
FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Efficient Verification of Multi-Threaded
Programs

Andreas Johannes Wilhelm

FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Efficient Verification of Multi-Threaded Programs

Effiziente Verifikation von Programmen mit mehreren
Threads

Author: Andreas Johannes Wilhelm
Supervisor: Prof. Dr. Andrey Rybalchenko
Advisor: Dr. Corneliu Popeea
Advisor: Dr. Tobias Schüle
Submission Date: November 29, 2013

I assure the single handed composition of this master’s thesis only supported by declared
resources.

Munich, February 6, 2014 Andreas Johannes Wilhelm

Abstract

Given its pervasiveness, it is unfortunate that writing multi-threaded software is an in-
tricate and tedious task due to a multitude of thread interactions. Model checking ap-
proaches that are based on formal specifications can significantly improve programmers
productivity by allowing systematically and exhaustively exploring program behaviours
and checking their correctness. However, efficient model checking is inhibited by the so-
called state explosion problem. In this thesis, we propose two promising approaches to
cope with this problem by reducing the number of program states that have to be explored
- transaction summarization and may-happen-in-parallel information. We show that es-
pecially a priori identified transactions can significantly improve the efficiency of compo-
sitional verification. Our experimental evaluation indicate that the approaches compare
favourably with state-of-the-art verifiers and can lead to two orders of magnitude reduc-
tion of verification time.

vii

Contents

Abstract vii

Outline of the Thesis xi

I. Introduction and Background Theory 1

1. Introduction 2

2. Foundations 5
2.1. Model Checking . 5
2.2. Logical Foundations . 5

2.2.1. Linear Arithmetic . 6
2.2.2. Horn-like Clauses . 7

2.3. Solving Horn-like Clauses . 8
2.4. Multi-threaded Programs . 10
2.5. Proof Rules for Verification of Multi-threaded Programs 13

2.5.1. Monolithic Proof Rule . 13
2.5.2. Owicki-Gries Proof Rule . 13
2.5.3. Rely-Guarantee Proof Rule . 13

II. Verification Methods 15

3. Model Checking with Transaction Summarization 16
3.1. Lipton’s Theory of Reduction . 16
3.2. Illustration . 18
3.3. Transaction Inference . 25

3.3.1. Locks-Held Information . 25
3.3.2. Mover Information . 27
3.3.3. Phase Information . 29
3.3.4. Transaction Boundaries . 30

3.4. Proof Rule . 30
3.5. Soundness Proof (Sketch) . 32

4. Model Checking with May-Happen-in-Parallel Information 34
4.1. Illustration . 34
4.2. Dataflow Analysis for MHP . 35

4.2.1. Parallel Execution Graph . 35

viii

Contents

4.2.2. Analysis . 36
4.3. Proof Rules . 40

4.3.1. Monolithic Proof Rule (MHP) . 40
4.3.2. Owicki-Gries Proof Rule (MHP) . 40

III. Results and Conclusion 43

5. Experimental Results 44

6. Summary and Conclusion 49

Bibliography 51

ix

Contents

Outline

Part I: Introduction and Background Theory

CHAPTER 1: INTRODUCTION

The introduction emphasizes the importance of software verification for multi-threaded
programs and refers to the used state-space reduction.

CHAPTER 2: VERIFICATION OF MULTI-THREADED SOFTWARE

We present the necessary foundations of logical reasoning, the solving method for arising
constraints, and the respective representation of multi-threaded software.

Part II: Verification Methods

CHAPTER 3: TRANSACTION SUMMARIZATION

We describe our verification approach based on transaction summarization. Besides an
illustration of the overall process, each step is formulated using logical reasoning.

CHAPTER 4: MAY-HAPPEN-IN-PARALLEL INFORMATION

This chapter introduces MHP information, our second approach, by giving an illustration,
an effective algorithm to compute this information, and corresponding proof rules.

Part III: Results and Conclusion

CHAPTER 5: EXPERIMENTS

We show experimental results for both approaches when applied on multi-threaded soft-
ware.

CHAPTER 6: CONCLUSION

Finally, the last chapter concludes with the main contributions and possible future work.

xi

Part I.

Introduction and Background Theory

1

1. Introduction

The advent of multi-core architectures brought parallelism into nearly every system that
affects us; from small gadgets like smartphones to huge interconnected power plants.
Since multiple cores require concurrent software to exploit their full potential, we increas-
ingly rely on applications that are subtle and error prone. Such software consists of several
threads that execute several tasks in parallel and interact with each other during operation.
Given its pervasiveness, it is unfortunate that writing multi-threaded software is notori-
ously difficult to write and to debug as programmers need to keep track of all possible
thread interactions. Sophisticated tools and methods are needed to ensure correctness and
to support the programmers on this challenge.

In practice, the most common used techniques for correctness checking are based on
testing and peer reviews [4]. Although a notable fraction of errors may be detected when
applied to sequential programs, this might not be the case for multi-threaded software.
Concurrency brings an additional dimension of complexity (e.g., by interference, synchro-
nization, or communication) that makes both techniques unpractical. For example, inter-
ference causes an exponential growth of potential execution paths that exceeds the abil-
ity of available testing methods. The resulting challenge belongs to the most severe in
computer science: to provide proper formalisms, techniques, and tools that enable correct
multi-threaded programs despite their complexity.

Model checking approaches, which are based on formal specifications, allow systemat-
ically and exhaustively exploring program behaviours and checking their correctness. As
opposed to theorem proving, the other class of formal verification methods, model check-
ing is easily applicable and returns meaningful counterexamples when encountering erro-
neous program states. Unfortunately, efficient model checking is inhibited by the so-called
state-explosion problem, especially when applied to multi-threaded software: threads intro-
duce a combinatorial explosion of possible interleavings between threads that may lead
to a vast number of distinct program states. However, there are promising approaches to
cope with the state-explosion problem by reducing these multitudes of states. Two of them
are partial order reduction and may-happen-in-parallel information.

Partial Order Reduction (POR) While one can easily construct a contrived program in
which every interleaving leads to a different outcome, different interleavings often pro-
duce equal outcome and, hence, can be considered equivalent. Figure 1.1 shows two exe-
cution paths (α−β and β−α) that both start from the program state 1 and lead to the same
program state 4. Such an equivalence between interleavings suggests that only represen-
tatives of each equivalence class need to be considered when verifying a multi-threaded
program. One way to exploit equivalent paths is called partial order reduction (POR) [15].
This technique is used in combination with model checking and amounts to restricting the
successor computation to representative interleavings, which can be performed on-the-fly
during the exploration of the model. Explicit-state [33, 19, 16] as well as symbolic [2, 20]

2

3

2

41
α

β

β

α

Figure 1.1.: Equivalent interleavings (α, β) and (β, α).

model checking algorithms can be effectively combined with POR. Furthermore, recent
work shows that POR can also boost interpolation based verification [34], which makes it
well-suited for the verification of programs with infinite-state spaces.

One way to implement partial order reduction is by using summary transformations.
Such transformations summarize and replace certain sequences of statements within oc-
curring threads by their composition into so-called transactions. The reduction views a
transaction as a sequence of transitions a1, . . . an, [c], b1, . . . , bm where each ai is a right
mover, c is an optional committing action, and each bi is a left mover. A right (left) mover
is a transition that commutes to the right (left) regarding every transition of another thread.
Executing such transactions atomically, i.e., without any preemption, produces representa-
tive interleavings due to the commuting behaviour [22]. Transactions can simplify deduc-
tive verification of multi-threaded programs using proof assistants, see e.g., [11, 10]. For
finite state systems, transactions can be effectively identified and created on-the-fly during
model checking [13, 3, 30]. Unfortunately, this does not hold for automatic verification
tools for multi-threaded programs with infinite-state spaces.

May-Happen-in-Parallel Information (MHP) A second opportunity to tackle the state-
explosion problem (which is also based on reduction) is the usage of may-happen-in-
parallel information. As opposed to transactional reasoning, transition sequences are not
reduced by exploring representative interleavings but because of unreachable states re-
garding included control locations. For each pair of threads in a program, only those
locations are considered that may actually happen in parallel to each other. Such MHP
information may incorporate several semantic aspects of multi-threaded programs like
dynamic thread creation, locks, or signal handling. For example, two program locations
from different threads may never happen in parallel when both are protected by the same
lock. MHP information is highly valuable for techniques like program optimization, de-
bugging, program understanding tools, and detecting synchronization anomalies as race
conditions or deadlock situations, see e.g., [24].

Most recent methods to compute MHP information mainly rely on data flow algorithms
that are based on parallel execution graphs (PEGs), i.e., combined control flow graphs
(CFGs) for every program thread [25, 21, 5].

Contributions In this thesis, we explore the applicability of both transactional reasoning
and MHP information to the verification of multi-threaded programs with infinite-state
spaces. These techniques are incorporated in a constraint-based setting and solved by

3

1. Introduction

an algorithm in the existing HSF tool [17]. HSF is based on symbolic reasoning and predi-
cate abstraction following the counterexample-guided abstraction refinement scheme (CE-
GAR) [7]. The algorithm is designed for synthesizing software verifiers from proof rules
to overcome the burden of developing every new verification tool from ground up in a
complex manual effort. What remains by using HSF is a two-folded process. Firstly, the
formulation of suitable verification methods for desired properties like safety or termina-
tion. This is a creative activity that usually leverages existing methods and adapts them
to new application domains. Secondly, the creation of proper interpreters that transform a
given system representation (e.g., formal programming languages) into Horn-like clauses.
HSF allows us to elegantly use a declarative formulation of our verification approaches
that can efficiently deal with thread interleaving.

Technically, we make the following contributions:

1. a Horn constraint-based method for identifying commutativity (mover annotations)
of program statements (see Section 3.3);

2. a proof rule that composes transition sequences to transaction summaries, uses them
for the verification of safety properties, and utilize compositional reasoning outside
transactions based on the Owicki-Gries [28] proof rule (see Section 3.4);

3. two proof rules for the verification of safety properties that combine may-happen-in-
parallel information with monolithic reasoning and the Owicki-Gries proof rule (see
Section 4.3);

4. a demonstration of the proof rules by application to several example programs uti-
lizing HSF among a comparison to state-of-the-art verifiers (see Chapter 5).

In summary, this thesis aims to show that a priori identified transactions can signifi-
cantly improve the efficiency of compositional verification of multi-threaded programs,
without requiring deep and intricate modifications of the underlying solving techniques.
Since transactions rarely contain all statements of a thread, i.e., there are multiple trans-
actions in each thread as well as some statements do no belong to any transaction, we
integrate compositional reasoning into our exploration as a complementary technique for
avoiding the explicit exploration of all interleavings. That is, our method relies on trans-
action whenever possible, while statements outside of transactions are subject to composi-
tional reasoning, along with the transactions them self.

Our preliminary experimental evaluation shows that the conceptual separation of con-
cerns, i.e., treatment of equivalence between interleavings via transactions and keeping
track of interleavings using compositional proof system, compares favourably with state-
of-the-art approaches and can lead to two orders of magnitude reduction of verification
time on selected benchmarks.

4

2. Foundations

In this chapter, we introduce model checking, a promising approach for formal software
verification. We then define the logical foundations for our methods followed by an il-
lustration of the used tool to solve generated constraints. The distinguishing feature of
this solving process is the ability to compute infinite state spaces and unbounded data
ranges by means of a counterexample-guided (predicate) abstraction refinement. Finally,
we present the necessary representation of multi-threaded software and three proof rules
for the verification of safety properties.

2.1. Model Checking

Model checking is an automated verification technique that is based on system models
describing possible system behaviour. Since the systems itself may be too complex to be
verified, such models abstract from irrelevant aspects. They can be derived either man-
ually or automatically from system representations in a programming language (e.g., C
or Java) or a hardware description language (e.g., VHDL or Verilog). A model checker
(tool) checks whether the model satisfies some desired properties (e.g., termination, in-
variants, etc.) from the system specification by exhaustively iterating through relevant
system states. If a system state violates a desired property, the model checker generates a
counterexample (execution path from an initial state to the violating state) which can be
used to reproduce the error.

