will compare the program to another implementation of a solver for Presburger
arithmetic and give an overview of where the weaknesses of the implementation lie.
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2. Datastructures

In this section all data structures that will be used in the algorithms will be presented.
Additionally all needed operations on these structures will be explained shortly.

2.1. Deterministic/Nondeterministic Finite Automata
(DFAs/NFAs)

DFAs/NFAs will form the basic data structure for the solver. Both, a DFA and an NFA
are defined as 5-tuple consisting of

e () - the state space,

e Y - the alphabet,

e J - a transition function,

® o € (Q - the initial state,

e F C (@ - the set of final states.

DFA and NFA differ only in the transition function §. For DFAs, the function is defined
as 0 : @ x X — Q. The definition for NFAs is 0 : @ x ¥ — P(Q). This means, a letter in
a DFA can only lead to one state, whereas a letter in an NFA can lead to multiple states.
A run of a DFA on the input agaq...a,_1, where for each 0 < i < n:a; € X, is defined as
Po — p1 — ... = pp, where for each 0 <i <n—1: p; € Q AN(pi,a;) = piy1. The run is
accepting if p,, € F.

A run of an NFA is defined as for DFAs, but rather than §(p;,a;) = p;+1 we put
Pit+1 € 0(pi, a;).

L(A) defines the language of an automaton: L(A) = {w|w € ¥*A A has an accepting run
on w}.

Example Let’s consider the automaton A in figure with the alphabet ¥ = {0, 1}
. As one can easily see, the transition function ¢§ is written directly to the edges of the
automaton. One can also see, that the function has exactly one target for each state and
each letter. Therefore, this is a DFA. The set of final states of the automaton are always
marked by a doubly frame. In the example in figure the state ¢; is final and all other
states are non-final.

The language L(A) is quite easy to recognize. If the first letter is 0, the automaton will
always accept the word, else it will always deny it. If we see the accepted word as number
encoded over 0 and 1 using the little endian encoding, the automaton recognizes every
even number, and therefore L(A) = {y | y is even}.
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0,1

0
start H
1
0,1

Figure 2.1.: Sample automaton A with L(A) = {y | y is even}

In the following work, we will always use automata that encode numbers using the
little endian encoding. Therefore each transition will encode one bit of each variable.
This means if we want to encode n numbers, every transition letter has to have n bits.
The alphabet-size therefore grows with the number of variables: |X| = [{0,1}"| = 2™.

Remarks on the language: In the following work the name trap state will describe a
state from where every transition leads to itself. Additionally it has to be non-final. That
way, if a run reaches this state, it will not be able to leave it again. (Therefore its name
trap state)

2.2. BDD - Binary Decision Diagram

Binary Decision Diagrams or short BDDs are used to represent boolean functions as au-
tomata with certain properties. The first property is, that a BDD has at most one loop.
This loop has to be from the trap state to the trap state. As such, a BDD always has a
limited number of accepting runs. The second property describes the length of accepting
words. Since BDDs represent boolean functions, all accepting words need to have the
same length, because the number of variables in a boolean function is fixed.

Therefore a BDD can be viewed from two different angles. Firstly we can see a BDD as
a boolean function, where an input is either accepted or rejected. Secondly we can view
a BDD as a set of binary words of equal length, where every word in the set is accepted
by the BDD.



2.2. BDD - Binary Decision Diagram

Example The following BDD recognizes all inputs that satisfies the formula x A =y and

therefore the set S = {10}:
®
1
start *> e 0,1
1

0

q3

0,1

Figure 2.2.: Sample BDD that recognizes the formula x A =y and therefore the set S =

{10}.

The following operations on BDDs, where a and b are the BDDs, are used in the algo-
rithms:

e aUb / aVb: Computes a BDD for the union of the accepting runs of both BDDs.
So each input that satisfies one of the two BDDs is accepted.

e aNb /aAb: Computes a BDD for the intersection of the accepting runs of both
BDDs. So each input that satisfies both BDDs is accepted.

e x € a: X is an input that is accepted by a.

e dx :a: Applies an existential quantifier for variable x on the BDD a.
e —a: negates the BDD a.

e allSatCount( a ): counts the number of accepting runs for the BDD a.

As one can see, BDDs can be used as boolean functions with the according logical
operations. They can also be used as sets of n-tuples of Os and 1s, where n is the number
of free variables in the function. Each tuple in the set satisfies the binary function.

For more detailed information on BDDs, please see [10],[11] or [12].
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2.3. BDD-labeled NFA/DFA

As mentioned in the section on NFAs and DFAs, our automata will always encode numbers
using a binary encoding. We also learned, that as the number of variables grows, the
alphabet ¥ grows. This means that the transition function ¢ grows. If a traditional
lookup table of the form (state, letter, state) is used, this approach will take up a lot of
memory when n gets bigger.

This is why we will not use traditional automata, but rather BDD-labelled automata.
As we saw before, BDDs can be used to represent boolean functions. Since there is a
boolean function for every set of words,where every word has the same length, we can
use BDDs to encode the transitions. Let us assume, we want to save a transition from
state q1 to g2 with the letters 00,10,01. In a traditional implementation we would save
(¢1,00,92),(q1,10,g2) and (q1,01,q2) to the lookup table. In our case we will just create a
BDD b that accepts the set S = {00,10,01} and save (g1,b,q2).

To sum it up, we alter the lookup table from (state,letter,state) to (state, bdd, state) to
get a more compact representation of the transition function.

Remark on the figures of automata: In the following work all NFAs and DFAs will be
labelled with BDDs. Since it would not be convenient to put the BDD labels into the
figures, we will spare this out and use traditional labels instead. However, please keep in
mind that this is only for convenience and the data structure is implemented using BDD
labels.

Remark on syntax in the algorithms: In some of the algorithms, a state is known and
the algorithm wants to get all transitions, thus all reachable states and the BDDs that
label the transitions to these states. This is accomplished using the following line:

for all BDD bdd, State s: d(q,bdd) = s do

10



3. Goals of the solver

The goal of this work is to implement a solver for Presburger arithmetic which uses BDD-
labelled automata as a data structure. The target of this chapter is to give an intuition
on how the result of the solver should actually look like.

The solver will take a formula from Presburger arithmetic and compute an automaton
which encodes all solutions to this formula.

Let us consider the formula 3z : (x +y < 4 Az = 2) and see which automaton should be
computed. The formula states, that there is an x, so that x is equal to two, which is trivial,
and that x +y < 4. Since x has to be 2, the formula can be altered to dz : y < 2Azx = 2.
The x is then cancelled out because of the existential quantifier. Therefore the formula
is true for each y < 2. The DFA encoding this set of numbers is shown in figure 3.1

Figure 3.1.: Automaton for 3z : x +y < 4 A x = 2. Please note, that the trap state was
left out for better visibility. All missing transitions lead to the trap state.

Since the automaton accepts only values for y which are smaller or equal to 2, the
solution space will be S = {0,1,2}. Therefore a result of the solver should include a rep-
resentation of the minimal automaton as well as the solution space. Additionally there
should be ways for the user to change the properties of the returned solution space. This
includes:

e All solutions: The solver tries to compute all solutions for the formula.

e Optimized solutions: The user should be able to enter a term consisting of free
variables from the formula which is then maximized or minimized. So if the user
wants to maximize the term 2y in the above example, the maximal value should be
4 with a value of 2 for y.

e Limited number of solutions: The user should be able to limit the number of re-
turned solutions. So if the user requests 2 solutions in the above example, possible

valid solutions would be S = {0,1}, S = {1,2} and S = {0, 2}.

Since the solver focusses on the user experience, there has to be the possibility to define
macros which can then be used in all formulae of the user. As such the user has to be
able to declare a name for a formula and use this name synonymously with the associated
formula. The parameters of a macro are the free variables of the associated formula. It

11



3. Goals of the solver

should be possible to substitute a parameter with a term instead of just a variable That
way it is possible to define properties of whole terms instead of just variables.

In order to reach the stated goals and get from a text input of the formula to an
automaton and actual solutions of the formula, we first need to find algorithms for BDD-
labelled automata. This includes union, intersection, existential quantifiers, minimization
of automata and determination of automata. Since these algorithms are already available
for traditional NFAs and DFAs, we will adapt them for the BDD-labels if possible and
focus on the BDD-parts of the adapted algorithms. Apart from algorithms for automata,
algorithms to optimize formulae as seen in the above example above will be shown. As
the main task is to turn a formula into an automaton, an algorithm for the translation
from a formula to an automaton will be shown. Finally algorithms for computing actual
solutions from the automaton will be explained.

12



4. Algorithms

In this chapter the emphasis lies on explaining the algorithms which are used on the
way to solving a formula and getting its solution space as well as subsets of it. The first
section will explain how a formula is optimized. The algorithms for pushing negations
and checking whether a sub-formula can be optimized in some way will be discussed.
The second section will explain the basic operations on automata such as union, inter-
section, negation, minimization and determination. The focus will lie on how to change
existing algorithms to work with BDDs instead of traditional labels on the transitions.
The third section will explain the algorithms which are used to find a subset of the solu-
tion space of the formula that suits the properties that the user ordered. This includes
counting the number of solutions for an automaton, as well as three different ways of
getting the solutions, which are namely AllSat, N-Sat and an algorithm for getting opti-
mized solutions for a certain linear term.

The chapter will close with algorithms to translate a formula in a LogicTree format into
an automaton.

4.1. LogicTree

The starting point for the algorithms in this section are trees that look as in Figure [4.1
The nodes are always operators such as A , V , quantifiers or negations. On each leaf of
the tree is a predicate of one of the following forms:

i a;x; = b
k=0
ZZ: a;T; 7'5 b
k=0

%
Z a;T; S b
k=0

4.1.1. Pushing in negations

This algorithm is used to get rid of as many negations as possible. This is done by
applying De Morgan’s law exhaustively. De Morgan’s law is defined as

—(aVb)=-aN-b (4.1)
—(aAb)=-aV-b

13
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Figure 4.1.: A sample tree forx =4AN-y=TAzx+y <15

As such our first task is to search the tree until we find a negation. Once we have found

one, we will try to push it deeper into the tree.

pushNegations:

Input: Tree a

while x = a.findNegation () do
negate (x.child)
remove X from a

end ;

SO W N =

Listing 4.1: Algorithm to push negations down in the LogicTree

The pushNegation algorithm starts the whole process of pushing negations into the
tree. It searches the earliest negation and sends a negate-signal to its child. After the

child is negated the negation itself is deleted.

The negate algorithm is available in two different forms. One is for nodes, the other one

for leafs:
1 negate:
2 Input: Node a
3 switch a
4 case AND:
5 a = OR;
6 for all child € a.children do
7 negate (child)
8 end
9 case OR:
10 a = AND;
11 for all child € a.children do
12 negate (child)
13 end
14 case NEGATION:
15 remove a from tree
16 default :
17 insert — before a in the tree

Listing 4.2: Negation algorithm for nodes of a tree

If the input of the negate algorithm is a node we have three different possible cases:

e The node is an AND or an OR. In this cases De Morgan’s law applies.

14



4.1. LogicTree

e The node is another NEGATION. In this case, the negation is just cancelled out.

e The node is an existential-quantifier. In this case we just put a negation above this
node in the tree.

The negate algorithm for leafs is fairly simple. If the leaf is of type equal or not equal,
it will just swap it to not equal, resp. equal. If the type of the leaf is less or equal, the
type is changed to greater, but since this is not a formula of one of the three forms defined
above, it will be transferred back to the less or equal form.