In this thesis, we focus on verification of the safety property, i.e., checking whether an
error state is reachable from an initial state. Unfortunately, the set of reachable states is
not generally computable since the state space may grow infinitely. Cases in which this
state-space explosion problem occur limit the applicability of enumerative techniques like
explicit-state model checking [6]. However, there have been some efforts made to over-
come the burden of exhaustively check every single state. Symbolic model checking [20]
represents sets of states by predicates that can be solved using symbolic fixpoint com-
putations. Abstraction interpretation [8] tries to abstract only relevant properties for the
verification task. Finally, partial order reduction techniques [19] consider only single tran-
sitions (representatives) from a respective equivalence class where every transition leads to
the same result. As we will show, our model checking methods rely on the mentioned
techniques to verify safety properties of multi-threaded software.

2.2. Logical Foundations

We now define the used notation for our verification approach, i.e., syntax and semantics
for both the theory of linear arithmetic (TLI) and Horn like clauses over TLI .

5

2. Foundations

2.2.1. Linear Arithmetic

Let i, j ∈ N and q ∈ Q where N and Q refers to the sets of natural numbers and rational
numbers, respectively. We use the standard definition of operations (+, ∗) and relations
(<, ≤, =) for N and Q.

Propositional logic Let AP be a set of atomic propositions containing atoms like b. A
propositional logic formula φ ∈ Formula is defined by the grammar φ := b | φ1 ∧ φ2 | ¬φ.
We use a model M0 : Formula → {true, false} that assigns a boolean value to propositional
formulas. The satisfaction relation M0 |=AP φ (read “M0 satisfies φ”) is defined by using
terms of meta-logic (words from natural language like “not” or “and”) as follows.

• M0 |=AP b iff M0(b) = true

• M0 |=AP φ1 ∧ φ2 iff M0 |=AP φ1 and M0 |=AP φ2

• M0 |=AP ¬φ iff not M0 |=AP φ

Syntax Let V be a finite set of variables occurring in a linear arithmetic formula φLI , with
v ∈ V . The grammar for the theory TLI consists of terms, atoms and formulas:

termsLI 3 t := q | v | q ∗ v | t+ t
atomsLI 3 a := t ≤ q | t < q
formulasLI 3 φLI := a | φLI ∧ φLI | ¬φLI | ∃v : φLI

The shown grammar is kept concise without loss of expressivity. For example, the formula
3 ≤ 5 can be written as 0 ∗ v ≤ 2, while the relation v = y is representable by a conjunction
of two inequalities (v ≤ y ∧ y ≤ v). Let f, r ∈ φLI . For convenience, we will use additional
symbols for formulas, which can be defined using the above grammar:

f ∨ r = ¬(¬f ∧ ¬r)
f → r = ¬f ∨ r = ¬(f ∧ ¬r)
f ↔ r = f → r ∧ r → f∨

i∈{1,...,N} fi = f1 ∨ · · · ∨ fN∧
i∈{1,...,N} fi = f1 ∧ · · · ∧ fN

false = f ∧ ¬f
true = ¬false

Semantics We assign a truth value from {true, false} to each linear arithmetic formula
φLI depending on the valuation of the occurring variables. Such a valuation is a model
M1 : V → Q that returns the assigned value of a variable v ∈ V . The values of a term can
be obtained by an evaluation function evalLI : (termsLI , V → Q) → Q using the term, a
given model and the following equations.

• evalLI(q,M1) = q

• evalLI(v,M1) = M1(v)

• evalLI(q ∗ v,M1) = q ∗M1(v)

6

2.2. Logical Foundations

• evalLI(t1 + t2) = evalLI(t1) + evalLI(t2)

The definition of the satisfaction relation �LI relies on a project function project(φLI , v) to
handle quantifier elimination 1, i.e., simplification of formulas by producing equivalent
ones without quantifiers as follows.

• M1 �LI t ≤ q, iff evalLI(t,M1) ≤ q

• M1 �LI t < q, iff evalLI(t,M1) < q

• M1 �LI φ1 ∧ φ2, iff M1 � φ1 and M1 � φ2

• M1 �LI ¬φ, iff not M1 � φ

• M1 �LI ∃v : φ, iff M1 � project(φ, v)

Example Let us consider the formula φ = (∃v : v = 2 ∧ v ∗ x − 3 ∗ y ≤ 5) and the
assignments M1(x) = 2, M1(y) = 3. We obtain that M1 satisfies φ (written M1 �LI φ) since:

project(v = 2 ∧ v ∗ x− 3 ∗ y ≤ 5, v) = 2 ∗ x− 3 ∗ y ≤ 5 and
evalLI(2 ∗ x− 3 ∗ y,M1) = evalLI(2 ∗ x,M1) + evalLI(−3 ∗ y,M1)

= 2 ∗ evalLI(x,M1) + (−3) ∗ evalLI(y,M1)
= 2 ∗ 2 + (−3) ∗ 3
= −2

2.2.2. Horn-like Clauses

Our verification approaches are based on proof-rules in the form of Horn-like clauses HC .
Such clauses are regular Horn clauses where occurring constraints may contain both dis-
junctions and conjunctions. From now, we write v to denote a non-empty tuple of vari-
ables with an arbitrary arity n ∈ N, i.e., v = (v1, . . . , vn) ∈ V +. We refer to linear arithmetic
formulas as constraints. Let c(v) be a constraint over the variables v and false be an unsat-
isfiable constraint.

Syntax So far, we used so called interpreted predicates for symbols from linear arithmetic
(+, ∗, <,≤,=). First order theory (in particular Horn clauses) make use of uninterpreted
predicate symbols (or query symbols) Q. The arity of a query symbol is encoded in its name,
i.e., in the number of formal arguments. Based on the query symbols p ∈ Q we define a
language of Horn clauses:

Q 3 u := p(v)
bodiesHC 3 b := u | φLI | b1 ∧ b2 | b1 ∨ b2
headsHC 3 h := u | φLI | h1 ∨ h2
clauseHC 3 cl := ∀v : b → h
clausesHC 3 cls := {cl , . . . , cl}

1A possible implementation would be the Fourier-Motzkin elimination algorithm.

7

2. Foundations

Semantics A set of clauses represents an assertion over the query symbols that occur in
these clauses. We use a Model M2 : Q → φLI that takes query symbols p(v) and returns
a constraint over v. The following definition of a satisfaction relation �HC for Horn-like
clauses uses a substitution function and quantifier elimination from background theory.
The substitution function φLI [vi/ai] replaces all occurrences of variable vi in the formula
φLI by variable ai.

M2 �HC ∀v : c0(v0) ∧
∧

i∈1..n−1 pi(vi)→ φLI(vn), iff

∀v : c(v0) ∧
∧

i∈1..n−1M2(pi(vi))[vi/ai]→
®
c1(vn) if φLI(vn) is c1(vn)
M2(pn(vn))[vn/an] if φLI(vn) is pn(vn)

Example Let us consider the following formula presented in the language of Horn-like
clauses, which is implicitly universally quantified over all free variables.

HC 1 = { x ≥ 0→ p(x),
p(x) ∧ y = x+ 1→ q(y)
q(x)→ x ≥ 0 }

The formulas x ≥ 0 and y = x + 1 are interpreted predicates whereas p and q are query
symbols of arity 1. The assignments M2(p(a)) = (a ≥ 0) and M2(q(a)) = (a ≥ 1) interpret
these predicate symbols. We obtain that M2 satisfies HC 1 since the following formulas are
true.

∀a : a ≥ 0→ a ≥ 0
∀a, b : a ≥ 0 ∧ b = a+ 1→ b ≥ 1
∀a : a ≥ 1→ a ≥ 0

2.3. Solving Horn-like Clauses

We now illustrate the HSF algorithm that we use for solving Horn-like clauses over linear
inequalities from TLI .HSF uses symbolic reasoning to handle infinite domains, loop invari-
ants, and ranking functions. The algorithm finds a solution for recursive Horn-like clauses
by following an iterative, abstraction based approach that relies on (spurious) counterex-
ample derivations to refine the abstraction in case of imprecision. It inherits the advantages
and disadvantages of the existing counterexample-guided abstraction refinement schemes:
a sufficiently precise abstraction can be discovered automatically although the abstraction
discovery may not terminate. However, such a non-terminating behaviour is sufficiently
seldom in practice.

Technically, an abstraction function α takes as input a constraint ϕ(v) together with a
finite set of predicates (atomic constraints) Preds(v) := {c1(v), . . . , cn(v)} over v. It returns
a safe overapproximation of ϕ(v) that is constructed using boolean operators as follows.

α(ϕ(v),Preds(v)) =
∧
{p(v) ∈ Preds(v) | ϕ(v) |= p(v)}

The overapproximation guarantees that combining logical inference with abstraction yields
solutions to inference clauses, i.e., ϕ(v) |= α(ϕ(v), P reds). The second important property

8

2.3. Solving Horn-like Clauses

of α is monotonicity, i.e., if ϕ(v) |= ψ(v) then α(ϕ(v),Preds) |= α(ψ(v),Preds), which guar-
antees that fixpoint algorithms will finally return a result.

For example, let us consider the constraint x ≤ y ∧ y ≤ z ∧ z ≤ 0 and a set of predicates
{x ≤ 0, x > 0, x ≤ z}. When applied to the predicate abstraction function, it returns the
conjunction x ≤ 0 ∧ x ≤ z.

HSF Algorithm

The input given to HSF is a model consisting of a finite set of clauses HC that is parti-
tioned into inference clauses I and property clauses P . Inference clauses contain query
symbols in their heads and, thus, impose a relationship between query symbols. Property
clauses contain interpreted predicates in their heads that impose absolute assertions on
query symbols.

I = {cl ∈ HC | cl = . . .→ p(v)}
P = HC \ I.

HSF

Abstraction

Abstraction
Refinement

Inference

Correctness
Check

Spuriousness
Check

Model

Invariant

Counter-
example

Figure 2.1.: Illustration of the HSF algorithm for solving Horn-like clauses.

The result of the algorithm is either an invariant that proves satisfiability of the property
clauses or a counterexample for the opposite case. HSF uses a worklist-based approach
that relies on existing off-the-shelf solvers for satisfiability modulo theories (SMT-solver)
to solve arising inference problems. Every iteration step adds additional predicates that
are used with the abstraction function and, hence, increase the precision of the obtained
solutions. Figure 2.1 shows the distinct steps of each single iteration with the following
functionality.

Inference + Abstraction Each iteration starts by performing logical inference to find an
invariant for the inference clauses, i.e., it finds the least fixpoint. Here, the algorithm

9

2. Foundations

relies on predicate abstraction to ensure termination and efficiency in the presence
of recursion and large clause sets, respectively. At the initial setting, the respective
predicates may be empty or come from background knowledge (to reduce the num-
ber of refinement steps). For each iteration step a finite number of predicates are
added by abstraction refinement. The inference process terminates since the number
of predicates that can be added is finite and the abstraction function is monotonic.

Correctness Check This step checks whether the computed solution from the previous
inference satisfies the property clauses P . If some property clause is not satisfied
(which indicates an error state) the process continues with the spuriousness check,
otherwise it returns the invariant as solution.

Spuriousness Check Due to the used abstraction, it may be that the solution proved
to be incorrect is spurious. Therefore, the satisfaction checking will be repeated on
the setting without any abstraction. If the violation is still present then HSF returns
the corresponding execution path as witness. Otherwise, the obtained solution is
forwarded to the abstraction refinement step.

Abstraction Refinement Spurious solutions may be used to make progress by refining
abstraction predicates. Such a refinement avoids encountering identical solutions
in following iterations. The algorithm obtains additional predicates by few actions.
Firstly, it reconstructs inference steps that produced the found solution, i.e., using
logical resolution to obtain recursive-free auxiliary clauses. Secondly, HSF solves
these clauses by existing verification tools (e.g., some which use the lemma of Farkas).
Finally, if a solution exists, the desired predicates are extracted. If no solution exists,
the algorithm stops by returning the solution as witness of the property violation.

Correctness

The HSF algorithm computes a solution for the model upon termination. The proof relies
on the soundness of the approach and the progress of refinement, which is standard for
counterexample guided abstraction refinement schemes. Soundness can be proven by the
fact that abstraction functions always return safe overapproximations. The progress of
refinement property holds since the abstraction refinement method never analyzes a set of
counterexample clauses twice.

2.4. Multi-threaded Programs

In this section, we describe the used transition system for multi-threaded programs, the
assumed synchronization-model, and their computations.

Transition system A multi-threaded program P consists of N ≥ 1 threads where each
thread i ∈ 1..N has a set of control locations Li. We assume that P is represented as
abstract transition system 〈V, init ,R, error〉, given by the following components:

• V = (VG, V1, . . . , VN) are program variables, partitioned into global Variables VG
shared by all threads and thread-local variables Vi, which are accessible only by

10

2.4. Multi-threaded Programs

thread i. We distinguish two types of variables, data-variables and program counter
variables. Firstly, data-variables are either global variables or thread-local variables
that are exclusively manipulated by program statements. Secondly, program counter
variables pci are thread-local variables that keep track of current control locations
`p ∈ Li for a program line with label p.
⇒We represent sets of program states by valuations of the program variables.

• init(V) is a satisfiable assertion describing the initial program states.

• R = (R1, . . . ,RN) describes a finite set of transition relations (transitions) for each
thread, i.e., binary relations between sets of program states. Each program state-
ment is represented as such a transition ρi(VG, Vi, V ′G, V

′
i) ∈ Ri by an assertion over

variables and their primed versions. Transitions of some thread i may only access
global variables V (′)

G and thread-local variables V (′)
i . All thread-local variables from

different threads j ∈ 1..N \ {i} are not accessible by those transitions. We write stepi
for the disjunction of transitions of a thread i, i.e., stepi(VG, Vi, V ′G, V

′
i) =

∨Ri. For
representation, we use the constraint step=i requiring that the thread-local variables
of other threads than i do not change, i.e., step=i =

∧
j∈1..N\{i}(Vj = V ′j).

• error(V) is used to represent assertion statements for erroneous program states.

Computations Let � denote the satisfaction relation between (pairs) of states and asser-
tions over program variables (and their primed version). A computation of P is a sequence
of states (s1, s2, . . .), such that s1 is an initial state, i.e., s1 � init(V), and for each consecu-
tive pair of states si and si+1 there is is a transition step ∈ R such that (si, si+1) � step. An
execution path (path) is a sequence of transitions.
A state s is reachable if it appears in some computation. Let ϕreach be the symbolic repre-
sentation of all reachable states from P . We say that P is safe if no error state in error(V)
is reachable, i.e., ϕreach(V) ∧ error(V)→ false .

Synchronization We assume a thread-synchronization model based on a finite set of
global lock variables. A lock can explicitly be acquired and released by means of acquire
and release primitives, respectively. The acquire statement waits until the lock is released
by every other thread and then acquires the lock. The release statement unconditionally
releases the lock. We extend our previously shown program-representation to model lock-
synchronization by further partitioning V andR.

It is assumed that the set of used lock variables Locks are part of the global variables
VG. Each lock variable m ∈ Locks is released (m = 0) at the initial states and can be
explicitly acquired (m = 1) during exploration. We introduce assertions acq i(pci,pc′i) and
rel i(pci,pc

′
i) to localize acquire and releases statements, respectively. These statements

are defined over the determinant program locations, i.e., ρai → acq i and ρri → rel i for
an acquire statement represented by transition ρai and a release statement represented by
transition ρri .

Example We now use the example program from Figure 2.2 to illustrate transition sys-
tems. The program consist of two threads with thread-local variables V1 = (pc1) and

11

2. Foundations

int x=0, mx=0;

// Thread 1

0: acquire(mx);
1: x=x+1;
2: release(mx);
3:

// Thread 2
int a=0;

0: a=x;
1: assert(a==x);

Figure 2.2.: Example program to illustrate transition systems.

V2 = (pc1,a) for thread 1 and 2, respectively. The global variables accessible by both
threads are VG = (x,mx). By consideration of the program variables V = (VG, V1, V2), the
initial state is represented by the following conjunction.

init(V) = (x = 0 ∧ mx = 0 ∧ pc1 = 0 ∧ pc2 = 0 ∧ a = 0)

For the sake of a short representation we use two abbreviations in transition relations.
Firstly, alteration of program counter variables is represented as mv i(`j , `k) ≡ (pci = `j ∧
pc′i = `k). Secondly, if a set of program variables (v1, . . . , vn) are not manipulated by a
transition, we write skp(v1, . . . , vn) ≡ (v′1 = v1 ∧ · · · ∧ v′n = vn). Hence, the transitions for
thread 1 and 2 are represented by the following disjuncts.

step1(VG, V1, V
′
G, V

′
1) = (mv1(0, 1) ∧ mx = 0 ∧ mx′ = 1 ∧ skp(x)) ∨

(mv1(1, 2) ∧ x′ = x + 1 ∧ skp(mx)) ∨
(mv1(2, 3) ∧ mx′ = 0 ∧ skp(x))

step2(VG, V2, V
′
G, V

′
2) = (mv2(0, 1) ∧ a′ = x ∧ skp(x,mx))

Consider the first conjunction of thread 1 representing the acquire transition. If it is satis-
fied, the lock is not held at the beginning state (mx = 0) and is (atomically) acquired at the
resulting state (mx′ = 1). Respective predicates for acquire and release are acq1(pc1,pc′1) =
(pc1 = `0 ∧ pc′1 = `1) and rel1(pc1,pc

′
1) = (pc1 = `2 ∧ pc′1 = `3). The last component

of the transition system is a definition of the erroneous states, which is obtained by the
assertion statement from thread 2 as follows.

error(V) =
Ä
pc2 = `1 ∧ ¬(a = x)

ä
As the reader might conclude on her own, the example program is not safe according to
the above definition. The following invariant for reachable states (that result of several
computation steps beginning from init(V)) shows that the intersection with the error state
is not empty (considering the second disjunct).

ϕreach =
Ä
pc1 = `0 ∧ x = 0 ∧ mx = 0 ∧ pc2 ∈ {`0, `1} ∧ a = 0

ä
∨Ä

pc1 = `1 ∧ x = 0 ∧ mx = 1 ∧ pc2 ∈ {`0, `1} ∧ a = 0
ä
∨Ä

pc1 = `2 ∧ x = 1 ∧ mx = 1 ∧ (pc2 = `0 ∧ a = 0 ∨ pc2 = `1 ∧ a ∈ {0, 1})
ä
∨Ä

pc1 = `3 ∧ x = 1 ∧ mx = 0 ∧ (pc2 = `0 ∧ a = 0 ∨ pc2 = `1 ∧ a ∈ {0, 1})
ä

12

2.5. Proof Rules for Verification of Multi-threaded Programs

2.5. Proof Rules for Verification of Multi-threaded Programs

In this section, we show a collection of existing proof rules for the (safety-) verification
of multi-threaded programs. All of them (monolithic, Owicki-Gries, and rely-guarantee)
can be automated using the presented HSF algorithm in section 2.3. We consider a multi-
threaded program that consists of N threads as a tuple (V, init ,R, error), with V , init , R
and error as defined in section 2.4.

2.5.1. Monolithic Proof Rule

The monolithic proof rule lists three conditions over a single query symbol R(V) that char-
acterizes an overapproximation of the reachable states as follows.

CM1: init(V) → R(V)

CM2: R(V) ∧ stepi(VG, Vi, V
′
G, V

′
i) ∧ step=i (V, V ′) → R(V ′)

CM3: R(V) ∧ error(V) → false

The clauses require that R(V) contains all initial states (clause CM1) and every successive
state that is reachable by a transition relation (clause CM2). Thread interleaving implicitly
happens by the non-deterministic choice of thread i in clause CM2. Clause CM3 requires
that the intersection of reachable states and error states is empty.

2.5.2. Owicki-Gries Proof Rule

We list a proof rule that is based on the Owick-Gries method [28]. The reasoning about
reachable states is localized by replacing the global auxiliary assertion R from above with
N query symbols R1(V), . . . ,RN (V) for N threads.

CO1: init(V) → Ri(V)

CO2: Ri(V) ∧ stepi(VG, Vi, V
′
G, V

′
i) ∧ step=i (V, V ′) → Ri(V

′)

CO3: Ri(V) ∧
Ä∨

j∈1..N\{i}Rj(V) ∧ stepj(VG, Vj , V
′
G, V

′
j) ∧ step=j (V, V ′)

ä
→ Ri(V

′)

CO4: R1(V) ∧ · · · ∧ RN (V) ∧ error(V) → false

Clauses CO1 and CO2 require that Ri contains the initial states and states resulting from
successively applied transition relations of some thread i, respectively. As opposed to the
monolithic proof rule, thread interleaving happens explicitly at condition CO3. Safety is
proven by the empty intersection of error states and the conjunction of reachable states
from all threads (CO4).

2.5.3. Rely-Guarantee Proof Rule

We now present the rely-guarantee proof rule [18] for compositional verification of pro-
gram safety. It uses assertions Ri over V and Ei over V and V ′ that represent reachable

13

2. Foundations

states and environment transitions for each thread i ∈ 1..N , respectively.

CR1: init(V) → Ri(V)

CR2: Ri(V) ∧ stepi(VG, Vi, V
′
G, V

′
i) ∧ step=i (V, V ′) → Ri(V

′)

CR3:
Ä∨

i∈1..N\{j}Ri(V) ∧ stepi(VG, Vi, V
′
G, V

′
i) ∧ step=i (V, V ′)

ä
→ Ej(V, V

′)

CR4: Ri(V) ∧ Ei(V, V
′) → Ri(V

′)

CR5: R1(V) ∧ · · · ∧ RN (V) ∧ error(V) → false

Each assertion Ri(V) contains the initial states (clause CR1), states reachable from local
transitions (clause CR2), and states reachable from environment transitions (clause CR4).
Ei(V) include compositions of transition steps from other threads j 6= i (clause CR3). Sim-
ilar to the previous rules, the emptiness of the intersection of reachable states and error(V)
ensures safety by clause CR5.

14

Part II.

Verification Methods

15

3. Model Checking with Transaction
Summarization

Development of practical verification tools for multi-threaded programs requires dealing
with the explosion of the number of thread interleavings.

In this chapter, we present our transaction-based approach to exploit equivalence of
different interleavings. Transactions are sequences of successive program transitions that
may be verified without consideration of some interference from other threads. Our veri-
fication technique handles multi-threaded programs with infinite state spaces in the con-
strained based setting by relying on the mentioned HSF algorithm. Our design decisions
were directed by the following considerations. Commutativity inference serves as prelimi-
nary step for a constraint based verification run. We allow this inference to be more precise
and data dependent in comparison with type based approaches, e.g., [12]. Even though
being potentially more expensive, the ability to infer larger transactions at this step may
lead to dramatic reduction in verification time.

Our summarization rule is inspired by the use of procedure summaries, see e.g., [31],
however instead of being driven by calls/returns to mark start/finish points of summaries,
we use transitions that enter/exit from transactions. Summarization constraints allow us
to eliminate statements contributing to transactions from the program and keep track of
their effect by applying the transaction summaries. Note that complex control flow con-
structs, including loops, can be directly supported as parts of transactions, since summa-
rization constraints defer reasoning about complex control flow to the final solving step.

We begin with an introduction of transactions by giving some formal definitions of re-
lated terms. For illustration, we additionally present the overall approach by an extensive
example. The next section is used for our transaction inference algorithms that delivers
transaction boundaries from a given input program represented as Horn-like clauses. The
last two sections present our proof rules for safety verification together with a sketch of
the soundness proof.

3.1. Lipton’s Theory of Reduction

We use the theory of right and left movers from Lipton [22] to define transactions for
aiding verification of software with multiple threads. The intuition behind this theory is
to simplify proofs by declaring a particular sequence of statements as atomic, i.e., these
statements can not be interleaved by statements from other threads. Lipton proposes that
a program P containing such a sequence of atomic statements T is equivalent to a reduced
Program P \T where all statements from T are executed without interference. To identify
T , some transition relations ρi ∈ Ri of a thread i are defined as right movers and left movers
as follows.