1 negate:

2 Input: Formula a

3 if a.TYPE = EQUAL

4 a.TYPE = NOT_EQUAL

5 if a.TYPE = NOT_EQUAL

6 a.TYPE = EQUAL

7 if a.TYPE = LESS_EQUAL

8 a.LEFT_SIDE x= —1;

9 a.RIGHT_SIDE += 1;

10 a.RIGHT SIDE #= —1;

Listing 4.3: Negation algorithm for leafs of a tree

Complexity

Since every node in the tree is met at most once, the complexity is O(n+1) where n is the
number of nodes and 1 the number of leafs of the tree.

Example

Let us take a look at an example to get a better intuition on how this works.

3] [ [xsis]

x=4 y="7

Figure 4.2.: The tree for =(Jy:x =4 A-y=7TANz+y < 15)
We will now run the pushNegation algorithm on the tree in Figure The algorithm
will recognize the negation on top of the tree as the first negation and call negate on its

child, which is of type A. The A will be turned into an V by De Morgan’s law. After that
each child of the former A will be negated.

15



4. Algorithms

The left edge leads to an existential quantifier, which can not be negated. Hence the
negation is just put in front of the quantifier.

The second child is a negation. Since the two negations cancel each other out, the second
child is just deleted.

The third child is a formula. Since its type is less or equal, lines 6-9 of the negate
algorithm for leafs apply.

The complete tree after applying pushNegations looks as in figure [4.3}

El

x=4

Figure 4.3.: The tree after applying pushNegations.

4.1.2. Simplifying the formula

In this section the goal is to describe an algorithm to recognize and get rid of unnecessary
predicates, such as duplicates, or formulae that are already included in other formulae.
The algorithm is split into three parts. First we have to find a predicate to propagate,
after that the predicate is pushed up the tree until an V or an existential quantifier is
reached. Along the way the predicate is already propagated to the sub-trees of the nodes
that are met on the way upwards. When the algorithm reaches an V or an existential
quantifier the predicate is propagated down all sub-trees to the leafs, where the predicates
are being compared and possibly changed.

The first part is rather technical and relies on a simple in-order iteration, therefore it will
not be covered here. Let us take a look at part two.

16



4.1. LogicTree

1 pushUp:

2 Input Node n Formula f:

3 switch n

4 case AND:

5 for all child € n.children A f not in subtree child do
6 propagate (child , f , AND)

7 end

8 if exists( n.father ) then

9 pushUp(n. father , f)

10  case OR/EXISTS:

11 for all child € n.children A f not in subtree child do
12 propagate (child , f , OR)

13 end

Listing 4.4: Algorithm for pushing a formula upwards

Part three is the propagate algorithm, which exists for nodes and for leafs. The version
for nodes basically checks if the current node is an A or an V. If that’s true, it continues
to propagate the predicate downwards.

1 propagate:

2 Input Node n, Formula f, Type t:

3 switch n

4 case AND:

5 foreach child from n.children do
6 propagate (child , f , t)

7 end

8 case OR:

9 foreach child from n.children do
10 propagate (child, f , t)

11 end

Listing 4.5: Propagate algorithm, to push a formula to the leafs

The propagate algorithm for two formulae is rather technical and quite large, which is
why we spare it out. Table shows the basic behaviour of the algorithm. The first two
columns represent the types of predicate rec and prop. rec is the predicate that receives
the propagation of prop. The third column is the type of the propagation, i.e. the type
of the node that sent the propagation for this sub-tree first. In column four and five you
can find the relation between the prefixes and the bounds. rec = prop means, that rec
and prop have the same variable set with the same prefixes for each variable. rec D prop
means that each variable from prop exists in rec and has the same prefix in it. The last
column contains the action that is performed. True/false means, that the predicate is
replaced by true/false, substitute means, that prop is substituted by the bound of prop
in rec, so every variable from prop is deleted in rec and the bound of rec is subtracted
by the bound of rec b.... EQUAL means, that the type of the predicate rec is set to
EQUAL.
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Now we can assemble the actual algorithm:

rec prop Type prefix relation bounds relation result
= = AND rec = prop brec = bprop true

= = AND rec D prop - substitute
= #* AND rec = prop brec = bprop false

= < AND rec = prop brec > bprop false

%+ = AND rec = prop brec = bprop false

% = AND rec D prop - substitute
% < AND rec = prop brec > bprop true

< = AND rec = prop brec = bprop true

< = AND rec D prop - substitute
< < AND rec = prop brec > bprop delete
< < AND  rec = -prop brec = —bprop EQUAL
< < AND  rec = -prop brec < —bprop false

= < OR rec = prop brec = b2 delete
< < OR rec = prop brec < bprop delete
< < OR rec = -prop brec = —bprop true

Table 4.1.: Behavior of the propagate algorithm for two formulae.

1
2
3
4
5
6
7
8

9
10
11
12

optimize :
Input Tree t:

changed = true;
while changed do
while hasNextFormula( t ) do
f = nextFormula( t );
pushUp (f.father , f);
end ;
if not t.hasChanged()
changed = false;
end ;

The algorithm will continue to optimize the tree as long as at least one predicate of
the tree changes at the previous run. That way we can be sure that optimizations that
were done in the previous run, are propagated to every other reachable predicate again.

Complexity Since we have to restart the algorithm every time the tree changed, the

Listing 4.6: Algorithm to optimize a given LogicTree.

algorithm will be in O(n?), where n is the number of leafs in the tree.

Example Assume we want to optimize the tree in figure 4.4

The algorithm will start to search a predicate to propagate to the rest of the tree. The
first one it will find is x < 15. It will be pushed up and propagated to the rest of the tree
with A as operation since we can not go up further. As nothing can be done, nothing

happens.
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|z <15]|z < 10]

Figure 4.4.: Logic Tree to be optimized

The second predicate to be propagated is x < 10, which is also propagated with A. When
it is propagated to x < 15, the algorithm will recognize that < 10 is part of x < 15
and just delete x < 15 from the tree since both predicates have to be satisfied. Since the
A-node now only has one child, it will be removed from the tree as well. The result of
the optimization is shown in figure 4.5

Figure 4.5.: Tree after optimization.

4.2. Automata

In this section the most interesting algorithms for BDD-labelled automata will be dis-
cussed. Since most of them rely greatly on algorithms for usual automata, which have
been discussed in lots of papers before, the focus will be on the BDD-parts of the algo-
rithms.

4.2.1. Union/Intersection

The pairing-algorithm described by Esparza in [4] plays a major role in developing the
algorithm for union/intersection of BDD-labelled automata. It is used for union as well
as for intersection and only differs in the requirements for final states. We want to adapt
this algorithm for BDD-labelled automata.

Let’s first take a look at the pairing algorithm for usual NFAs:
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1 pairing:

2 Input NFA A = (Qa, ¥, 64, qao, Fa) NFAB = (Qs, X, 0B, qBo, Fp) Binary
Operation ©

3 Output NFA C = (Q, X, 4, g, F)

4Q=0,F=0
5 g = [ga0 , gBo]
6 W= {q}

7 while W # 0 do

8 pick [q1 , ¢2] from W
9 add [¢1 , ¢2] to Q

10 if g € FA®q € Fp then

11 add [¢1 , ¢2] to F

12 for all a€ X do

13 for all g3 €0a(qi,a) , qa € 6B(g2,a) do
14 if [g3,q4] ¢ @ then

15 add [g3,q4] to W

16 add ([qlan] y A, [q3>q4]) to ¢

17 end

18 end

19 end

Listing 4.7: Pairing algorithm for usual automata

As we can see, the algorithm relies mainly on an iteration over every letter of the al-
phabet in the outer loop. This will work since every letter is saved in a plain format in
the lookup table. In our case though, we save transitions labelled by binary functions in
the BDD-format. Therefore, we can perform operations such as intersection of union on
them. This can be used for a pairing algorithm.

Instead of relying on an iteration over the alphabet, we will take the targets of each tran-
sition for both states and make the cross product of the two sets. After that we will go
through the set of pairs and try to make transitions for them. This is done by computing
the intersection of the BDDs leading from ¢; to g3 in A and ¢s to ¢4 in B. If the resulting
BDD is not empty, the new transition is added to the new transition table.

The resulting algorithm will look as follows:
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[y

pairingBDD :

Input NFA A = (Qa, X, 04, qao, Fa) NFAB = (@Qr, X, 6B, ¢Bo, Fp) Binary
Operation ©

3 Output NFA C = (Q, X, ¢, ¢, F)

4Q=0,F=0

5

6

(]

g = [ga0 , gBo]

7 add [gao , gBo] to Q

8 if quo € Fa®gpo € Fp then

9 add [gao , gBo] to F

10

W= {q0}

12 while W # ( do

13 pick [q1 , g2] from W

14 for all [gs,qa], [bdds,bdds] : 64(q1,bdds) = g3 A dB(q2,bdds) = g4 do

15 if bdds3 Nbdds in not empty then

16 if [g3,q4] € QA [gs,qa] ¢ W then

17 add [¢3 , q4] to Q

18 add [¢z3 , qu] to W

19 if gs € FA®qqa € Fp then

20 add [g3 , qa] to F

21 add ([q1 , g2] , bddsNbdds , [g3 , qa] to &
22 end

23 end

24 return (Q,X,d§,q0,F)

Listing 4.8: Pairing algorithm for BDD-labelled automata

To Implement Union and Intersection we just insert different operations for . For
union we insert V, for intersection A.
Since the cross product of the two state sets is finite, the algorithm will terminate.

intersection:
Input NFA A = (QA, Y, ba, qao, Fa) NFAB = (@, ¥, 6B, ¢80, FB)
Output NFA C = (Q, X, §, q, F)

Tt W N~

return pairingBDD (A | B |, A)

Listing 4.9: Intersection for BDD-labelled automata

union:
Input NFA A = (Qa, ¥, da, qao, Fa) NFAB = (Qs, ¥, B, qBo, FIb)
Output NFA C = (Q, %, 6, q, F)

U W N~

return pairingBDD (A , B , V)

Listing 4.10: Union for BDD-labelled automata

Of course the common implementation of union for NFAs, which is just running both
automata side by side can be applied as well. Since the BDD-implementation does not
differ at all from the usual implementation we will not cover it here. Further information
can be found in the work by Esparza in [4].

Complexity The outer while loop will be run at most |Q4| - |@Qp| times, the inner for-
loop at most |X 4] - |Xp|. Assuming, that lines 15 to 21 of the pairingBDD algorithm are
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in O(1), this makes a total of O(|Qa| - |QB|- |24 - |XB])-

4.2.2. Minimization

The minimization algorithm relies on Hopcroft’s algorithm as described for example by
Berstel in [9].

1 minimize:

2 Input DFA A = (Qa, X, 64, qao, Fa)
3 Output DFA B = (Q, X, ¢, g, F)

4P ={Fa , Qa\Fa}

5W=10

6 for all a€ X do

7 add (min(Fa , Qa\Fa),a) to W

8 end

9 while W #0 do

10  pick (A,1) from W

11 for all Peurrent € P which is split by (A,1) do

1"

‘ 12 (P(;ur'rentapcur'rent) = Split (P7A7 1)

13 replace P.urrent by P;M,,em and P;;”Tem in P
14 for all be X do

15 if (Pourrent,b) € W then

16 replace (Pcurrent7b) by Pc,u'rrent and Pc,;rrcnt in W
17 else

18 add(min(P;urrent 7Pc/;rrent )) to W

19 end

20 end

21 end

22

23 return (Q, X, 4, g, F)

Listing 4.11: Minimization algorithm by Hopcroft.