16

3.1. Lipton’s Theory of Reduction

• A transition ρi ∈ Ri of thread i is a right mover if ∀ρj, j∈1..N\{i} ∈ Rj :Ä
ρi(VG, Vi, V

′
G, V

′
i) ∧ ρj(V ′G, Vj , V ′′G , V ′j)

ä
⇐⇒Ä

ρj(VG, Vj , V
′′′
G , V

′
j) ∧ ρi(V ′′′G , Vi, V ′′G , V ′i)

ä
• Similarly, a transition ρi ∈ Ri of thread i is a left mover if ∀ρj, j∈1..N\{i} ∈ Rj :Ä

ρj(VG, Vj , V
′
G, V

′
j) ∧ ρi(V ′G, Vi, V ′′G , V ′i)

ä
⇐⇒Ä

ρi(VG, Vi, V
′′′
G , V

′
i) ∧ ρj(V ′′′G , Vj , V ′′G , V ′j)

ä
The first definition asserts that if there is a right mover transition ρi of thread i followed by
any transition ρj of some other thread j, the resulting state is equivalent to the one resulting
from the sequence where ρj is executed before ρi, i.e., a right mover commutes to the right.
The second definition of left mover transitions is symmetric, i.e. a left mover commutes to
the left. Transitions that are both left movers and right movers are defined as both movers.
All other transitions, i.e., the ones that do not commute with every other transition from
other threads (in at least one direction) are non-movers. As we will show in Section 3.3, there
are some general observations about mover information in multi-threaded programs:

• Program statements that acquire locks are right movers. After obtaining the lock
there is no other thread that may have access to the protected variables. Hence, these
statements commute to the right with every other statement from other threads.

• Program statements that release locks are left movers. Before the release operation
takes place no other thread has access to the protected variables. Thus, the release
statement commutes to the left with statements from other threads.

• Program statements that only access local variables are both movers since these state-
ments commute to the left and to the right regarding other threads.

• Program statements that access global variables are both movers if they are exclu-
sively enabled at states where some common locks are held. Thus, every access to
this shared variable from other threads is also protected by the same locks and, hence
commutes.

Let n,m ∈ Z+. We define a transaction as a non-empty sequence of transition relations
a1, . . . , an, [c], b1, . . . , bm where each ai is a right mover, c is one optional non-mover, and
each bi is a left mover. Note that this definition also includes both mover transitions since
left movers and right movers are also both movers. The optional non-mover c that resides
between the sequence of right movers (pre commit phase) and left movers (post commit
phase) is called the committing transition (the term comes from the theory of database-
transactions). Transactions can safely be summarized since all transitions ai commute to
the right and all transitions bi commute to the left.

17

3. Model Checking with Transaction Summarization

rel(m)

rel(m)acq(m)

acq(m) E1s2s1 s3
t=y

s4
E2 s5

x=t+1
s6

E3 s7 s8

E1
s'2 s1 s3

t=y
s4

E2
s'5

x=t+1
s'6

E3
s'7 s8

(a) (b) (c) (d)

Figure 3.1.: Two equivalent transition sequences.

Example We use the transition sequences (executions) shown in Figure 3.1 to illustrate
the above definitions. Let us first consider the upper transition sequence. It contains four
thread-local transition relations ((a), (b), (c), (d)) from some thread i and three environ-
ment transitions Ej from threads different than i. The execution starts at program state s1
and ends with program state s8 by successively applying the transitions. The statements
acq(m) and rel(m) acquire and release the lock m, respectively. The other two statements
((b) and (c)) access the thread-local variable t and the global variables x, y. For this ex-
ample, we presume that x is entirely protected by the same lock throughout the program.
However, variable y is written by some other thread than i without being protected by m,
which makes transition (b) to a non-mover.

According to our definition, the sequence a−b−c−d can be summarized to a transaction
since (a) is a right mover, (b) is a non-mover, (c) is a both mover (hence, a left mover), and
(d) is a left mover. The execution below is equivalent to the one above since (a) right com-
mutes with E1 and both (c) and (d) left commute with the other environment transitions.

We will sometimes refer to a transaction as the set of control locations that belong to
states resulting from transitions that enter a transaction, are inside a transactions, or leave
a transaction.

3.2. Illustration

We illustrate our transaction-based verification approach with a multi-threaded program
consisting of three threads. See Figure 3.2 for the program P1-1 which uses locks (mx,my)
to protect accesses to shared variables (x,y). Its representation is shown in Figure 3.3,
according to the formulation in Section 2.4.

For illustration, we aim to prove that the value of the variable x is not equal to 11 at
the end locations (this is indeed the case as the reader may conclude on her own after
inspecting possible program executions). A verification method needs to consider a large
number of thread interleavings that is exponential with number of threads 1. Our method

1In fact, the number of possible thread interleavings is

(∑N

t=1
|Lt|
)
!∏N

t=1
(|Lt|)!

where N is the number of threads and

|Lt| is the number of program locations for a thread t.

18

3.2. Illustration

int x=2, y=2, mx=0, my=0;

// Thread-1
int a;

0: acquire(mx);
1: a = x;
2: acquire(my);
3: y = y+a;
4: release(my);
5: a = a+1;
6: acquire(my);
7: y = y+a;
8: release(my);
9: x = 2*x+a;

10: release(mx);
11:

// Thread-2

0: acquire(mx);
1: x = x+2;
2: release(mx);
3:

// Thread-3

0: acquire(my);
1: y = y+2;
2: release(my);
3:

Figure 3.2.: Program P1-1 consisting of three threads; the error assertion is given as
error(V) = x = 11 ∧ pc1 = 11 ∧ pc2 = 3 ∧ pc3 = 3.

is based on transaction reasoning and considers explicitly only a small number of these
interleavings; for this example, 12 interleavings are considered. The approach consists of
two steps, transaction inference and transaction-based verification.

Transaction Inference

The objective of transaction inference is to get transactions that are as large as possible in
order to minimize the number of explored interleavings during verification. In this sec-
tion, we assume the results of transaction inference are given (see Section 3.3 for a formal
description of our transaction inference algorithm and its application on the P1-1 exam-
ple). The following table shows all transaction boundaries (a), (b), (c) and (d) obtained for
each thread. Note that these boundaries are presented in the form thread-i{`b − `e},
i.e., the lower bound is pci = `b and the upper bound is pc′′′i = `e for a transactionÄ
stepi(VG, Vi, V

′
G, V

′
i) ∧ · · · ∧ stepi(V

′′
G , V

′′
i , V

′′′
G , V

′′′
i)
ä
.

(a) thread-1 {`0 − `6} (c) thread-2 {`0 − `3}
(b) thread-1 {`6 − `11} (d) thread-3 {`0 − `3}

For thread-2 and thread-3, all transitions are composed to transactions (c) and (d),
respectively. For thread-1, two transactions are obtained. The first one spans over the
program locations `0 and `6, the second one spans over the program locations `6 and `11.

We encode the result of transaction inference using a partitioning of statements into
three categories for each thread i:

19

3. Model Checking with Transaction Summarization

VG = (x,y,mx,my), V1 = (a,pc1), V2 = (pc2), V3 = (pc3)
init(VG, V1, V2, V3) = (pc1 = pc2 = pc3 = `0 ∧ x = 2 ∧ y = 2 ∧ mx = 0 ∧ my = 0)
step1(VG, V1, V

′
G, V

′
1) = (mv1(`0, `1) ∧ mx = 0 ∧ mx′ = 1 ∧ skp(x,y,my,a)) ∨

(mv1(`1, `2) ∧ a′ = x ∧ skp(x,y,mx,my)) ∨
(mv1(`2, `3) ∧ my = 0 ∧ my′ = 1 ∧ skp(x,y,mx,a)) ∨
(mv1(`3, `4) ∧ y′ = y + a ∧ skp(x,mx,my,a)) ∨
(mv1(`4, `5) ∧ my′ = 0 ∧ skp(x,y,mx,a)) ∨
(mv1(`5, `6) ∧ a′ = a + 1 ∧ skp(x,y,mx,my)) ∨
(mv1(`6, `7) ∧ my = 0 ∧ my′ = 1 ∧ skp(x,y,mx,a)) ∨
(mv1(`7, `8) ∧ y′ = y + a ∧ skp(x,mx,my,a)) ∨
(mv1(`8, `9) ∧ my′ = 0 ∧ skp(x,y,mx,a)) ∨
(mv1(`9, `10) ∧ x′ = 2 ∗ x + a ∧ skp(y,mx,my,a)) ∨
(mv1(`10`11) ∧ mx′ = 0 ∧ skp(x,y,my,a))

step2(VG, V2, V
′
G, V

′
2) = (mv2(`0, `1) ∧ mx = 0 ∧ mx′ = 1 ∧ skp(x,y,my)) ∨

(mv2(`1, `2) ∧ x′ = x + 2 ∧ skp(y,mx,my)) ∨
(mv2(`2, `3) ∧ mx′ = 0 ∧ skp(x,y,my))

step3(VG, V3, V
′
G, V

′
3) = (mv3(`0, `1) ∧ my = 0 ∧ my′ = 1 ∧ skp(x,y,mx)) ∨

(mv3(`1, `2) ∧ y′ = y + 2 ∧ skp(x,mx,my)) ∨
(mv3(`2, `3) ∧ my′ = 0 ∧ skp(x,y,mx))

error(VG, V1, V2, V3) = (x = 11 ∧ pc1 = `11 ∧ pc2 = `3 ∧ pc3 = `3)

Figure 3.3.: Representation of program P1-1 as transition system.

• step outout i(VG, Vi, V
′
G, V

′
i) describes transitions that are not contained in any trans-

action, i.e., both pci and pc′i are control locations outside transactions.

• step ini(VG, Vi, V
′
G, V

′
i) describes transitions that are either the first transition of a

transaction or are in the middle of a transaction (but not at the end), i.e., pc′i is a
control location that is inside a transaction.

• step inout i(VG, Vi, V
′
G, V

′
i) describes transitions that are the last transition of a trans-

action, i.e. pci is a control location inside a transaction and pc′i is a control location
outside transactions.

20

3.2. Illustration

For our example, we obtain the following partitioning of statements.

step in1(VG, V1, V
′
G, V

′
1) = step1(VG, V1, V

′
G, V

′
1) ∧

(mv1(`0, `1) ∨mv1(`1, `2) ∨mv1(`2, `3) ∨
mv1(`3, `4) ∨mv1(`4, `5) ∨mv1(`6, `7) ∨
mv1(`7, `8) ∨mv1(`8, `9) ∨mv1(`9, `10))

step inout1(VG, V1, V
′
G, V

′
1) = step1(VG, V1, V

′
G, V

′
1) ∧ (mv1(`5, `6) ∨mv1(`10, `11))

step in2(VG, V2, V
′
G, V

′
2) = step2(VG, V2, V

′
G, V

′
2) ∧ (mv2(`0, `1) ∨mv2(`1, `2))

step inout2(VG, V2, V
′
G, V

′
2) = step2(VG, V2, V

′
G, V

′
2) ∧ (mv2(`2, `3))

step in3(VG, V3, V
′
G, V

′
3) = step3(VG, V3, V

′
G, V

′
3) ∧ (mv3(`0, `1) ∨mv3(`1, `2))

step inout3(VG, V3, V
′
G, V

′
3) = step3(VG, V3, V

′
G, V

′
3) ∧ (mv3(`2, `3))

There are no transitions outside transactions, i.e.,

step outout1(VG, V1, V
′
G, V

′
1) = step outout2(VG, V2, V

′
G, V

′
2) =

step outout3(VG, V3, V
′
G, V

′
3) = false.

Proof Rule

The crux of our verification approach is a proof rule for transaction-based reasoning. The
proof rule lists conditions on three kinds of auxiliary assertions (program invariants):

• R(V) describes reachable program states outside transactions, i.e., program states
resulting from application of either transitions outside transactions or transaction
summaries.

• Pi(VG, Vi, V
′
G, V

′
i) are binary path relations (paths) in a transaction, i.e., a composition

of transition relations in a transaction beginning from its first transition to any other
transition inside it (except the last one).

• Summi(VG, Vi, V
′
G, V

′
i) represents binary (summarization) relations that are composi-

tions of all transition relations in a transaction.