Since the algorithm was already described in length, for example by Berstel in [9], we
will not describe it again, but rather take a closer look at the split algorithm in line 12 as
well as the check if a class is splittable in line 11. Those should be the most interesting
parts of this algorithm considering the BDD environment.

isSplittable

The isSplittable algorithm takes two classes P and A from the current partition as well as
a letter 1 from the alphabet and checks if the class P can be split by (A,1). To do so, the
algorithm has to go through each state of the P and check if, after taking the transition
for letter 1, we reach the class A or not. If we can find states in P that reach A and states
that do not reach A, we return true, else we return false.
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isSplittable:
Input Class P Class A Letter 1
Output true if P can be split by (A,1), false if not

inFound = false
outFound = false
for all State s € P do
State q = 4(s,!)
if q € A then
inFound = true
else
outFound = true

0~ Utk WN

— = = = =
=W N = O O

if inFound A outFound then
return true
end

e
oo 3 O Ut

return false

Listing 4.12: Algorithm to check whether a class can be split. Please note that line
8 is just a short cut. We have to check the BDDs on the transitions for
the state s in order to get q.

This implementation seem to be pretty straightforward. However, line 8 will be quite
hard to implement, since in the worst case scenario we would have to check every BDD
for this state. When assuming, that we can check a BDD in O(1), this would make it
O(|X]) for each state and O(|P| - |X|) in total for this algorithm. Since

X =2"

where n is the number of variables, the algorithm will get quite slow for a big number of
variables.

Because this check is used in every loop of the algorithm, this will clearly be the bottleneck
of the minimize algorithm.
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split

The split algorithm is actually pretty much the same algorithm as isSplittable, but in-
stead of just remembering if there exist states that were inside of A or not, we will have
to save two separate sets for states that were inside of A resp. outside of A.

split:
Input Class P Class A Letter 1
Output The splitted class P.

inside = 0
outside = 0
for all State s € P do
State q = d(s,1)
if q € A then
add q to inside
else
add q to outside

0~ O O Wi

P S
W N = O o

end

— =
S U

return (inside ,outside)

Listing 4.13: Algorithm to check whether a class can be split. Please note that line
8 is just a short cut. We have to check the BDDs on the transitions for
the state s in order to get q.

Again the bottleneck of the algorithm will be line 8.

In practice it would be advisable to merge the two algorithms or just use the split al-

gorithm. Else some of the BDDs will have to be checked twice, once for checking if the

class is splittable and once for the splitting itself. So instead of line 11 and 12 of Listing

[4.17] one would write

| 1 for all Pryent € P do |
1" ‘

1
‘ 2 (Pc/urrenhpcu'rv‘ent) = split(PCuT'r‘ent 7A71)
3

‘ if Pc,urrent 7é (D A Pc,;rrent 7é @ then ‘

to get the best performance out of the algorithm. We decided not to write this directly
into the pseudocode description above, since it is an implementation detail and could
cause confusion at first reading.

Complexity The theoretical complexity of Hopcroft’s Algorithm is well known as O(|Q||X|log|Q)])-
Please take a look at the works by Knuth ([13]) or Berstel ([14]) for a justification of the
complexity.

However, the complexity of the split algorithm above is interesting. Since we use BDDs

as labels for our transitions, we first have to figure out which transition to take with the

letter 1. In the worst case, this means we have to check every transition of every state

in the class P. If we assume, that checking if the letter | is accepted by a BDD is O(1),

this gives us an upper bound of |P| - |X|. If we account, that the split algorithm (or the

similar isSplittable algorithm) has to be called |P| times for each run of the outer while

loop, we can see easily, that this will be the bottleneck of the algorithm.
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4.2.3. Determination

The determine algorithm turns an NFA into a DFA. The usual approach to this algorithm
is the power-set construction, which can be found in [4].

In this section two approaches to determinate a BDD-labelled NFA will be presented.
They both use some kind of power-set-construction, but with different ways of getting
there.

Since we have BDD-based transition tables instead of a letter-based transition tables in
the original algorithm, we have to find a way of getting the right sets from the power-set
of the state-space.

Guessing a letter

The first way of getting the right set is by guessing a letter.

1 determinize:
2 Input NFA A = (Qa, X, 64, gao, Fa)
3 Output DFA B = (Q, %, 6, qo, F)

4

5W={ {qa0} }

6 Q={ {gao} }

7 g = {gqao}

8

9 while W #0 do

10 Qtmp =pick {¢x , ... , gn} from W

11 BDD notDone = One-BDD
12 while —notDone.isZero () do

13 Letter 1 = notDone.getOneSat ()

14 newState =

15 transition = One-BDD

16 for all ¢ € Qunp do

17 add s to newState where 3b:da(q,b) =sAlE€D
18 transition = transition N b

19 end ;

20

21 if newState ¢ Q A newState ¢ W then

22 if dg € newState:q € Fa then

23 add newState to F

24 add newState to Q

25 add newState to W

26

27 add (Q¢mp , transition , newState) to §
28

29 notDone = notDone N transition

30 end

31 end

32

33 return (Q, X, 0, ¢, F)

Listing 4.14: Determination for BDD-labelled automata with letter guessing

The interesting part is from Line 10 to 29. After getting a subset of Q4 we make a
new BDD called notDone. This will contain every letter that has not yet been dealt
with. Since this is true for every letter at first we have to start with a One-BDD which
returns true for every input. Following that we start a loop that goes on until no letter
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in notDone is left, which means that notDone is the Zero-BDD.

Next we pick a letter 1 that is still in notDone and produce the subset for this letter, which
means that we go through every state in the current set Qymn, and see which transitions
can be taken using our letter 1. If a transition can be taken, the target is added to the
newState set and the transition-BDD is intersected with the current transition. After
finishing the inner loop, the transition-BDD contains all letters that can be taken to get
to the newState set.

To finish up we add newState to the new state-space and the worklist, if not done already.
Further the transition from Q¢ to newState with the transition-BDD is added to .

Complexity The outer while loop will be met at most |P(Q4)| times, since every set
from the power-set construction can only be met once. The inner while loop, which keeps
track of the letters that were used already will be met at most X times, which would
mean that each letter leads to a different set of states. The inner for loop from line 16
to 19 is tougher to calculate. For each state in the current set of states we have to check
which transition contains the letter 1. Since this is an NFA, we will have to check every
transition for every state in the current set. Assuming that checking whether [ € b is in
O(1), this makes an upper bound of |Qmp| - |X].

In total we get a complexity of O(|P(Qa)| - || |Qmp| - |Z]) = O(P(QA)] - |Qtmyp] - |Z]?)
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Power-set iteration

The second approach does not go through the available letters but rather tries each set
in the power-set construction, starting with the biggest.

1 determine:

2 Input NFA A = (QA, ¥, 04, qapo, FA)

3 Output DFA B = (Q, X, ¢, ¢, F)

4

5W={ {qao} }

6 Q= { {qa0} }

7 g0 = {qao}

8

9 while W #0 do

10 Qtmp =pick {¢1 , ... , gn} from W

11 BDD restrict = Zero—-BDD

12

13 for all Qsu € P(reachableStates(Qimp)) do
14 transition = (A,cq.., \/BDDb:ElsEthp:SA(s,b):q b) A —restrict
15 if —transition.isZero() then

16 if Qsup ¢ Q then

17 if 3¢ € Qsup:q € Fa then

18 add Qsup to F

19 add Qsup to W

20 add Qsup to Q

21 add (Qimp , transition , Qsuw) to §
22

23 restrict = restrictV transition

24 if restrict.isOne() then

25 break

26 end

27 end

28

29 return (Q, X, 6, g, F)

Listing 4.15: Determination for BDD-labelled automata with power-set iteration

The algorithm looks tough at first sight, but the idea behind it is quite simple. For
each set S we pull from the worklist, the power-set of all states that are reachable from
S is computed. Now we start iterating over each set in the power-set, where we have to
make sure to pick the biggest available set first. Let’s call this set Q4. Once we have
picked we compute the transition from the current set to this set of reachable states using
the formula

transition = ( /\ \/ b) A —restrict
4€Qsup BDDb:ISsEQ¢myp:d4(s,b)=q

in line 14. The formula iterates over every state in Q4,5 and tries to find transitions from
Qtmp to this state. These transition-BDDs are then put together using V. After that we
compute the intersection of all those transitions to single states, which gives us the BDD
for a transition from the Qump to Qgyp. If this BDD is not the Zero-BDD, the transition
from Q¢mp to Qgup Will be added to 4.

The restrict-BDD that is added to the end of the formula contains all letters that were
taken for Qimp already. It is used to make sure, that no duplicate transitions can occur
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in the resulting automaton. Once this BDD contains all letters, which means that the
BDD is the One-BDD, the computation for Q¢ is done and we can go on with the next
item in the worklist.

Complexity For the same reason as above, the outer while loop is met at most |P(Q4)|
times. The inner for loop will be met as most P(Q4) times, since the reachable states
from Qmp could be equal to Q. Inside the loop, line 14 will be quite costly. We first
iterate over (Qg,p which could be equal to @@ 4. Following that we look for transitions from
states in Qump to the current state from the iteration. This will be |Q 4] - |X|. In total we

get a complexity of O(|P(Qa)| - |P(Qa)| - 1Qa4| - |X|) = 0(22’|QA‘ - 13)).

4.2.4. Negation

The implementation of a negation algorithm for BDD-labelled automata is fairly simple.
First we will have to make sure that the automaton is deterministic. If it is not we will
have to determine it using one of the determine algorithms from section After that
we will just flip the final states, so that each final-state will become a non-final state
and each non-final-state will become a final-state. After that the padding closure will be
applied to make sure every encoding of solutions is accepted. The padClosure algorithm
just propagates final states along O-transitions. So if a state is non-final, but has a 0-
transition to a final state it will be final afterwards.

negate:
Input NFA A = (@, X, §, @, F)

1

2

3

4 if —isDFA(A)
5 determine (A)
6

7 for all q € Q do
8 if q € F then

9 remove ¢ from F
10 else

11 add q to F

12 end

13

14 padClosure (A)

Listing 4.16: Negation for BDD-labelled automata

The isDFA part is quiet easy to implement. We have to make sure, that the union of all
transitions is the One-BDD, so the BDD that always returns true, while the intersection
has to be the Zero-BDD, so a BDD that always returns false. Since the intersection of
the current BDD b with any subset of One-BDD\b has to be the empty set we can check
this part on the fly inside the inner loop which could safe time in some cases.
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1 isDFA:

2 Input NFA A = (Q, 2, §, q, F)
3

4 for all q € Q do

5 BDD union = Zero—BDD

6 for all BDD b : 3Jz:6(¢q,b) =z do
7 if b N union # { then

8 return false

9 union = union U b

10 end

11 if —union.isOneBDD () then
12 return false

13 end

14

15 return true

Listing 4.17: isDFA for BDD-labelled automata.

Complexity Since the negation algorithm mainly relies on the determine algorithm it
will not be covered. However isDFA could be interesting. The for loop is met |Q| times.
The inner for loop could be met |¥| times in the worst case. Assuming that the BDD
operations have a complexity of O(1), we get a complexity of O(|Q| - |X]) for isDFA.