The proof rule conditions are expressed as Horn-like clauses numbered from (3.1) to (3.6).
The first clause states that all initial states are reachable (are contained in R(V)):

init(V)→ R(V) (3.1)

Therefore, a solution of the reachable-states assertion (denoted by Σ(R(V))) will include
at least the initial states; for our example, the following constraint:

Σ(R(V)) := (pc1 = `0 ∧ pc2 = `0 ∧ pc3 = `0 ∧ x = 2 ∧ y = 2 ∧ mx = 0 ∧ my = 0)

Intra-transactional Reasoning

We now present the clauses from our proof rule for reasoning inside transactions, i.e., with-
out interference from transitions of other threads. Note that the following rules consider

21

3. Model Checking with Transaction Summarization

only thread-local assertions of thread i.

R(V) ∧ step ini(VG, Vi, V
′
G, V

′
i)→ Pi(VG, Vi, V

′
G, V

′
i) (3.2)

Pi(VG, Vi, V
′
G, V

′
i) ∧ step ini(V

′
G, V

′
i , V

′′
G , V

′′
i)→ Pi(VG, Vi, V

′′
G , V

′′
i) (3.3)

Pi(VG, Vi, V
′
G, V

′
i) ∧ step inout i(V

′
G, V

′
i , V

′′
G , V

′′
i)→ Summi(VG, Vi, V

′′
G , V

′′
i) (3.4)

Clause (3.2) initiates Pi relations whenever a transition step ini(VG, Vi, V
′
G, V

′
i) at the be-

ginning of a transaction is applicable. Once inside a transaction, clause (3.3) extends the
path relation as long as this transaction contains further transitions (except the last tran-
sition). Otherwise, a summary relation Summi is generated for the current transaction
(clause (3.4)).

We illustrate the application of these clauses with the path relations for thread-2 by
starting from the previously computed initial states in Σ(R(V)).

Σ(P2(VG, V2, V
′
G, V

′
2)) := (mv2(`0, `1) ∧ mx = 0 ∧ mx′ = 1 ∧ skp(x,y,my) ∨

mv2(`0, `2) ∧ mx = 0 ∧ mx′ = 1 ∧ x′ = x + 2 ∧ skp(y,my))

A summary relation for thread-2 is generated using clause (3.4), the result from the last
step and the assertion step inout2(VG, V2, V

′
G, V

′
2):

Σ(Summ2(VG, V2, V
′
G, V

′
2)) := (mv2(`0, `3) ∧ mx = 0 ∧ mx′ = 0 ∧ x′ = x + 2 ∧ skp(y,my))

Reasoning outside Transactions

As mentioned before, reachable states R(V) solely contain program states that are outside
transactions. In addition to clause (3.1), we use the following rule to extend R(V) by either
a transaction summarization or a single transition that is outside any transaction.

R(V) ∧
(
Summi(VG, Vi, V

′
G, V

′
i) ∨ step outout i(VG, Vi, V

′
G, V

′
i)
)
∧ step=i (V, V ′)→ R(V ′)

(3.5)
For our example, we update the solution for R(V) by applying clause (3.5) on the previ-
ously computed reachable states and Summ2(VG, V2, V

′
G, V

′
2).

Σ(R(V)) := (pc1 = `0 ∧ pc2 = `0 ∧ pc3 = `0 ∧ x = 2 ∧ y = 2 ∧ mx = 0 ∧ my = 0) ∨
(pc1 = `0 ∧ pc2 = `3 ∧ pc3 = `0 ∧ x = 4 ∧ y = 2 ∧ mx = 0 ∧ my = 0)

For simplicity, we showed here a monolithic style of reasoning with a single reachable-
state invariant for all threads. In practice, compositional reasoning enables better scala-
bility since individual threads can be analyzed instead of an exhaustive exploration of the
the whole system monolithically. Our proof rule supports different styles of reasoning out-
side transactions, see Section 3.4 for a modified proof rule using Owicki-Gries reasoning
outside transactions.

Proving Safety

We obtain a safety proof for a given program if there exists a solution for R(V) satisfiying
the above clauses together with the following clause that ensures emptiness of the inter-
section of reachable states and error states.

R(V) ∧ error(V)→ false (3.6)

22

3.2. Illustration

So far, we have considered an execution that only finished exploring the transaction (c)
from thread-2. Such an execution could continue by non-deterministically exploring
transactions from either thread-1 or thread-3, i.e., execution (c−a−b−d), (c−a−d−b)
or (c− d− a− b).

The benefit of transactional reasoning is that few interleavings are effectively explored
due to the coarse-grained nature of transactions. Besides the shown execution sequence
for P1-1, the following list contains all possible transaction-interleavings.

(I1) a− b− c− d
(I2) a− b− d− c
(I3) a− c− b− d
(I4) a− c− d− b
(I5) a− d− b− c
(I6) a− d− c− b

(I7) c− a− b− d
(I8) c− a− d− b
(I9) c− d− a− b
(I10) d− a− b− c
(I11) d− a− c− b
(I12) d− c− a− b

The effect of all these interleavings is captured by the auxiliary assertions from our proof
rule. Correspondingly, our method computes the final solution Σ(R(V)) representing the
invariant for reachable states as follows:(

pc1 = `0 ∧ mx = 0 ∧ pc3 ∈ {`0, `3} ∧ (pc2 = `0 ∧ x = 2 ∨
pc2 = `3 ∧ ∧4 ≤ x ≤ 7)

)
∨(

pc1 = `6 ∧ mx = 1 ∧ pc3 ∈ {`0, `3} ∧ (pc2 ∈ {`0, `3} ∧ x = 2 ∧ 2x + a = 7 ∨
pc2 ∈ {`0, `3} ∧ 4 ≤ x ≤ 7 ∧ 2x + a ≥ 13)

)
∨(

pc1 = `11 ∧ mx = 0 ∧ pc3 ∈ {`0, `3} ∧ (pc2 = `0 ∧ x ≤ 7 ∨
pc2 = `3 ∧ x ≤ 9 ∨
pc2 ∈ {`0, `3} ∧ x ≥ 13 ∧ 2x + a ≥ 13)

)
Our verification method uses the CEGAR-based HSF algorithm and, hence, computes
over-approximations. Consequently, some constraints do not appear in the solution since
they are not used for abstraction refinement. For example, constraints on the value of
variable y are not present in the above reachable states due to the used error specification
error(V) = (x = 11 ∧ pc1 = `11 ∧ pc2 = `3 ∧ pc3 = `3).

The shown constraints are divided into three cases (outer disjuncts) that contain either
the location pc1 = `0, pc1 = `6, or pc1 = `11 resulting from the given transaction bound-
aries for thread-1. This thread holds the lock mx only at location `6 due to the acquire
statement at location `0 and the release statement at location `11. The inner disjuncts in
each case result from varied execution orders of thread-1 and thread-2. Statements
of thread-3 have no influence on the scheduling (and hence on the solution) since there
is no access of variable x (used in error(V)). At states with pc1 = `11, we observe three
possible outcomes. Firstly, thread-2 has not yet started (x ≤ 7). Secondly, thread-2
may have been executed after thread-1 (x ≤ 9). Finally, thread-2 may have been exe-
cuted before thread-1 (x ≥ 13). Safety is proven by the fact that the value of x is always
smaller or bigger than 11. Note that a safety-critical interference of thread-1 at location
`6 by thread-2 is prohibited by the held lock mx. For illustration, we show below how
the interference can be induced by unprotecting the access to variable x in thread-2.

23

3. Model Checking with Transaction Summarization

Data Races

As shown above, our method benefits from the race-free nature of statements, infers coarse-
grained transactions and therefore leads to effective verification. We use two modified
variants of the example from Figure 3.2 to illustrate how our approach works in the pres-
ence of race conditions. The first variant induces a counterexample for the used safety
assertion. The second variant remains safe but adds a non mover transition and, by that,
emphasizes the effects of race conditions regarding to scalability.

Program P2-1 Consider a different implementation of thread-2 where the statement
that access the global variable x is not protected by a lock:

// Thread-2

0: x = x+2;
1:

As opposed to the original program, all transitions of thread-1 that access variable x
become potential interleaving points since thread-2 may interfere. Consequently, trans-
action inference returns a different list of transaction boundaries with two additional trans-
actions for thread-1 as follows.

(a) thread-1 {`0 − `2} (e) thread-2 {`0 − `1}
(b) thread-1 {`2 − `6} (f) thread-3 {`0 − `3}
(c) thread-1 {`6 − `9}
(d) thread-1 {`9 − `11}

The HSF solver returns the execution in Figure 3.4 as counterexample for the safety asser-
tion of clause (3.6) with error(V) = (x = 11 ∧ pc1 = 11 ∧ pc2 = 1 ∧ pc3 = 3). Note that

\\ thread 1

acquire(mx);
a=x;

\\ thread 1

acquire(my);
y=y+a;
release(my);
a=a+1;

\\ thread 2

x=x+2;

\\ thread 1

acquire(my);
y=y+a;
release(my);

\\ thread 1

x=2*x+a;
release(mx);

(a) (b) (e) (c) (d) (f)

\\ thread 3

acquire(my);
y=y+2;
release(my);

s2s1 s3 s4 s5 s6 s7

x = 2
y = 2
mx= 0
my= 0
a = 0
pc1=0

pc2=0

pc3=0

x = 2
y = 2
mx= 1
my= 0
a = 2
pc1=2

pc2=0

pc3=0

x = 2
y = 4
mx= 1
my= 0
a = 3
pc1=6

pc2=0

pc3=0

x = 4
y = 4
mx= 1
my= 0
a = 3
pc1=6

pc2=1

pc3=0

x = 4
y = 7
mx= 1
my= 0
a = 3
pc1=9

pc2=1

pc3=0

x =11
y = 7
mx= 0
my= 0
a = 3
pc1=11

pc2=1

pc3=0

x =11
y = 9
mx= 0
my= 0
a = 3
pc1=11

pc2=1

pc3=3

Figure 3.4.: Counterexample execution from program P2− 1.

the variable x holds the value 11 at the final state s7, i.e., the program is not safe according
to the specification.

24

3.3. Transaction Inference

Program P3-1 Now consider a second deviation from the program P1-1 where thread-1
and thread-2 remain unchanged but thread-3 is extended by the assignment y=2:

// Thread-3

0: acquire(my);
1: y = y+2;
2: release(my);
3: y = 2;
4:

The unprotected write access by the new statement induces race conditions at thread-1
on every access of variable y (pc1 = `3 and pc1 = `7). However, transaction inference only
returns one additional transaction for thread-3 when compared to P1-1:

(a) thread-1 {`0 − `6} (d) thread-3 {`0 − `3}
(b) thread-1 {`6 − `11} (e) thread-3 {`3 − `4}
(c) thread-2 {`0 − `3}

Our method detects that all statements in thread-1 accessing variable y are surrounded
by transitions that commute with transitions from other threads. Thus, the transitions are
still composed to two transaction summaries.

Transaction summarization significantly reduces the number of interleavings to be ex-
plored. See chapter 5 for comparison between our implementation and state-of-the-art
verifiers showing how verification is able to cope with versions of programs P1-1, P2-1,
and P3-1 where we vary the number x of statements from each transaction to obtain P1-x,
P2-x, and P3-x.

3.3. Transaction Inference

To minimize the number of explored interleavings and to maximize reuse of respective
summaries, it is desirable to define transactions that are as large as possible. In this section,
we show our approach to determine transaction boundaries encasing transition sequences
that are independent from interleavings. Therefore, we use a chain of four consecutive
analysis stages to split this task. Figure 3.5 illustrates the analyses to infer (1) the held
locks of each program location, (2) the mover types for every transition relation, (3) the
transaction phase for every program location, and the final transaction boundaries. Every
stage uses the given transition relations and the result from the predecessor (if available)
for its analysis.

3.3.1. Locks-Held Information

We use simple data flow analysis to compute lhi(`), the set of held locks for a program
location ` of thread i. The idea is to add or remove a lockm ∈ Locks whenever the program
executes an acquire(m) or release(m) statement, respectively. For the sake of illustration,
we describe the data flow problem using known terms and functions from the literature.
However, the computation of lhi(`) information is done differently utilizing the given HSF
solver, as we will describe at the end of this section.