4.3. Solution Space

4.3.1. Number of solutions

The purpose of this algorithm is to extract the number of solutions out of a BDD-labelled
DFA. The first part of the algorithm will check if the DFA has any loops from where final
states are reachable. If this is the case the DFA has an infinite number of solutions.
This has one exception, namely a loop in a final state from which no other final state
is reachable and which only consists of the padding-letter which is just zeros. If no real
loops were found part two of the algorithm comes to action. Since there are no loops
outside of the trap state in the automaton, the automaton is a BDD-labelled BDD. As
such we can count the number of solutions n as the sum of runs that end at each final

state:
n = Z N
seF

where F is the set of final states and N is the number of unique runs that ends at the
state s. At this point we have to be very careful. If one of the incoming states is another
final state, and the transition includes the letter 0¥, then this piece of the run can not
be counted into Ny since we would otherwise have duplicate solutions and therefore a
wrong result. However we still have to remember, that we did not count this piece of the
transition for the case that there are transitions leaving the state to other non-final states
from where other final states are reachable. For that reason we always have to carry two
values, one value if we stop at this state, and one value if we go on.
To illustrate the use of the two values let’s have a look at the automaton in figure 4.6

If we just counted the incoming runs for each final state we would get 4 runs for g3 and
1 run for ¢; and ¢o. In total this would be 6 solutions. However, if we count the solutions
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Figure 4.6.: Automaton to illustrate the numSol algorithm

manually we get only 4 of them, namely 0,1,2 and 3.

If we now use the algorithm described below we get 1 solution for ¢; and g2. Since both
incoming transitions to g3 come from final states and include 0, we get only 2 new solu-
tions instead of 4, which makes it a total of 4 solutions, which is correct.

Listing [£.23]shows a pseudocode implementation of the above described algorithm. It first
checks if the automaton has any loops (taking into account the mentioned exception).
This algorithm won’t be described here, since every cycle detection algorithm known from
graph theory can be used. Please check the work by Brent [7] and Floyd [8] for more
information on this topic.

0 O Ui W N+

e e el el el
N O UL W - OO

numSol :
Input DFA A = (Q, X, ¢, ¢, F)
Output: Number of solutions
if hasLoops(A) then

return oo
cache = []
for all q € F do

countPaths (q, cache)
end
solutions = 0
for all g€ F do
solutions += cache.get(q).getSecond ()
end

return solutions
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1 countPaths:

2 Input State q Table from states to 2—tuple of numbers
3 if cache contains q then

4 return

5

6 if q is initial then

7 add [q , <1,1>] to cache

8 else

9 goOn = 0

10 stopHere = 0

11 for all incoming transitions (s,bdd,q) where s#q do
12 if cache does not contain tuple with s then

13 countPaths (s, cache)

14

15 inComingGoOn = cache.get(s).getFirst ()

16 inComingStopHere = cache.get(s).getSecond ()

17

18 if q is final and s is final then

19 goOn += inComingGoOn - allSatCount (bdd)

20 stopHere 4= inComingStopHere - allSatCount (bdd\{0})
21 else

22 goOn += inComingGoOn - allSatCount (bdd)

23 stopHere 4+= inComingGoOn - allSatCount (bdd)

24 end

25 add [q,<goOn,stopHere>] to cache

Listing 4.19: Algorithm to count all paths to a state.

The algorithm looks quite big at first sight. However, if we take a closer look, it is
fairly simple. We start from each final state and check if we have computed the number
of unique paths for this state already. If not, we get the solutions for the states of the
incoming transitions and multiply it by the number of solutions for the BDD. These
numbers are added up to get the actual values for this state. Lines 18 to 20 of the
countPaths algorithm solve the problem of the doubly counted solutions described above
by leaving out the 0 letter for the stopHere value.

Complexity Every state in the automaton is visited only once. If we assume, that
allSatCount is in O(1), we get a complexity of O(|Q| - |X|)

4.3.2. allSat

This algorithm is used to get all solutions out of an automaton. Basically it is just a
depth-first algorithm. First the algorithm checks if the automaton has any loops, except
loops that are 0-loops where no final state other than the current state are reachable. If
a loop exists, then there are infinitely many solutions, so the algorithm can’t compute all
of them. Therefore it will just return nothing.

If no loops were found, the algorithm will start the depth-first algorithm. Each branch
will carry its own temporary solution set that is only valid for this branch. If any final
state is met, the temporary solution set will be added to the real solution set. Since there
are no loops except O-letter self-loops in the automaton, the algorithm will terminate.
The main work is done by the allSatWalk algorithm. As argument it takes a state q,
an integer add, a set of tuples of integers tmpSolution and a set of tuples of integers
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solution. They have the following meaning:

e State q: The current state for the depth first algorithm, so the state from where
the algorithm will take the next transition.

e Integer add: The number to add if a part of the transition is 1. So starting from
the top node add will be 1, for states reachable from the initial state it will be 2,
then 4 and so on.

e Set tmpSolution: Set of Integers that carries the temporary solutions of the cur-
rent run

e Set solution: Set of Integers that carries the actual solutions of the automaton.

allSat :
Input DFA A = (Q, £, ¢, ¢, F)
Output: All solutions of this automaton

if hasLoops(A) then
return nothing

solution = {}
allSatWalk(qo , 1 , {[0,...,0]} , solution)

—H O © 00O Utk W=

— =

return solution

Listing 4.20: allSat algorithm for a BDD-labelled DFA.

1 allSatWalk:

2 Input State q , Integer add , Set tmpSolution , Set solution

3

4 if q is final then

5 add all [ao , ... , an] € tmpSolution to solution

6

7 for all Bdd bdd , State s : d(q,bdd)=s and s # q do

8 newTmpSolution = {}

9 for all [by,...,b,] € bdd do

10 add [ao + addbo, ... , an + addb,] for each [ao,...,an] € tmpSolution
to newTmpSolution

11 end

12

13 allSatWalk( s , 2-add, newTmpSolution, solution);

14 end

Listing 4.21: Depth-first allSat algorithm for a BDD-labelled DFA.

Complexity The complexity of the algorithm equals the worst-case complexity of an
usual depth-first search. Since every transition and every state have to be considered the
complexity is O(|Q| + |0|), where || is the number of edges in the automaton.
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4.3. Solution Space

4.3.3. N-Sat

The N-Sat algorithm tries to extract n solutions from a DFA. Thereby it takes a different
approach than the allSat algorithm. Instead of doing a depth-first search, this algorithm
performs a breadth-first search. By doing so, small solutions are preferred over big solu-
tions. Every time it hits a final state it adds the solution for the current branch to the
solution set. Once there are n solutions in the solution set, the algorithm will just stop.
The worklist will contain 3-tuples of data. The first part will be the state, the second part
the current numbers for the run and the third part will be the number which is added
depending of the length of the run. So it will add 1 for the first transition, 2 for the 2nd
and 2"~! for the n-th transition. While doing the breadth-first search, the algorithm will
always keep track of the worklist size. The algorithm will try to keep the worklist-size
approximately as big as the number of solutions we want to get.

1 nSat:

2 Input DFA A= (Q, X, 0, go, F) , Integer num
3 Output n solutions to the automaton

4

5 solutions = 0

6W=<<qp , [0,...,0] , I>>

7 while W # (A|solutions| < num do

8 pick first <q,[ao,...,an] , add> from w

9 if q is final then

10 add [ao ,...,an] to solutions

11 if |w| < num then

12 for all Bdd bdd , State s:d(q,b)=s do

13 for all [bo,...,bn] € bdd do

14 add last [s,[ao+bo-add ,...,an+byp-add],2-add] to W
15 end

16 end

17 end

18

19 return solutions

Listing 4.22: N-Sat algorithm

The algorithm should not be called if the number of solutions of the automaton is
bigger than the number of the solutions we want to get. In this case the algorithm might
not terminate.

If there exist less or equally many solutions than we want to get the algorithm will
terminate.

Complexity In the worst case, the automaton has exactly one final state and one path
from the initial to the final state. From this final state, there is another transition to the
initial state. Therefore we have to loop n times to get n solutions. This makes an upper
bound of n - |Q| - |d], where n is the number of solutions we want to get, |@Q| is the size
of the state space and |J| is the number of transitions in the automaton. Therefore the
algorithm is in O(n - |Q] - |9]). However the average case complexity will be much better
than the worst case complexity.
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4. Algorithms

4.3.4. Optimized Solutions

The algorithm for optimized solutions mainly uses the algorithms that were shown al-
ready.

The algorithm will get a term that the user wants to optimize as well as the solution
automaton A to the original formula that the user wants to solve. Let’s call the term to
be optimized P with the variables xy to x;. Every variable z; that occurs in P has to be
a free variable in A. Now we will compute the automaton for the formula z = P, where z
is a variable that does not occur in A. If we want to minimize P, we will have to compute
the automaton z = —P as well since we also have to cover negative values. Let’s call
these automata B and B,

After that we will construct the intersection of A and B resp. A and B,,;, and call them C
resp. Cpin. Next we define the automata D and D,,;, as the automata where existential
quantifiers for all free variables in A have been applied to C resp. Chyin.

In the last step we will get the optimal solution. The exact algorithm for getting the
maximum or minimum value will not be covered in detail here since they are fairly sim-
ple. Getting the minimum can be implemented using a breadth-first search for a final
state. To get the maximum, an adapted version of the allSat algorithm from section 4.3.2
can be applied.

The optimum for the minimal solution will be min{ getMin(D) , -getMax(D,,in) }, the
optimum for the maximal solution getMax(D).

The algorithm will then return all runs of C or (Ciy,;p, if the optimum is negative) for z
= optimum.
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4.4. Solver

optimalSat:
Input DFA A = (Q, ¥, §, g, F) Predicate p Type t ,
Integer [] optimal solutions

DFA B = solve(z = p)
if t = Min then
DFA Bpin = solve(z = —p)

0~ Utk WN

Nej

DFA C = AnB
if t = Min then

— = = =
w N = O

DFA D = C
if type = Min
for all x € free variables in A do
D = D. exists (x)
if type = Min then
Dimin = Dmin . exists (x)
end

[ O R i e e
N~ O © 00 3O Ut i

if type = Min then

optimal = min {getMin(D) , —getMax(Dmin) }
else

optimal = getMax (D)

N DN DN N DN
N O U W

if optimal >= 0 then

return runs of C for z = optimal
else
30 return runs of Cp, for z = —optimal

N DN
©

Listing 4.23: Algorithm to get optimized solutions out of an automaton.

Complexity The complexity of the algorithm relies completely on the complexity of the
Presburger arithmetic, which is doubly exponential. For a justification please take a look
at the work by Fischer and Rabin [6].

4.4. Solver

4.4.1. Solve a logic tree

This section will describe how to compute the solution automaton to a given logic tree,
which was described in section The algorithm will start at the top node of the tree
and check what kind of node this is.

If it is an existential quantifier or a negation the algorithm calls itself with the child to
get the automaton for the child.

In the case of the existential quantifier, all it does is apply an existential quantifier to
every BDD-label for the given variable and do a padClosure on the resulting automaton.
The padClosure simply looks for non-final states with a O-transition to a final state and
makes those non-final states final. This makes sure every encoding of a solution is ac-
cepted.

In the case of the negation, the returned automaton will just be negated using the algo-
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rithm described in section [£.2.4]

If the node is an AND or an OR node, we have to check the children in order to decide
the behaviour. The children are first put into two separate groups, where the first group
are leafs of the tree (which means they have to be predicates) and the second group are
nodes (which means they are not predicates).