25

3. Model Checking with Transaction Summarization

Locks Held
Analysis

Mover
Analysis

Phase
Analysis

In-/Out-
Analysis

Transition Relations

Locks
Held

Mover Phase Transaction
Boundaries

Figure 3.5.: Processing stages for transaction inference.

Data flow analysis Following the data flow approach from Nielson et al. [27], we define
the analysis in terms of lattice theory 2. Instead of using control flow graphs (CFGs), we
rely on the described transition systems for multi-threaded programs. The data flow anal-
ysis operates in forward direction using a pair of functions that maps program locations
and transition relations to the property set (Locks) of the complete lattice. The first function
lhi(`

′) specifies the locks that are held on a program location `′.

lhi(`
′) =

∅, if init(V)→ (pc = `′)⋂¶
lhexit

i (stepi) | ∃ρi ∈ Ri : ρi |= mv(`, `′)
©
, otherwise

At initial program states, the function returns the empty set since no locks are held at the
beginning. Otherwise, it returns the intersection of propagated locks from predecessor
locations ` that reach location `′ by some transition ρi ∈ Ri. Therefore, we use the second
function lhexit

i (ρi) that returns such lock information as follows.

lhexit
i (ρi) =

Ä
lhi(`) \ kill lhi (ρi)

ä
∪ gen lh

i (ρi)

where ρi → mv(`, `′)

The returned set of locks for a transition ρi is determined by the held locks at the beginning
location ` and the transition semantics. If ρi represents a release statement of lock m, then
m is subtracted from the returned set of locks. Successively, if ρi acquires a lock m, then m
is added to the result. The used helper functions gen lh

i and kill lhi can be statically computed
according to the following definition.

gen lh
i (ρi) =

{
m, if ρi → acq i ∧Wi(m), for each m ∈ Locks

∅, otherwise

kill lhi (ρi) =

{
m, if ρi → rel i ∧Wi(m), for each m ∈ Locks

∅, otherwise

The used predicates Wi(m) (indicating that m is written) allows us to identify acquired
and released locks m ∈ Locks at acquire and release statements, respectively.

One can easily prove distributivity of the shown data flow analysis. Hence, it is possible
to use the reasonable meet over all paths (MOP) approach for computation. Simplified,

2The complete lattice of our analysis is L = 2Locks and it is partially ordered by superset inclusion ⊇, the
bottom element ⊥ is the whole set Locks , and the top element > is the empty set ∅.

26

3.3. Transaction Inference

MOP intersects the sets of held locks at a location ` resulting from different execution
paths of the program. However, we utilize the HSF algorithm that elegantly allows us to
obtain held locks for each reachable program location. Even though the intuition behind
both approaches (MOP and HSF) is the same.

Computation by HSF Technically, the analysis problem is represented as Horn clauses
over the first order theory TLI which we compute by the assumed HSF solver. The set of
clauses over queries Q1 := {R1(V), . . . ,RN (V)} models reachable states in computations
of each thread i.

HC 1 := { init(V) → Ri(V),
Ri(V) ∧ stepi(VG, Vi, V

′
G, V

′
i) ∧ step=i (V) → Ri(V

′) }

To compute lhi(`) information for a program location ` we initialize the predicate function
with predicates over program counter and lock variables as follows.

Preds1(Ri(V)) := {pci = ` | ` ∈ Li} ∪ {m = 0,m = 1 | m ∈ Locks}

Using such an initialization leads to an invariant that only contains valuations of vari-
ables for program locations and locks. An invocation of the HSF solver gives the solution
Σ1 := HSF(HC 1,Q1,Preds1), which finally enables us to extract locks held information as
follows.

lhi(`) := {m ∈ Locks | ∀V : Σ1(Ri(V)) ∧ pci = `→ m = 1}

Note that the ∀-quantifier constraints that a specific location ` only holds a lock m if every
successor state leading to ` satisfies m = 1.

Example When we apply our analysis on the first thread of example 3.2, we get the fol-
lowing invariant.

Σ1(R1(V)) := (pc1 ∈ {`0, `11} ∧mx = 0 ∧my = 0 ∨
pc1 ∈ {`1, `2, `5, `6, `9, `10} ∧mx = 1 ∧my = 0 ∨
pc1 ∈ {`3, `4, `7, `8} ∧mx = 1 ∧my = 1)

The program locations are divided into three cases, namely when both lock variables mx
and my are 0, only mx is 1, and both locks are 1. For example, the locks held information
derived at program location `3 is (mx = 1 ∧my = 1).

3.3.2. Mover Information

Multi-threaded programs contain transactions because of the presence of transitions that
are right or left mover. For this analysis, we modify our used representation for transition
relations from stepi(VG, Vi, V

′
G, V

′
i) to ρi(pci,pc

′
i,Wi, Ri). These assertions consider only

thread-local program location variables pci,pc′i and two new setsWi, Ri describing global
variables that are written and read in the represented statement. Note that this information
can efficiently be obtained by static analysis.

27

3. Model Checking with Transaction Summarization

Our analysis partitions these new transition relations into four mover types by means of
previously calculated lock held sets. Each mover type is represented by a boolean function
defined over pairs of program locations: rmi(pci,pc

′
i), lmi(pci,pc

′
i), bmi(pci,pc

′
i), and

nmi(pci,pc
′
i). If a function returns true for some program locations (`, `′), it determines a

transition ρi(pci,pc′i,Wi, Ri) whenever pci = ` and pc′i = `′.
Following the theory of reduction[22] and its application in type systems [14] and model

checking [30], we use the following semantics for each function:

• rmi(pci,pc
′
i) determines right mover transitions ρi(pci,pc′i,Wi, Ri).

It returns true if the transition represents an acquire statement.

• lmi(pci,pc
′
i) determines left mover transitions and, hence, returns true if the respec-

tive transition ρi(pci,pc′i,Wi, Ri) represents a release statement.

• bmi(pci,pc
′
i) determines both mover transitions. It returns true if the respective

transition ρi(pci,pc
′
i,Wi, Ri) satisfies one of the following two conditions. Firstly,

the transition only accesses local variables. Secondly, if a global variable x is accessed
from ρi then there is no other transition ρj(pcj ,pc

′
j ,Wj , Rj) of a different thread j

that accesses x when the intersection of common locks is empty and at least one
access is a write operation.

• nmi(pci,pc
′
i) determines non-mover transitions. It returns true if both the respective

transition ρi(pci,pc′i,Wi, Ri) and some transition from a different thread j accesses
some common global variable x when the intersection of common locks is empty
and at least one access is a write operation.

The constraint representation for the mover function follows.

rmi(pci, pc
′
i) := acq i(pci, pc

′
i), for i ∈ 1..N

lmi(pci, pc
′
i) := rel i(pci, pc

′
i), for i ∈ 1..N

nmi(pci, pc
′
i) := ρi(pci, pc

′
i,Wi, Ri) ∧ ρj(pcj , pc′j ,Wj , Rj) ∧(

Wi ∩Wj 6= ∅ ∨Wi ∩Rj 6= ∅ ∨Ri ∩Wj 6= ∅
)
∧(

lhi(pci) ∩ lhj(pcj) = ∅
)
, for i, exists j 6= i ∈ 1..N

bmi(pci, pc
′
i) := ρi(pci, pc

′
i,Wi, Ri) ∧

(∧
j∈1..N\{i}

ρj(pcj , pc
′
j ,Wj , Rj) ∧((

Wi ∩Wj = ∅ ∧Wi ∩Rj = ∅ ∧Ri ∩Wj = ∅
)
∨

(
lhi(pci) ∩ lhj(pcj) 6= ∅

)))
, for i ∈ 1..N

Although conservative, these checks may spuriously declare both mover transitions as
non-mover since the computation is not flow-sensitive, e.g., program states are not ex-
plored by following transition relations (like in reachable state analysis). Consequently,
our approach may introduce thread interleavings that are not possible in a real scheduling
due to some unreachable control locations.

28

3.3. Transaction Inference

Example (cont.) The first thread of example 3.2 is again used for illustration. We assume
that the program transitions are partitioned into acquire transitions acq1(pc1, pc

′
1), release

transitions rel1(pc1, pc
′
1), and other transitions ρ1(pc1, pc′1,W1, R1). The resulting mover

information is as follows.

rm1 := {(`0, `1), (`2, `3), (`6, `7)}
lm1 := {(`4, `5), (`8, `9), (`10, `11)}
nm1 := ∅
bm1 := {(`1, `2), (`3, `4), (`5, `6), (`7, `8), (`9, `10)}

3.3.3. Phase Information

In order to determine the transaction boundaries we use a boolean phase variable p for
each thread i. It states whether a transition within a transaction is in the pre-commit phase
(p = 1) or post-commit phase (p = 0). The phase variable is 1 at the beginning of each thread
and remains 1 as long as thread i is in the right mover part of a transaction. Note that both
mover transitions are also right movers and, hence, extend the pre-commit phase as long
as no (pure) left mover or non-mover occur.

Calculating the phase information is again done utilizing the HSF solver. Therefore, we
define the following set of Horn clauses over queriesQ2 := {Ph1(V, p), . . . ,PhN (V, p)} that
represents reachable states for each thread i extended by the phase variable p.

HC 2 := {init(V) → Phi(V, 1),
Phi(V, p) ∧ stepi(VG, Vi, V

′
G, V

′
i) ∧ rmi(pci, pc

′
i) → Phi(V

′, 1),
Phi(V, p) ∧ stepi(VG, Vi, V

′
G, V

′
i) ∧ (lmi(pci, pc

′
i) ∨ nmi(pci, pc

′
i))→ Phi(V

′, 0),
Phi(V, p) ∧ stepi(VG, Vi, V

′
G, V

′
i) ∧ bmi(pci, pc

′
i) → Phi(V

′, p)}

The predicate function is initialized with predicates over program counter and phase vari-
ables as follows.

Preds2(Phi(V, p)) := {pci = `i | `i ∈ Li} ∪ {p = 0, p = 1}

We invoke the HSF solver to get the solutions Σ2 := HSF(HC 2,Q2,Preds2).

Example (cont.) When applied to our ongoing example, the solution corresponding to
the first thread indicates two pre-commit phases by the following disjunction.

Σ2(Ph1(V, p)) := (p = 1 ∧ pc1 ∈ {`0, `1, `2, `3, `4} ∨
p = 0 ∧ pc1 ∈ {`5} ∨
p = 1 ∧ pc1 ∈ {`6, `7, `8} ∨
p = 0 ∧ pc1 ∈ {`9, `10, `11})

Exemplary, the state at location `3 is in a pre-commit phase and the state at location `5 is
either in a post-commit phase or outside a transaction.

29

3. Model Checking with Transaction Summarization

3.3.4. Transaction Boundaries

A program location is inside a transaction if it is not contained in an initial state and either
the phase variable is 1 (pre-commit phase) or all enabled transitions from this state are left
movers. Similarly, a program location is outside a transaction if it is either contained in an
initial state or the phase variable is 0 and there is a enabled transition that is no left mover.
We represent transaction boundaries for each thread i by using two boolean functions
defined over program locations. The function Ini(pci) holds when pci is a location inside
a transaction, while Out i(pci) holds when pci is a location outside any transaction. The
respective constraints extract this transaction information from the solution Σ2 as follows.

Ini(pci) := Σ2(Phi(V, p)) ∧ ¬init(V) ∧
(p = 1 ∨ p = 0 ∧ ∀pc′i : lmi(pci, pc

′
i) ∨ bmi(pci, pc

′
i))

Out i(pci) := ¬Ini(pci)

Given the transaction information, we partition the transition relation of a thread depend-
ing on the program locations of the start state and the target state. step ini, step inout i, and
step outout i are relations that represent transitions inside, into, and outside transactions,
respectively.

step ini(VG, Vi, V
′
G, V

′
i) := stepi(VG, Vi, V

′
G, V

′
i) ∧ Ini(pc

′
i) ∧ ¬error(V ′)

step inout i(VG, Vi, V
′
G, V

′
i) := stepi(VG, Vi, V

′
G, V

′
i) ∧ Ini(pci) ∧

Ä
Out i(pc

′
i) ∨ error(V ′)

ä
step outout i(VG, Vi, V

′
G, V

′
i) := stepi(VG, Vi, V

′
G, V

′
i) ∧Out i(pci) ∧

Ä
Out i(pc

′
i) ∨ error(V ′)

ä
Note that we only declare transition relations as inside transactions (step ini transitions)
if their primed variables do not intersect with the error states. This is a necessary step to
ensure soundness since such error states may contain program locations within transac-
tions from two or more threads. As transactions are summarized during verification, pro-
gram locations inside multiple transactions are never explored. Hence, we have to split
the transactions on potential error states to enable interleaving on the respective program
locations.

Example (cont.) We obtain the following results for all threads.

Out1 := {`0, `6, `11} In1 := {`1, `2, `3, `4, `5, `7, `8, `9, `10}
Out2 := {`0, `3} In2 := {`1, `2}
Out3 := {`0, `3} In3 := {`1, `2}

3.4. Proof Rule

In this section, we present our proof rule that combines thread-modular reasoning inside
transactions with Owicki-Gries reasoning outside transactions. The proof rule lists condi-
tions for each thread i ∈ 1..N over:

• N queries Pi(VG, Vi, V
′
G, V

′
i) representing path edge information.

30

3.4. Proof Rule

• N queries Summi(VG, Vi, V
′
G, V

′
i) representing transaction summaries.

• N queries Ri(V) representing state reachability information outside transaction bound-
aries.

As before, V denotes the tuple of variables (VG, V1, . . . , VN). All the clauses from (1) to (10)
are replicated for each i ∈ 1..N :

(1) init(V)→ Ri(V)

(2) Ri(V) ∧ step ini(VG, Vi, V
′
G, V

′
i)→ Pi(VG, Vi, V

′
G, V

′
i)

(3) Pi(VG, Vi, V
′
G, V

′
i) ∧ step ini(V

′
G, V

′
i , V

′′
G , V

′′
i)→ Pi(VG, Vi, V

′′
G , V

′′
i)

(4) Pi(VG, Vi, V
′
G, V

′
i) ∧ step inout i(V

′
G, V

′
i , V

′′
G , V

′′
i)→ Summi(VG, Vi, V

′′
G , V

′′
i)

(5) Ri(V) ∧ step outout i(VG, Vi, V
′
G, V

′
i) ∧ step=i (V, V ′)→ Ri(V

′)

(6) Ri(V) ∧ Summi(VG, Vi, V
′
G, V

′
i) ∧ step=i (V, V ′)→ Ri(V

′)

(7) Ri(V) ∧ Rj(V) ∧ step outout j(VG, Vj , V
′
G, V

′
j) ∧ step=j (V, V ′)→ Ri(V

′)

for j ∈ 1..N \ {i}
(8) Ri(V) ∧ Rj(V) ∧ Summj(VG, Vj , V

′
G, V

′
j) ∧ step=j (V, V ′)→ Ri(V

′)

for j ∈ 1..N \ {i}

(9) Ri(V) ∧ error(V)→ false

The clause (1) considers initial states as reachable states. The clauses (2), (3) and (4) do
thread-modular reasoning inside transaction boundaries. The clauses (5), (6), (7) and (8)
perform Owicki-Gries reasoning outside transactions. The constraint step=i (V, V ′) from
the body of clauses (5) and (6) requires that variables local to all threads except i are un-
changed. The last clause (9) checks that states reachable outside transactions do not inter-
sect the error states.

We let HC 3 refer to a set containing the above clauses. These clauses are defined overQ3

representing queries for reachability, path-edges, and transaction summaries as follows.

Q3 := { R1(V), . . . ,RN (V),
P1(VG, V1, V

′
G, V

′
1), . . . , PN (VG, VN , V

′
G, V

′
N)

Summ1(VG, V1, V
′
G, V

′
1), . . . ,SummN (VG, VN , V

′
G, V

′
N) }

The predicate function Preds3 := λq ∈ Q3.∅ is initialized with the empty set to consider
every state utilizing the HSF solver: Σ3 := HSF(HC 3,Q3,Preds3) . The existence of a
solution Σ3 guarantees that the program given in clause-form is safe (see Section 3.5).

Example (cont.) We now show the obtained invariant for reachable states of our ongoing
example. Remember the used error constraint (x = 11 ∧ pc1 = `11 ∧ pc2 = `3 ∧ pc3 = `3)
for safety checking. Since this constraint only checks for the last location of each thread,

31

3. Model Checking with Transaction Summarization

we do not present results for the path edges.

Σ3(R1(V)) :=
(
pc1 = `0 ∧ mx = 0 ∧ pc3 ∈ {`0, `3} ∧ (pc2 = `0 ∧ x = 2 ∨

pc2 = `3 ∧ x = 4
)
∨(

pc1 = `6 ∧ mx = 1 ∧ pc3 ∈ {`0, `3} ∧ (pc2 ∈ {`0, `3} ∧ x ≤ 7 ∧ 2x + a ≤ 7 ∨
pc2 ∈ {`0, `3} ∧ x ≤ 7 ∧ 2x + a ≥ 13)

)
∨(

pc1 = `11 ∧ mx = 0 ∧ pc3 ∈ {`0, `3} ∧ (pc2 ∈ {`0, `3} ∧ x ≤ 7 ∨
pc2 = `3 ∧ x ≤ 9 ∨
pc2 ∈ {`0, `3} ∧ x ≥ 13 ∧ 2x + a ≥ 13)

)
The solution for R1(V) is divided into three outer disjuncts representing locations outside
transactions ({`0, `6, `11}). Apparently, the location of the third thread has no influence on
the result since this thread does not manipulate variable x, which is contained in error(V).
Regarding the cases for pc1 = `0 and pc1 = `6, the two inner disjuncts represent execu-
tions where either thread 2 has not yet started or has executes before thread 1, respectively.
The case for pc1 = `11 has three inner disjuncts for executions where thread 2 has not yet
started, finished execution after thread 1, or executes before thread 1, respectively.

Σ3(R2(V)) :=
(
pc2 = `0 ∧ pc3 ∈ {`0, `3} ∧ (mx = 0 ∧ x ≤ 7 ∨

mx = 0 ∧ x ≥ 13 ∧ 2x + a ≥ 13 ∨
mx = 1 ∧ pc1 = 6 ∧ x ≤ 7

)
∨(

pc2 = `3 ∧ pc3 ∈ {`0, `3} ∧ (mx = 0 ∧ x ≤ 9 ∨
mx = 0 ∧ x ≥ 13 ∧ 2x + a ≥ 13 ∨
mx = 1 ∧ pc1 = 6 ∧ x ≤ 7)

)
As before, the invariant of R2(V) is divided by outer disjuncts representing locations out-
side transactions ({`0, `3}). The inner disjuncts separate cases where the first thread has
already finished its execution or is at location `6.

Σ3(R3(V)) := pc3 ∈ {`0, `3} ∧ (pc1 = `0 ∧ pc2 = `0 ∧ mx = 0 ∧ x = 2 ∨
pc1 = `0 ∧ pc2 = `3 ∧ mx = 0 ∧ x = 4 ∨
pc1 = `6 ∧ pc2 ∈ {`0, `3} ∧ mx = 1 ∧ x ≤ 7 ∨
pc1 = `11 ∧ pc2 = `0 ∧ mx = 0 ∧ x ≤ 7 ∨
pc1 = `11 ∧ pc2 = `3 ∧ mx = 0 ∧ x ≤ 9 ∨
pc1 = `11 ∧ pc2 ∈ {`0, `3} ∧ mx = 0 ∧ 2x + a ≥ 13 ∧ x ≥ 13)

Our proof rule induces solutions for R3(V) that do not depend on the location of thred 3
there is no access of variable x. The disjuncts represent already mentioned interleaving
orders of thread 1 and thread 2.

3.5. Soundness Proof (Sketch)

We now show the correctness of our proof rules, i.e., if the program may reach a state that
intersects with error(V), our verification approach explores this state. We rely on the fact
that erroneous states are strictly located outside transactions since transition relations are
disjunctively partitioned into step in , step inout , and step outout , and according to their
definition only the last two transition types may intersect with error states. Additionally
we assume that every transaction will finish its computation in a finite number of transi-
tion steps n.

32

3.5. Soundness Proof (Sketch)

Theorem 3.1 (Summarization). Let s0, . . . , s be a sequence of states that result from some tran-
sition applications with s0 |= init(V) and s |= ϕreach ∧ error(V). Then, there is also a state
s ′ |= Ri ∧ error(V) that is reachable by a sequence of transactions starting from s0.

Proof. All occurring states up to s are disjunctively either states outside transactions, states
in a pre-commit phase of a transaction, or states in a post-commit phase of a transaction.
This can be proven by the fact that states in the pre-commit phase have phase value 1 and
states in the post-commit phase have phase value 0. States outside transactions are by
definition disjunct.

Additionally it is not possible to have a sequence of two consecutive states where the
first state is in a post-commit phase and the second state is in a pre-commit phase. This
can be shown by contradiction because this situation needs a phase variable that goes from
0 to 1 and, hence, needs a right mover transition in the post-commit phase, which is not
possible.

Now we can show our assertion. Since all states are disjunctively partitioned and states
in a pre-commit phase precede states in the post-commit phase, we can transform the
sequence of transitions that lead to s in an equivalent sequence that leads to s ′. We do this
by appropriately right commuting transitions leading to states in the pre-commit phase
and left commuting transitions leading to states in the post-commit phase so that: (1) for
every thread i no transition from a different thread j occurs in the middle of a transaction
from thread i, and (2) the (optional) committing transitions in the resulting transactions
are executed in the same order as in the original transition sequence. From the properties
of right and left movers we get that the new sequence also leads to a state s ′ that intersects
with the error states.

Theorem 3.2 (Proof rule). Let R1, . . . ,RN , P1, . . . , PN , and Summ1, . . . ,SummN satisfy the
clauses from (1) to (9). We prove safety for each thread i by showing that A := s |= Ri for each
reachable error state s |= ϕreach ∧ error(V).

Proof. We use induction over the length k of a shortest computation segment s1, . . . , sk
such that s1 |= init and sk = s . For the base case k = 1, A holds because of clause (1).
For the induction step we assume that A holds for states reachable in k ≥ 1 and prove this
for their successor states. Regarding to theorem 3.1 we only have to consider transitions
outside transactions and summary relations. Clauses (3) and (4) do transition composition
to get Summi relations.

Let sk |= Ri for each thread i. If sk does not have any successor state, i.e., ¬(∃sk+1 :
(sk, sk+1) |= stepi), we do not have to consider any further state. Otherwise, we choose a
successor state sk+1 using one of the available transitions.

• A transition that is outside any transaction, i.e., (sk, sk+1) |= step outout i. From
clause (5) follows that sk+1 |= Ri so that A holds.

• A transition that represents a transaction summarization, i.e., (sk, sk+1) |= Summi.
From clause (6) follows that sk+1 |= Ri so that A holds.

To show that sk+1 |= Rj for each thread j ∈ 1..N \ {i} we rely on the clauses (7) and (8)
in the same manner as we did with clauses (5) and (6).

33

4. Model Checking with
May-Happen-in-Parallel Information

In this chapter, we introduce may-happen-in-parallel (MHP) information for facilitating
software verification of multi-threaded programs. MHP returns for every pair of state-
ments whether it may happen in parallel during some execution of the program. Such
information is valuable for techniques like program optimization, debugging, program
understanding tools, and detecting synchronization anomalies as race conditions or dead-
lock situations. Regarding verification, MHP information can be elegantly used to reduce
the number of program states that have to be inspected and, thus, tackles the mentioned
state-explosion problem.

Formally, an MHP relation mhp : La × Lb contains all pairs of program locations from
threads a and b, respectively, that may happen in parallel, i.e., if a pair of control locations
`p ∈ La and `q ∈ Lb may happen in parallel, then there is a state s |= ϕreach such that
s → (pca = `p) ∧ (pcb = `q).