The automaton for the first group is then computed using the algorithm from section
[4.:42] After doing that, the second group is handled. For each node in the group we start
by computing the automaton for the node by calling the algorithm recursively. After that
we compute the union (for OR nodes) or intersection (for AND nodes) of the automaton
so far with the automaton that we just computed.

1 solveAll:

2 Input node n

3 Output DFA A

4

5 switch n.Type

6 case EXISTS: return exists(solveAll(n.child) , n.var)
7  case NHGATE: return negate(solveAll(n.child))
8 case AND:

9 X = {m | m € n.childrenA\ m is Predicate}
10 Y = n.children\ X

11 if (X#0) then

12 A = solvePredicates (X , AND)

13 for all ve€Y do

14 A = AnsolveAll(v)

15 end

16 else

17 for all veY do

18 A = AnsolveAll(v)

19 end

20

21 return A

22 case OR:

23 X = {m | m € n.childrenA m is Predicate}
24 Y = n.children\ X

25 if (X#0) then

26 A = solvePredicates (X , OR)

27 for all veY do

28 A = AU solveAll(v)

29 end

30 else

31 for all ve€Y do

32 A = AU solveAll(v)

33 end

34

35 return A

Listing 4.24: Algorithm to compute the solution automaton to a given logic tree.

Since the complexity completely relies on other algorithms, it will not be covered here.
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4.4. Solver

4.4.2. Solve linear predicates

This algorithm solves arbitrarily many predicates, that are connected with AND or OR
all at once. It relies greatly on the algorithm from Boudet and Comon which was first
described in [5]. The algorithm in their paper is used to solve formulae of the form

/\ ;121 + ... + @G mTm = b;
0<i<n

We want to extend this algorithm to solve formulae which include V for the logic part
and # and < for the numeric part. As such we support the following forms:

/\ ;121 + oo + Qi T © by
0<i<n

\/ @171+ oo+ QT O by
0<i<n
where ® can be =, # or <.
In order to extend the existing algorithm to the cases above, we merge it with the algo-
rithms to solve arbitrary predicates. These algorithms can be found in [4] in the chapter
on Presburger arithmetic.
Since the complete algorithm is fairly big and most parts should be known to the reader
already, only the interesting parts will be covered here.
In the original algorithm by Boudet and Comon, states were an n-tuple of numbers which
represent the residuals of each of the n predicates. If each number in the n-tuple was 0,
the state was final. If, after taking a transition , any number in the n-tuple mod 2 was
different from 0, this transition had to lead to the trap state since an odd residual can
not be resolved any more.
We extend this approach to cover all three operations. If the i-th predicate has the op-
eration =, the i-th number of the tuple has to satisfy the properties as in the original
algorithm. If the operation is #, the i-th number in the tuple has to be different from 0
and if the operation is <, the i-th number of the tuple has to be greater or equal to 0.
This covers all operations that are linked by A. If we also want to cover V, we have to
change the condition for final states. In the AND case every number in the n-tuple had
to satisfy the condition given by the predicate operation in order to become final. In the
OR case only one of the numbers in the n-tuple has to satisfy the given condition. If any
predicate has the operation = and runs into a case where it would go to the trap state
in the AND case, it will be marked as not solvable. This part of the formula will just be
ignored after taking that transition.

Example In this example we want to solve the formula x = 3Ay < 5. The starting point
will be 3,5. From there, the transitions 10 and 11 go to 1,2 since [352| =1, [351] =2
and L5§0J = 2. 00 and 01 leads to the trap state, because 3-0 mod 2 = 1, so this formula
can not be solved any more after taking that transition. The other transitions should be
self-explaining.

The states 0,1 and 0,0 are final states since they both satisfy the conditions given by the
predicates, which are equal to 0 for the first number and greater or equal to 0 for the

second number.
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00

start —( 3,5

01,10,11
10,11

00,01,10,11

Figure 4.7.: Solution automaton for x =3 Ay <5
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5. Bounded Presburger arithmetic

Bounded Presburger arithmetic is a version of the usual Presburger arithmetic, where
there is only limited space for each variable. As such, there are only finitely many
solutions for each formula. Therefore BDDs are sufficient to capture the full complexity
of the bounded Presburger arithmetic and will be used as the data structure. The aim of
this chapter is to outline a method to solve formulae in the context of bounded Presburger
arithmetic.

The solver works almost as for usual Presburger arithmetic. Conjunction of two formulae
turns into intersection of two BDDs, disjunction of two formulae are turned into union
of two automata and so on. The only difference lies within solving the predicates. When
we solved conjunction/disjunctions of predicates, we solved them all at once as described
in Although a similar algorithm can be found in this case, the predicates will be
solved separately, since it’s easier to understand. To implement con-/disjunction, the
results are intersected/unioned in the end.

When using BDDs to solve formulae we have to consider, that the labels of the BDD are
limited to 0 and 1. Therefore we have to introduce a separate variable for each bit of
every variable. So assume the variables x and y are used in the predicate, and the number
of bits is limited to 32, the variable space of the BDD would be {xq, yo, x1.Y1, ..., 31, Y31 }-
This has to be considered when existential quantifiers are applied to the BDD. Instead
of applying the quantifier for e.g. x we will have to apply the quantifier for gy, ..., g31 (for
32 Bit).

Since union, intersection, existential quantifier and negation are already available for
BDDs, it suffices to give an algorithm to solve a predicate.

5.1. Solving a predicate

Predicates of the form .
i=1

or

D ai-m<b (5.2)
=1

will be covered. All other operations such as # or < can be implemented using the above
forms, conjunctions and negations.

The algorithm works in n steps where n is the number of available bits for each variable.
Each step will add m levels to the BDD, where m is the number of variables in the
predicate. Every step starts with a number of labelled nodes, where the labels represent
the current remaining value for b. At the start, there will be one node with the bound
of the predicate as label.

For every step, the algorithm will go through all variables of the predicate. Of course a
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5. Bounded Presburger arithmetic

fixed order on the variables is needed for this to work. For each variable, one level will
be added to the BDD. From each node in the precedent level, two transitions are taken,
one for 0 and another one for 1. The resulting new nodes have labels as follows: For the
1-transition, the prefix for the current variable is subtracted from the label of the current
node in the precedent level. For the O-transition, the label of the current node in the
precedent level will just be copied. The nodes with these labels will then be added to
the current level. Please note, that nodes on a level have to be unique. So if a node with
label 1 exists already and the algorithm tries to add a new node with label 1, the existing
node will be returned.

When the end of a step is reached, this means that the algorithm has computed the
possible outcomes for one bit of each variable. Since the next bit has double value, the
labels of the lowest level have to be halved. Here two cases have to be considered.

In the first case, the operation of the predicate we want to solve is =. In this case the
label has to be an even number. If it is, the label will just be halved. If not, the predicate
can not be solved any more. Therefore the current node will be deleted and all incoming
transition lead to the trap node of the BDD.

The second case is the operation <. In this case we just take the floor of the halved label
as motivated in [4].

After halving the nodes, a merge operation is applied, so that all nodes on the same level
that have similar labels are merged into one node.

After that the algorithm will try to optimize the added levels of the BDD. This means, if
a transition carries both, 0 and 1, the precedent node can be just skipped and therefore
deleted.

When the algorithm is done with every step, which means all levels for every variable
have been computed, the last level is checked again. Once more we have to consider two
cases: = and <.

In the =-case, all nodes on the bottom level which have label 0 will be deleted and all
incoming transitions lead to the accepting node. All other nodes will be deleted as well
with their transitions being led to the trap node.

In the <-case all nodes will be deleted, too. The transitions to nodes with label > 0 will
be led to the accepting node, all other to the trap node.
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solvePredicate

Input: Integer bits Variables v Integer prefixes Integer bound Operation

op
Output: BDD b
node = add Node with label bound on Level 0 to b
currentLevel= {node}
for i=0;i<n; i++ do
for all war €v do
newCurrentLevel = {}
for all node € currentLevel do
level = level of n
1 = label of n
newLabel = 1 — prefix of var
newNode = add Node with label newLabel on Level level+1 to b
add transition (node , 1 , newNode) to b
add newNode to newCurrentLevel
newNode = add Node with label | on Level level+1 to b
add transition (node , 0 , newNode) to b
add newNode to newCurrentLevel
end
currentLevel = newCurrentLevel
end
for all node € currentLevel do
1 = label for node
if 1 is odd A op is EQUAL then
delete node and lead all incoming transition to the trap state
else
change label of node to %< |
end
optimize b
end
for each node € currentLevel do

if op = EQUAL then
if label of node = 0 then
delete node and lead all incoming transitions
else
delete node and lead all incoming transitions
else
if label of node > 0 then
delete node and lead all incoming transitions
else
delete node and lead all incoming transitions
end
optimize b

return b

to

to

to

to

accepting state

trap state

accepting state

trap state

Listing 5.1: Algorithm for solving predicates in the bounded Presburger arithmetic.
Please note, that duplicate nodes won’t be added on a level, so if a node
with the same label is added twice to the BDD, there will be only one

node with this label on this level.

41




5. Bounded Presburger arithmetic

This approach solves only one predicate at a time. However, it should be feasible to
extend the approach to solve multiple predicates which are assembled by con-/disjunction
using the method from [5] which is also used in section [4.4.2}
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Implementation and Conclusion
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6. Architecture

In this chapter the overall architecture of the software is described. It will start by
explaining the front end, which is the graphical user interface as well as the communication
to the server. After that the back end, which includes the grammar for the parser, the
optimizations of the formulae, the actual solver as well as getting a solution space that
the user ordered will be explained in detail.

6.1. Front end

The front end is build as a web application, using HTML,CSS and JavaScript. Therefore
an up-to-date CSS3-enabled web browser is needed to use the front end. Strong JavaScript
performance is recommended.

6.1.1. GUI

The goal of the GUI is to provide a simple way for the user to communicate with the
solver. The user should be able to work with the GUI without reading a manual before.
As such the GUI is held very simplistic. A screen shot is shown in figure

On top of the screen you can see the tab-bar. When the interface is launched, there are
two tabs. The first tab is a tab for a formula that the user wants to enter, the second is
the macro manager where the user can enter macros to use in his formulae. Right next
to the macro-tab is the +-button which adds a new formula tab.

The formula tab

When a formula tab is opened, the input screen is shown. It consists of a text area in the
middle of the screen. Above it are a some buttons to help the user to enter his formula
into the text area. Each button is labelled with its function, so the 3-button enters the
syntax for an existential quantifier, A enters the syntax for A and so on.

Besides the buttons, there is also a select menu, which lists all existing macros that the
user entered before in the macro tab. By clicking on any one of them the chosen macro
is entered to the text area.

Below the text area is a radio button menu where the user can specify properties of the
solution space. There are four possibilities:

e Get n solutions: The user can specify a number of solutions, that he wants to get.
e Get all solutions: All solutions of the formula are computed if possible.

e Maximize a term: The user can enter a term, which uses free variables from the
formula above. The solver then tries to find solutions which maximize the term.
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= 6

Formula 1
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x<=5 && y<=5 && z<=5

O Give me n solutions with n= v |
O Give me all solutions (Warning: There can be a lot and your browser might crash!)
O Minimize the term |

® Maximize the term [x+y

m Upload m__.u u h Solve It! u h e u

Your Request is done:

- Solutions

There are 216 solutions to your formula.

Here is your optimized solution:
The maximal value of your term is 10

Show [EE) entries

x - y % z % | Optimized &

5 5 5 10
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5 5 1] 10
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Showing 1 to 6 of 6 entries

[ Automaton )

=

Figure 6.1.: Screen shot of the GUI of the solver with the formula input on the top, and the results on the bottom. In this case the
formula x < 5Ay < 5Az <5 issolved. In addition, the term x+y is being maximized in the solution section on the
bottom.



6.1. Front end

e Minimize a term: The user can enter a term, which uses free variables from the
formula above. The solver then tries to find solutions which minimize the term.

Finally there are three buttons:

e Upload a File: Opens a dialogue to upload a file with formulae. For each formula
in the file a tab is opened.

e Solve it!: Tries to solve the formula.

e Help me: Opens an overlay which contains a simplified grammar of the formulae
that the user can enter, as well as some simple examples.

After pushing the solve button, the formula is sent to the server which tries to solve it.
Please see chapter [6.1.2] for details on the communication with the server.
If the server does not succeed with solving the formula an error message is shown to the
user. If a syntax error was observed, the assumed source of the error is also marked in
the text area.
If the server succeeds in solving the formula, the results are shown below in an accordion,
which is shown in figure [6.1| on the bottom of the screen shot. Initially the solutions part
of the accordion is shown where the user can watch the computed solutions. By clicking
on the name of the columns, the solutions can be ordered.
The automaton part of the accordion shows the minimal DFA for the formula. The BDD-
labels of the DFA will be transformed into logical formulae in conjunctive normal form
(CNF).

The macro window

When opening the macro window first, there is only one input area and some buttons.
The input area is used to enter a new macro. When clicking the save button right next
to the input area the macro is sent to the server. If there are any difficulties, an error will
be shown. If another macro with the same name already exists, the user will be asked
whether the old macro should be overwritten or not.

Apart from the send button there are a few more:

e Add Macro: Adds a new input area to input another macro;

e Clear: Deletes all macros for a ’'fresh start’;

e Upload File: Opens a dialogue to upload a text file that contains macros. For each
macro in the text file a new input area will be added and filled with the macro from
the file;

e Export: Exports all macros into a text file.

All macros will be saved within the users session. Therefore all macros will be available
for the session life cycle time, which depends on the server settings. The default setting
is set to 30 minutes.
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request meaning other required parameters
new add a new formula to the queue equation, clientld, solType, num-
Sol,term
status check the status of a given request | id
test check the syntax of a given formula | equation, clientld, solType, term

testMacro | test if the given macro has the right | macro

syntax

clearMacros | deletes all macros in the users ses- | -

sion

getMacros | return all macros in the users session | -

addMacros | adds a macro to the MacroManager | macro

if possible

Table 6.1.: Different request types and the reaction by the server.

6.1.2. Communication with the Server

All communication with the server is done using asynchronous HT'TP requests, commonly
known as AJAX (asynchronous Javascript and XML). Using this technique prevents
reloading the web page at any point and reduces traffic on the web server since for every
request only necessary data is sent. The server will return JSON-Strings with the data
that has been requested.

Each AJAX call from the client has a request parameter which determines what kind of
request this is. Table shows possible parameters. The last column contains the other
parameters that are required for this type of request. The meaning of these parameters
will be described next.
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equation: Contains the formula from the text area;
clientId: The ID of the tab on the client-side;

solType: The type of solution space that the user wants, i.e. N for n solutions , All
for all solutions , Min for the minimization of a term and Max for the maximization
of a term;

numSol: if solType is N, numSol specifies the number of solutions;
term: if solType is Min or Max, term specifies the term to maximize/minimize;

macro: contains the macro that the user wants to add.



6.2. Back end

6.2. Back end

The back end of the software relies greatly on the worker pattern. Every time a new
request from a user comes in, a SolverRequest, which is described in section is
generated and lined up into a queue.

The worker system consists of two workers. The first worker takes SolverRequests from
the queue and handles them using the software shown in figure While handling the
input, the solver will update the SolverRequest every time new information is available.
This way, the latest data is always available in the SolverRequest. After solving the
formula, the worker will create a new Thread which then generates the image of the
automaton, the JSON-representation of the automaton, the file for the export function
and so on. That way costly operations such as creating the image will not delay the
worker.

The second worker monitors the first worker. If the first worker does not give a notify in
a certain timespan (which is 30 seconds by default), it will get killed. The user will then
get notified, that the solver ran into a time-out.

Please note, that the timespan for the time-out is just a rough estimate. In the worst
case, the time-out might take up to 1.999... times the timespan to get recognized. This
way computation time can be saved for the second worker, while the target, which is the
recognition of crashes of the system is still achieved.

The solver used in the first worker consists of four separate parts, namely the lexer, the
parser, the LogicTree optimization and the actual solver which solves the formula and
gets the solutions. Figure[6.2]shows how these components play together. In the following
all parts of the solver will be explained.

6.2.1. Solver Request

The SolverRequest is the most important object in the process from the text input to the
finished request. The object contains all information about the request. A new Solver-
Request is generated each time a new request reaches the server. After that it is put into
a queue where it waits to be handled.

The SolverRequest contains the following information:

e id: The server-side id of the request;

e clientld: The client-side id of the request, i.e. the tab number;

e equation: The formula to be solved;

e sessionld: The session id of the user;

e done: Flag indicating whether the request is done or not;

e timeout: Flag indicating whether the request ran into a time-out;
e exception: Contains the error description if any occurred;

e solType: Contains the requested solution type;

e solTerm: Contains the term that the used wants to optimize;
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Solver Request

Lexer

TokenStream

Parser

AST

LogicTree

OptimizedTree

Solver

solved Solver Request

Figure 6.2.: Rough architecture of the program which is run within the first worker, in-

cluding all steps needed to parse and optimize a formula.

numSol: Contains the number of solutions that the user wants to get;

macroManager: Contains the macro manager which is used to keep track over the
macros for this user;

solutionSpace: Contains the solutions to the solved formula;
optimizedSolution: Contains the optimized solutions for the solved formula;

automaton: Contains a string representation of the automaton with CNF-formulae
on the transitions, in the dot formatﬂ;

numberOfSolutions: Contains the number of available solutions to the solved for-
mula;

isTautology: Flag to indicate whether the formula is a tautology;

isOxymoron: Flag to indicate whether the formula is an oxymoron;

'Please visit http://www.graphviz.org/| for more information on the dot format.
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6.2. Back end

6.2.2. Lexer/Parser

The transformation of a formula in text-format to a formula in tree-format is done by
the lexer and the parser. They both rely on ANTLREL which generates a lexer and parser
from a given grammar. As the lexer and parser itself are implemented by ANTLR, this
work will only discuss a slightly simplified grammar.

The grammar

First we will define the lexer rules, which are used to define a TokenStream that is then
analysed by the parser.

The first rule defines a quantifier, which is either A’ (for V)or "E’ (for 3) followed be a
arbitrary number of variables and ending with ’:’. The second rule defines the beginning
of a macro call which is basically the macros name followed be an opening bracket. The
name of a macro has to start with an upper case letter followed by arbitrary many lower
case letters.

The third rule defines a variable. The basis for a variable is a single lower case letter
which can be followed by arbitrarily many array definitions written in square brackets,
e.g. x[1] or x[a+1]. The variables inside an array definition are used for the ’forand’ and
"foror’ rules which will be described later.

The fourth rule defines an integer which is just one or more numbers.

1 QUANT

2 : CAVAR}:

3 | E'VARt:’

4

5

6I\AACRO (7A7 7Z?)(,a7 ’Z’)*’(’,

7

SVAR : ("a’..’z)('[’ ((Ca’..’z’)(’+’ INT)? | INT) ’]’)x;
9

10 INT : (°0°..°97)+;

Listing 6.1: Lexer rules for the grammar

The next target is to define rules for linear predicates which can also be stacked, e.g.
r<y<z+4=20.
For that to work we first need to define linear terms:

Please see http://www.antlr.org/ for more information on ANTLR.
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1 linmon

2 : 4’7 INT VAR VAR? — " (PLUS[”+”] INT VAR VAR?)

3 | =’ INT VAR VAR?’—> °“(MINUS[”—"] INT VAR VAR?)

4 | ’+’? INT — “(PLUS[”+”] INT )

5 | '=> INT —> "(MINUS[”—"] INT )

6 | ’+’7 VAR VAR? —> “(PLUS[”+”] INT[”1”] VAR VAR?)
7 | =’ VAR VAR? —> " (MINUS[”—"] INT[”1”] VAR VAR?)
8

9

10 sgnlinmon

11 : 4+’ INT VAR VAR? —> " (PLUS[”+”] INT VAR VAR?)

12 | ’=’> INT VAR VAR?—> " (MINUS[”—"] INT VAR VAR?)

13 | '+’ INT — "“(PLUS[”+”] INT )

14 | '=> INT —> "(MINUS[”—"] INT )

15 | '+’ VAR VAR? —> “(PLUS[”4”] INT[”1”] VAR VAR?)
16 | '—’7 VAR VAR? — " (MINUS[”—"] INT[”1”] VAR VAR?)
17

18

19 comp

20 =" > "(BQ["eq”])

21 | 1= = "(NEQ["neq”])

22 | >=" = "(GBQ["geq”])

23 | <=7 — “(LEQ[”leq”])

24 | > — “(GT["gt”])

25 | '<’ — “(LT["1t"])

26 ;

Listing 6.2: Parser rules for comparing operations and parts of linear terms.

linmon and sgnlinomn basically define the same structure, whereas linmon does not
need the + sign in front if it is positive. This is the case because linmon will later be
the first part of each linear term. The left side of both rules defines the structure that
will be matched. The second variable is again just for the 'forand’ and ’foror’ functions.
The right side then defines the output of the rule, which is basically PLUS or MINUS
followed by a number and between 0 and 2 variables depending on the input.
Apart from that comparing operations are defined by the comp rule.

Now defining linear terms and linear predicates is very easy. A linear term is just a
linmon followed by arbitrarily many sgnlinmon and a linear predicate is a linear term
followed arbitrarily many alternating comparing operations and linear terms.Every linear
predicate has to end with a linear term.

—_

linearpred
linearterm (comp linearterm)+ —> “(PRED linearterm (comp linearterm)
+)

[\V]

)

linearterm
linmon (sgnlinmon)x

N O Uk W

Listing 6.3: Parser rules for linear terms and linear predicates

Finally we are ready to define rules for actual formulae.
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6.2. Back end

1 formula

2 linearpred

3 | 7! expr —> "“(NEG[”not”] expr)

4 | &&’ (’[’ VAR =" num ”..” num ’]’)+ expr —> " (FORAND (VAR num num)
+ expr)

5 [ 7117 (77 VAR =" num ”..” num ’']’)4+ expr —> " (FOROR (VAR num num)+
expr)

6 | QUANT expr —> " ( QUANT expr)

7 | MACRO linearterm (’,’ linearterm)x ')’ —> “~(MACRO (PRED linearterm)
+)

8

9

10 expr

11 : pre

12 | pre (7&&” expr)+ —> "“(AND[”and”] pre expr+

13 | pre (7||” expr)+ —> “(OR[”or”] pre expr+

14 | pre 7—>” expr —> "(IMPL[”impl”] pre expr

15 | pre ’<—>” expr —> "(BIMPL[” biimpl”] pre expr

16 ;

17

18 pre

19 ¢ 7(’expr’)’—>"(expr)

20 | formula —> “(formula)

21

22

23 f

24 : expr EOF —> "(expr)

25

Listing 6.4: Parser rules for linear terms and linear predicates

The starting rule for the process of parsing a formula will be the rule f, which is defined
as an expression followed by the end of input (EOF). The expression is the tricky part,
which is why there is only a simplified version of it in this paper. The actual version is
quite technical and can be seen in the full version of the grammar in appendix A.

The expr rule always starts with a pre, which will be described in a second. Following
the pre can be arbitrarily many A or V instances , an implication/bi-implication or just
nothing.

The pre rule plays a major role in keeping track of the parenthesis. If it finds an opening
bracket in the beginning and a closing bracket in the end it will call the expr rule on the
part between the brackets. Else the input has to match the formula rule.

The most interesting part of the formula rule is in line 4 and 5. They define the forand’
and ’foror’ rules mentioned earlier. The forand rule starts with a '&&’ and is followed
with at least one variable definition over a range. This range is defined in square brackets
as follows: [i=a..b], where i can be is any variable and a/b can be either a number or
another variable defined in a forand (possibly even this one). Following the definitions
has to be an expression. The expression will then be initialised with any combination of
values for the variables.
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Example The formula
&&li=1.2][j = i..3] zfi] <=j

is short for
z[l] <=1 && z[1] <=2 && z[1] <=3 && z[2] <=2 && z[2] <=3

The ’foror’ rule in line 5 will do just the same but with V instead of A.
The other parts of the formula rule define macro calls, quantifies, negations as well as just
plain linear predicates and should be pretty easy to understand. One important aspect
to note is, that the arguments for a macro call are not just simple variables, but linear
terms. That makes it possible to define properties of whole linear terms instead of just
variables.

6.2.3. LogicTree

The LogicTree part of the architecture is easy. The resulting tree from the parser is
translated into an equivalent tree in the LogicTree format, which is nearly the same
as the AST format returned by the parser. It only differs in the fact that macros,
forand, foror ,V quantifiers, implications, bi-implications and stacked linear predicates
are automatically resolved. This leads to a tree which only contains A,V,3 quantifiers, —
and linear predicates. This makes it easier to do optimizations on the tree.
Optimization is then done by the algorithms described in the sections and

6.2.4. Solver

The solver does the main work of the program. It computes the minimal automaton for
the given LogicTree, which was computed in the step before. Hereby it uses the algo-
rithms described in the sections [4.4.1] and [4.4.2]

Since chapter proposes two different ways of implementing determination of au-
tomata, the algorithm that suits our needs best had to be chosen. To find out which one
is the better fit, both algorithms were implemented and benchmarked on existing test
cases as well as the actual benchmarks for the software. The test-cases were considered
to get a bigger number of formulae. The mean difference between the letter-guessing
method and the power-set method was 27ms in favour for the letter-guessing method.
Both algorithms are still contained in the code and can be switched using the DET_ALG
constant, which is defined in the PresburgerAutomaton class.

Instructions on how to get the benchmarks and test-cases can be found in the appendix
B. The complete data from the benchmarks and test-cases can be found in appendix C.

Remarks on the bounded Presburger arithmetic Unfortunately the algorithm for bounded
Presburger arithmetic could not be implemented in this solver, since no access to the
BDD structure of the used library could be gained. The implementation of the described
algorithm with a different library will be left open.

6.2.5. Getting solutions

In order to pick the right algorithm and provide the user with information about the
number of solutions to their formula, the program will start by calculating the number
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6.2. Back end

of available solutions and save it to the SolverRequest.

To get the appropriate solutions the program will then check the SolverRequest to get the
type of the solution space that the user ordered. After that it will run one of the three
described algorithms from chapter 4.3 The mapping from the type to the algorithm with
regard to the number of available solutions is shown in tabld6.2.5]

’ Type ‘ Number of solutions ‘ Algorithm
N request:numSol < result:numSol | N-Sat from chapter |4.3.3
N request:numSol > result:numSol | allSat from chapter |4.3.2
All result:numSol € N allSat from chapter [4.3.2
All result:numSol ¢ N -
Min,Max result:numSol € N optimize from chapter m
Min,Max result:numSol ¢ N -

Table 6.2.: Mapping from the ordered type of solution to appropriate algorithm.

6.2.6. Macros

Since macros were only mentioned shortly in the section on the LogicTree, they will be
explained a bit more detailed here. Every time an user inputs a macro definition, the
software will compute the LogicTree for this formula and save it in the MacroManager
which is unique for each user. The software will also check if the parameters on the left
hand side of the definition are equal to the free variables in the computed LogicTree. If
not an error will be sent to the user.

When a macro is called in a formula, the software will replace the macro by the LogicTree
for the macro, which is saved in the MacroManager. The free variables will be replaced
by the terms that the user entered as parameters. If any variable in these terms equals a
bound variable in the LogicTree for the macro, the bound variable will just be renamed.
This way the user can call macros with arbitrary linear terms to define properties of these
terms.
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6. Architecture

Observer

check for time-out

m Worker

Worker <

pick SolverRequest

Answer [JSON] g
SolverRequest E

User Web Browser User Request [JSON] Server Lexer

—>» Image Creater Thread
Parser

LogicTree

oy

L

Solver

Figure 6.3.: Overview over the most important components of the software. The user sends a request using a web browser. The web
browser then communicates with the server using JSON-encoded data. The server enqueues a new SolverRequest into the
queue. The worker then takes the requests one by one and handles them using the Lexer,Parser,LogicTree and the actual
solver. When done, it creates a new Thread which then creates the image of the automaton as well as some files for the
export function of the GUIL. Meanwhile the observer makes sure, that the worker does not get stuck in any computation.
If a time limit is exceeded, the worker will get killed and replaced by a new one. The user of the formula that caused the
time-out will get an time-out error.

While the SolverRequest is handled, the web browser will ask for the status of the request regularly and report the status
back to the user. Once the request is done, the results are shown in the GUIL
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6.3. Example

6.3. Example

In this section a complete run of the program will be explained. The program will start
with an user input and return the finished request in the end.

Let us assume, the server gets a new request with the formula 3z : (z +y < 4 Az = 2)
and the order to get all solutions of the formula.

The lexer and parser will parse the formula and pass the result to the LogicTree, which
then will create a tree from the AST output of the parser. The initial LogicTree will look

as shown in figure

Figure 6.4.: Syntax tree for Jz: (x +y <4 Ax =2)

The first optimization, which is pushing in negations, will not bring any improvement
since there are no negations in the tree. The second optimization, which is propagating
formulae across the tree will improve the tree. When x = 2 is propagated to = +y < 4,
the algorithm will substitute x by 2. The optimized tree will then look as in figure

Figure 6.5.: Optimized tree for 3z : (z +y <4 Az =2)

Next, the software will create an automaton for y < 2Ax = 2. The resulting automaton
is shown in figure

The last step to solve the formula is the top-node in the tree which is 3z. To apply the
existential quantifier on the automaton, the program just applies the existential quantifier
on every transition BDD. After that, the automaton will be determined and minimized
to create the final minimal automaton. The result is shown in figure

To finish the request, the solver now computes the numbers of solutions of the automa-
ton. In this case 3 will be saved in the SolverRequest. Since the automaton has finitely
many solutions, the allSat algorithm can be run on it. The algorithm will return {0, 1, 2},
which will then be saved into the SolverRequest as well. Finally the SolverRequest is re-
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6. Architecture

start —

Figure 6.6.: Automaton for y < 2 A z = 2. Please note, that the trap state was left out
for better visibility. All missing transitions lead to the trap state.

Figure 6.7.: Automaton for 9z : x + y < 4 Az = 2. Please note, that the trap state was
left out for better visibility. All missing transitions lead to the trap state.

turned and marked as done.
The Thread started by the first worker will now create the image for the automaton and
save the export files for the user to download.
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7. Performance

7.1. Benchmark

In this part of the thesis the strengths and weaknesses of the described approach to solve
formulae are analysed. Most of the used benchmarks originate from [3] . Benchmarks
coming from this source can be easily recognized by the prefix ”Bench” and a number
after that.

We will not discuss every benchmark individually but rather pick out the interesting ones.
Results of each benchmark will be reported in table at the end of this chapter.

Most benchmarks consist of three values. The first one, which is named Compare in
the legend is the value from [3], NonMin corresponds to the times without minimizing
the automaton at any stage, whereas Min is the time the program took to compute the
minimal automaton for the formula.

All Benchmarks were done using an Intel Core i7 Quad-Core CPU at 2.3GHz and a
memory limit of 64 MB.

7.1.1. Bench01

In this benchmark a 4-tuple consisting of numbers divisible by 11, 7, 5 and 3 is computed .
This is equivalent to the formula 3z : l1lx = v AJx: Tx =w A Jx:dbx =y A Jx : 3z = 2.

-10%
1.5 — .

Time (ms)

0.5 a

08 Compare l0 NonMin 0 Min

Figure 7.1.: Results for BenchO1
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7. Performance

This benchmark is particularly interesting since we have to compute automata for each
of the 4 variables divisible by 11,7,5 and 3 separately and then compute the intersection
of these automata. From figure we see, that the minimize-algorithm is a bottleneck of
the program. If we do not minimize the automaton, the program takes under a second,
if we minimize the automaton, the program takes roughly 11 seconds.

7.1.2. Alternating Quantifiers

In this benchmark we want to analyse the behaviour of the solver for formulae with
multiple alternating quantifiers. The challenge in this task lies within the negations that
appear in front of every existential quantifier. The tested class of formulae looks as
follows:

Vaeodry..Va, odxy, 1290 —21+ ... +2p_1+ 2, =0 (71)

When this class of formulae is translated into a solvable formula, it will look as follows:

—Jzo—3Izy...m3ITp_23Tp_1:To — L1+ ... + Tp—1 + 2 =0 (7.2)

Figure shows the results for different n.

T T T
60 [-| —— with Min e
—e— without Min
40 8
N
Q
A
= 90 .
0 | |
| | | | | |

2 4 6 8 10 12
Number of variables

Figure 7.2.: Results for alternation quantifiers

Please note, that a score of 60 does not mean, that the algorithm finished after 60
seconds. A score of 60 just means, that the benchmark ran into a time-out.
As we can see the performance for both, the program with and without minimization does
a good job for up to 10 variables. When the variable number exceeds 10 variables, the
program is not able to compute the solution within 60 seconds. We can see, that though
the minimize algorithm is usually a bottleneck, the minimization of automata makes sense
in this case, since the automaton is constantly negated, which results in a blow-up of the
automaton. In some cases, the solver with minimization even outperformed the solver
without any minimization.
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7.1.3. Multiple predicates

In this benchmark we want test how fast the solver can solve the following linear equation
system:

To + 21 < 1
T+ a2 < 1
Tp2+tTp1 < 1

The equation system can have different numbers of solutions depending on the number
of variables n in the formula. However as one can see quickly, the LES can be solved using
a three-state-automaton. The initial state has to be final since 0,...,0 is a valid solution.
The transition to the second final state checks, whether all conditions for the first bit
of every variable are fulfilled. If so, all following bits have to be 0 since all equations
have to be smaller or equal to 1. The third state is the trap state, which just captures
all that do not lead to the second final state. Figure[7.3|shows a sample solution for n = 3.

000

Figure 7.3.: Sample solution for the LES, with n=3.

Figure [7.4] shows the results for different n.

As you can see from the chart in figure[7.4], the runtime explodes starting at 8 variables
when we minimize the automaton. This shows, that the minimization algorithm has some
trouble when dealing with big state spaces. Table shows the size of the automaton
for the different numbers of variables n before the solver minimizes it.
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80| == with Min )
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Figure 7.4.: Performance for different numbers of variables.

Number of variables n | Automaton size

8
18
42
99

236
565
1354

© 0 O U W

Table 7.1.: Automaton sizes for different numbers of variables n in the LES Benchmark
without minimizing the automaton. When minimizing, the automaton size is
always equal to 3.

7.2. Big factors

In this benchmark the behaviour of the program with big factors in a predicate is tested.
To do this, the following predicate is solved by the solver:

10" -z —(10"+1)-y=0
The predicate has infinitely many solutions for each n, namely

x=(10"+1)-s
y=10"-s
s €N

Since the distance between x’s and y’s grows with n, the automaton also grows with n.
Figure shows the runtimes for different values for n. The according automaton sizes
can be seen in table Please note, that a time of 60 indicates a time-out and not a
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T T T
60 || —— with Min ~
—eo— without Min
40 s
X2
]
g
= 90| .
0 [ |
| | | | | |

Figure 7.5.: Performance for different instantiations of n.

run time of 60 seconds.

Value for n ‘ Automaton size

0 3
21
201
2001
20001
200001

U i W N =

n 2.-10"+1

Table 7.2.: Automaton sizes for different n.

This benchmark is particularly interesting since the process without minimization does
return the same automaton as the process with minimization. This means, that this
benchmark does not only test the performance for predicates with big factors, but also
the performance of the minimization algorithm for automata that are already minimal.
From the chart in figure one can see, that the algorithm does fairly well up to 2001
states. At the next step which has 20001 states , the time-out limit is reached already.
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7. Performance

Name Time without | Automaton size | Time with mini- | Automaton size | Comparison from
minimization [s] without mini- | mization [s] with  minimiza- | [3] [s]
mization tion
Bench01 0.706 1261 16.651 1155 10.16
Bench02 3.303 23587 - (Time-out) - 8.23
Bench03 0.685 1507 31.961 1507 10.13
Bench04 1.644 20452 - (Time-out) - 2.08
Bench05 1.736 144403 - (Time-out) - 22.58
Bench08 0.621 11112 - (Time-out - 2.13
Bench09 1.178 9158 - (Time-out) - 2.42
Bench10 0.005 106 0.057 105 0.23
Benchl1 0.001 4 0.001 3 0.19
Bench12 0.001 5 0.004 5 0.19
Bench13 0.012 316 0.512 211 0.31
Bench14 0.053 340 0.604 236 0.85

Table 7.3.: Run times for all benchmarks from [3]. Bench06 and Bench07 were not used since the solver is not able to solve them.
Bench06 was too complex and did not finish. Bench(07 had too many variables to even compute the alphabet for the

automaton.
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8. Conclusion

The aim of this thesis was to develop an user-friendly and easy to use solver for the Pres-
burger arithmetic. As a data structure for this solver, BDD-labelled NFAs/DFAs were
used. As such, the first goal was to examine algorithms for BDDs-labelled automata.
The first part of the work proposed algorithms for these automata, such as union, inter-
section and minimization. Additionally algorithms for optimizing formulae, converting
formulae into automata and extracting accepting words from automata were explained
and discussed.

To round up the theoretical part of the work, a closer look at the bounded Presburger
arithmetic and algorithms to solve it was taken. Unfortunately, the algorithms could
not be implemented since no direct access to the BDD data structure of the used library
could be established. Therefore the implementation of algorithms for bounded Presburger
arithmetic will be left open for future works.

The second part of the thesis covered the architecture of the solver. The chapter ex-
plained how the front- and back end of the software communicate using Asynchronous
HTTP Requests (AJAX) with JSON-encoded data. Further the chapter explained how
the algorithms from the first part of the work were used to build the actual solver. Apart
from that, a slightly simplified version of the grammar was explained in detail. To end
the chapter, a complete run of the solver was given to show how the different parts of the
software work together.

The last chapter of the thesis focused on the performance of the implemented software.
It was shown, that the overall performance was good, especially when it came to solving
con - or disjunctions of predicates. However the minimization algorithm was a bottleneck
of the program. Whenever the size of the state space of the automaton grew over a few
thousand states, the runtime of the minimization algorithm exploded. Finding a better
implementation of this algorithm will be left open for future works on this topic.
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A. Full grammar for ANTLR

grammar Presburger;

options {
output=AST;
backtrack=true;
memoize=true;

}

tokens {
PLUS;
MINUS;
NEG;
AND;
OR;
IMP;
BIIMP;
ALL;
EX;
EQ;
NEQ;
GEQ;
LEQ;
GT;
LT;
L;
R;
PRED;
FORAND;
FOROR;
CONSTNUM;
MACRO;

formula
linearpred
’17 expr -> ~(NEG["not"] expr)

&’ (°[’ VAR ’=’ num ’.’ ’.’ num ’]’)+ expr

QUANT expr -> ~( QUANT expr)

-> ~(FORAND (VAR num num)+ expr)

|
|
[ 211> ([’ VAR °=’ num °.° ’.’ num ’]’)+ expr —> “(FOROR (VAR num num)+ expr)
|
|

MACRO linearterm (’,’ linearterm)* ’)’ -> ~(MACRO (PRED linearterm)+)

(s=pre -> pre) ((’&&’ expr)+ ->

~(AND["and"] $s expr+)
| (11’ expr)+ -> ~(OR["and"] $s expr+)
| (?->’ expr) -> “(IMP["imp"] $s expr)
|

)7
pre

> (’expr’) ’->" (expr)
| formula -> ~(formula);

(’<->’ expr) -> "“(BIIMP["biimp"] $s expr)
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A. Full grammar for ANTLR

f : expr EOF -> ~(expr);

linearpred
: linearterm (comp linearterm)+ -> ~(PRED linearterm (comp linearterm)+)

B

linearterm
: linmon (sgnlinmon)*

con : &%’ -> ~(AND["and"l)
I >11> => ~(0R["or"])
| >->> -> ~(IMP["implies"])
| ’<->> -> “(BIIMP["implies"])

’+°? INT VAR VAR? -> ~(PLUS["+"] INT VAR VAR?)
| >-> INT VAR VAR?-> ~(MINUS["-"] INT VAR VAR?)
| >+>7? INT =-> ~(PLUS["+"] 1INT )
| >-> INT -> ~(MINUS["-"] INT )
|
|

’+’7 VAR VAR? -> ~(PLUS["+"] INT["1"] VAR VAR?)
’-’ VAR VAR? -> ~(MINUS["-"] INT["1"] VAR VAR?)
sgnlinmon

: ’+> INT VAR VAR? -> ~(PLUS["+"] INT VAR VAR?)

| ’-> INT VAR VAR?-> ~(MINUS["-"] INT VAR VAR?)

| °>+> INT -> ~(PLUS["+"] 1INT )

| >-> INT -> ~(MINUS["-"] INT )

| >+’ VAR VAR? -> ~(PLUS["+"] INT["1"] VAR VAR?)

| ’-? VAR VAR? -> ~(MINUS["-"] INT["1"] VAR VAR?)

B

cons
’+>7 INT -> ~(PLUS["+"] INT )
| >-> INT -> ~(MINUS["-"] INT )

H

comp : Y==2 > A(Eq[uequ])
| »1=> -> ~(NEQ["neq"])
| >>=> -> ~(GEQ["geq"])
| <= -> ~(LEQ["Teq"])
| »> -> ~(eTl"gt"])
| 10 -> A(LT["lt"])

num : VAR | INT;

QUANT
PAPVAR+ :?
| PE’VAR+:’
MACRO : ('A’..°Z°)(Ca’..’z))*’(’;
VAR : (Ca’..’z))(C[ (Ca’..’z?)(C+’ INT)? | INT) °1°)x*;

INT : (°0°..°97)+;

WS : C 2 I’\n’ I’\t’ |°’\r’)+ { skip(); I};
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B. Benchmarks and test-cases

In order to get the code for the benchmarks and test-cases, please check out the code
as described in appendix D. The code for the benchmarks is located in the package
BA.Solver.Test under the name PresburgerSolverBenchmark.java. The code for the test-
cases is in the same package under the name PresburgerSolverTest.java.
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C. MeanDifferencesAlg.csv

Test-name LetterGuessing [s] Powerset [s] Difference [s]
testEqual 0.084 0.083 0.001
testSmallerThan 0.004 0.003 0.001
testBiggerThan 0.006 0.005 0.001
testLessOrEqual 0.005 0.004 0.001
testBiggerOrEqual 0.003 0.003 0
testAnd 0.009 0.009 0
testOr 0.021 0.016 0.005
testBigOr 0.018 0.019 -0.001
testExists 0.009 0.009 0
testNegOr 0.008 0.009 -0.001
testAll 0.007 0.007 0
testForAll 0.733 0.583 0.15
testForOr 2.806 2.311 0.495
testCancelOut 0.003 0.001 0.002
testOptimizeEqual 0.002 0.002 0
testBrakets 0.002 0.002 0
testAndOr 0.004 0.003 0.001
testOrCancel 0.001 0.001 0
testAndCancelDuplicates 0.002 0.001 0.001
testAndCancelFalse 0.003 0.001 0.002
testMultiExists 0.017 0.011 0.006
testMultipleAnd 0.037 0.018 0.019
testOrDifferentTypes 0.001 0.002 -0.001
testOrDifferentTypes2 0 0.002 -0.002
testOrDifferentTypes3 0 0.001 -0.001
testTautology 0 0.001 -0.001
testDivisibleBy2 0 0.002 -0.002
testUnequal 0.002 0.002 0
altaricBenchO1 0.729 1.914 -1.185
altaricBench02 3.3 3.148 0.152
altaricBench03 0.713 0.75 -0.037
altaricBench04 1.637 1.48 0.157
altaricBench05 1.796 2.11 -0.314
altaricBench08 0.614 0.526 0.088
altaricBench09 1.186 1.256 -0.07
altaricBench10 0.006 0.006 0
altaricBenchll 0.001 0.002 -0.001
altaricBench12 0 0 0
altaricBenchl3 0.014 0.581 -0.567
altaricBenchl4 0.036 0.038 -0.002

-0.027575



C. MeanDifferencesAlg.csv
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D. Getting the Solver

In this section instructions on how to get and run the software will be given. To download
the solver please visit http://code.google.com/p/presburger-solver/downloads/list.
You will find up to two downloads. The first download is called PLN.zip. It contains the
solver as it was when this work was handed in. The other download - if existent - contains
the latest version of the solver. After extracting the archive, please open a Terminal and
change the directory to the extracted folder. To run the software type

java -jar launch.jar

in the Terminal window.

Please use the —Xm_m command to increase the memory-limit of the solver. The solver
will now be accessible on port 8080.
The solver is licensed under the GPL 3.0 license. As such you can also download
the code from the Google Code project. Please visit http://code.google.com/p/
presburger-solver/source/checkout for instructions on how to check out the code.

D.1. Supported platforms

The software was developed under Mac OS X 10.6 and tested under Gnome 3. All other
platforms were not tested and are therefore not supported. However it should run under
any Linux-based system. To make it work under Windows, some work on the code will
be needed. Especially the file operations, as well as the path to the dot-program would
have to be changed.
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