The relation mhpa,b(pca,pcb) = {(`p, `q), (`r, ∗)} states that `p of thread a may execute
in parallel to `q of thread bwhereas location `r may execute in parallel to any location from
thread b.

In the following section we illustrate the intuition behind MHP information by a small
example. We describe an existing data flow analysis that is able to calculate MHP informa-
tion in a worst-case-time bound of O(S3) where S is the number of program statements.
Finally, we present our approach for combining MHP with existing proof rules for the
verification of multi-threaded software.

4.1. Illustration

We again assume a programming model that is based on shared-memory and locks for
thread-synchronization that are accessed only with respective acquire and release state-
ments. Additionally, we consider dynamic creation and joining of threads by start and join
statements, respectively. Other primitives that may influence MHP (e.g., signals, barriers,
atomic operations, etc.) are not considered for the sake of simplicity (our examples are
lacking such features).

Example Let us consider the example program MHP-1 from Figure 4.1. It consists of
two threads where t1 is meant as the main thread and t2 represents a worker thread.
Thus, t1 starts and joins t2 by using explicit statements at program locations `0 and `4,
respectively. Both threads access the global variable x while being protected by the lock
mx. We assume the following MHP information (in Section 4.2, we show an algorithm to

34

4.2. Dataflow Analysis for MHP

int x=0, mx=0;

// Thread t1

0: start(t2);
1: acquire(mx);
2: x=1;
3: release(mx);
4: join(t2);
5:

// Thread t2

6: acquire(mx);
7: x = x+x;
8: release(mx);
9:

Figure 4.1.: Program MHP-1 consisting of two threads.

obtain this information):

mhp1,2(pc1,pc2) = {(`1, ∗), (∗, `6), (∗, `9), (`4, ∗)}

mhp1,2(pc1,pc2) is a relation describing MHP information of threads t1 and t2, respec-
tively. The symbol ∗ describes “any” control location of the corresponding thread. Since
t1 starts t2 at location `0, the statements of t2 may not execute before `1, i.e., there is no
(`0, ∗) in the set. Program locations `1 and `4 are not protected by the lock mx and, hence,
may execute in parallel with any statement of t2 (since t2 is created but not joined). The
locations `2 and `3 are protected by mx, which encapsulates them from t2 at locations
`7 and `8 since these are also protected by mx. Finally, there is no (`5, ∗) in the MHP
set because t2 is joined from t1 after `4. Note that the MHP relation is symmetric, i.e.,
∀`a ∈ L1,∀`b ∈ L2 : (`a, `b) ∈ mhp ⇐⇒ (`b, `a) ∈ mhp.

4.2. Dataflow Analysis for MHP

Now we describe a slightly modified version of a state-of-the-art data flow analysis pro-
posed by Naumovich et al. [26], without considering signal handling. In general, calcu-
lating precise MHP information for recursive programs with dynamic thread creation is
undecidable [32]. However, some papers show that practical MHP analysis is possible
by conservative overapproximations [9, 21, 25, 26, 5, 1]. Even if the original method is
constructed for the Java concurrency model, it is easily adaptable to our used program-
ming model. The worst case time bound of the applied algorithm remains O(S3) with S
representing the number of program statements.

4.2.1. Parallel Execution Graph

The dataflow algorithm is based on a so-called parallel execution graph (PEG) to represent
concurrent programs. This graph is constructed on inter-threaded control flow graphs
(CFGs) combined with special edges for thread start and join. We use inlining for all
procedures except communication methods (thread start, thread join, acquire lock, and
release lock) resulting in a single PEG for all threads. Contained nodes are partitioned into
two types, calls to communication methods and other statements. Call to communication

35

4. Model Checking with May-Happen-in-Parallel Information

methods are labeled in the form (object ,name, caller) where object is the object owning the
method, name is the label of the method, and caller is the identifier of the calling thread.
For convenience, we use the symbol ∗ for “any” value in the object or caller field. The
labels for all other nodes simply contain the statements.

Example Figure 4.2 shows the parallel execution graph corresponding to the example
from Figure 4.1. The solid edges represents local control flow within a thread whereas the
dashed edges are used for thread creation/joining. Nodes with round edges are calls to
communication methods, rectangles are nodes for other statements. The shaded regions
include nodes that are protected by a lock.

(*,begin,main)

(t1,start,main)

(lock,entry,main)

(lock,exit,main)

x=1

(t1,join,main)

(*,end,main)

(*,begin,t1)

(lock,entry,t1)

(lock,exit,t1)

x=x+1

(*,end,t1)

thread t1 thread t2

1a

1b

1c

1d

1e

1f

1g

2a

2b

2c

2d

2e

Figure 4.2.: PEG for the example from Figure 4.1.

4.2.2. Analysis

The idea behind the dataflow analysis is to infer that some nodes in the PEG may happen
in parallel with others, propagate this information to successor nodes, and iterate until a
fixpoint is reached. The approach relies on two sets for each node n. The first set MHP(n)
are indeed all nodes that may happen in parallel to n. The second set OUT (n) are all nodes
that may happen in parallel to successors of n. Although the analysis strictly operates in
forward-flow direction, there are two subtle deviation from standard data flow algorithms.
Firstly, a symmetric-step is required after each iteration that inserts a node m to the set
MHP(n) whenever n is in MHP(m). Secondly, soundness requires that the first and the
last node of a thread t (i.e., (∗, begin, t) and (∗, end , t) nodes, respectively) may happen

36

4.2. Dataflow Analysis for MHP

in parallel to every node from a different thread. Otherwise non-enabled threads lead to
deadlock situations.

Preliminaries Let G = (V ,E) be the PEG consisting of nodes V and edges E . Addition-
ally, letNT (t) be a function that returns all nodes of a thread t; letNL(obj) be a function that
returns all nodes that are protected by lock obj; let Thread(n) be a function that returns the
corresponding thread of node n; let StartPred(n) be a function that returns respective start
nodes (t, start , ∗) ⊆ V if n is a thread begin node (∗, begin, t) ∈ V , otherwise it returns the
empty set ∅; and finally, let LocalPred(n) be a function that returns all predecessor nodes
of n. Note that all of the previous functions can be determined statically.

Computing MHP sets The analysis computes MHP(n) sets for a node n utilizing propa-
gated information from predecessor nodes as follows.

MHP(n) = MHP(n) ∪
{⋃

p∈StartPred(n)OUT (p) \NT (Thread(n)), if n ∈ (∗, begin, ∗)⋃
p∈LocalPred(n)OUT (p), otherwise

(4.1)
Let us assume that n is the first node of a thread t and m is a node that starts t. Then all
nodes that may run in parallel to m may also run in parallel to n (except nodes that are in
t) since thread creation is non-blocking. For all other nodes than thread begin nodes the
MHP(n) set is the union of propagated information from all predecessor nodes.

Computing OUT sets The OUT (n) set represents MHP information that has to be passed
to successor nodes. For every node n it contains the set of nodes that currently run in par-
allel together with some nodes that run in parallel to the successors and without some
nodes that do not run in parallel with successor nodes.

OUT (n) = (MHP(n) ∪ genmhp(n)) \ killmhp(n) (4.2)

The equation requires a genmhp(n) set and a killmhp(n) set. The former set is defined by the
following equation.

genmhp(n) =

{
(∗, begin, t), if n ∈ (t, start , ∗)
∅, otherwise

(4.3)

For start nodes, genmhp(n) contains the corresponding start node of the thread that is
started by n. For all other nodes the set is empty. Intuitively, parallelism is only intro-
duced by thread creation.

killmhp(n) =

NT (t), if n ∈ (t, join, ∗)
NL(m), if n ∈ (m, acquire, ∗)
∅, otherwise

(4.4)

If the currently inspected node n joins another thread t, then nwill block until t terminates.
Thus, successor nodes of n may not happen in parallel to any node of thread t, i.e., NT (t).
If node n acquires a lock m, successor nodes of n may not run in parallel to other nodes
that also hold m.

37

4. Model Checking with May-Happen-in-Parallel Information

Fixpoint algorithm The algorithm is based on a worklist implementation, i.e., existing
nodes in the worklist will be sequentially processed until the list is empty. Figure 4.3
shows the algorithm, which basically consists of three stages. Firstly, the initial stage pre-

input
V - set of all PEG nodes

output
MHP(n) - set of nodes that may happen in parallel to n

vars
WL - worklist with nodes
OUT (n) - set of nodes that may happen in parallel to successors of n

begin
1 ∀n ∈ V :
2 killmhp(n) = genmhp(n) = MHP(n) = OUT (n) = ∅
3 case n ∈ (t, join, ∗)⇒ killmhp(n) = NT (t)
4 case n ∈ (m, acquire, ∗)⇒ killmhp(n) = NL(m)
5 case n ∈ (t, start , ∗)⇒ genmhp(n) = (∗, begin, t)
6 WL := {n ∈ (t, start , ∗) | t is the main thread}
7 whileWL 6= ∅ do
8 n := take from WL
9 MHPold (n) = MHP(n)
10 OUT old (n) = OUT (n)
11 if n ∈ (∗, begin, ∗)
12 MHP (n) = MHP (n) ∪⋃p∈StartPred(n)OUT (p) \NT (Thread(n))

13 else
14 MHP (n) = MHP (n) ∪⋃p∈LocalPred(n)OUT (p)

15 OUT (n) = (MHP(n) ∪ genmhp(n)) \ killmhp(n)

16 if MHPold (n) 6= MHP(n) then
17 ∀m ∈ (MHP(n) \MHPold (n)) :
18 MHP(m) = MHP(m) ∪ {n}
19 WL = WL ∪ {m}
20 if OUT old (n) 6= OUT (n) :
21 WL = WL ∪ (LocalSucc(n) ∪ StartSucc(n))
22 ∀n ∈ V :
23 MHPold (n) = MHP(n)
24 case n ∈ (∗, begin, t)⇒ MHP(n) =

⋃
j∈1..N\{t}NT (j)

25 case n ∈ (∗, end , ∗)⇒ MHP(n) =
⋃

j∈1..N\{t}NT (j)

26 ∀m ∈ (MHP(n) \MHPold (n)) :
27 MHP(m) = MHP(m) ∪ {n}

end

Figure 4.3.: May-happen-in-parallel algorithm.

pares genmhp and killmhp sets according to equations (4.3) and (4.4), respectively. Addition-
ally, the worklist WL is initialized with nodes from the main thread that may create other
threads (see lines 1-6). These are the only nodes that enable parallelism.

38

4.2. Dataflow Analysis for MHP

Iteration 1 2 3 4 5 6 . . .
WL (1b) (1c,2a) (2a,1d) (1d,2b) (2b,2a,1e) (2a,1e,1c,1d,2c) . . .
n 1b 1c 2a 1d 2b

MHP(n) ∅ {2a} {1c} {2a} {1c,1d}
OUT (n) {2a} {2a} {1c} {2a} {1c}

Sym. Step × X × X X

Table 4.1.: Iteration sequence for example program MHP-1.

Secondly, the iteration stage computes MHP and OUT using the worklist containing all
nodes that have to be investigated. Therefore, it uses the equations (4.1) and (4.2) for com-
putation (see lines 11-15) and compares the new results with the old ones. If the MHP(n)
set of node n changed by a set of additional nodes M , the mentioned symmetric step adds
n to the MHP(m) set for all nodesm ∈M . Also, these new nodesM are added to the work-
list in order to consider successive nodes (see lines 16-19). If the OUT (n) set changed, all
successor nodes (from the local thread and from created threads) are added to WL (see
lines 20-21).

Finally, after the algorithm finishes its iterations and the worklist is empty, the MHP
sets for begin and end nodes get initialized with all nodes from different threads (see lines
22-27). Together with a consecutive symmetric step this is necessary for the correctness of
the algorithm. The proofs for soundness and termination can be found in [26].

Example Table 4.1 illustrates the first six iteration steps of the MHP algorithm when ap-
plied to the program MHP-1. Each iteration step is represented as separate column begin-
ning from the left. The rows show the content of the respective worklist WL, the current
node n, its MHP(n) and OUT (n) sets, and a boolean flag indicating whether the current
iteration performs a symmetric step.

Initially, the worklist contains the only start node from the main thread (1b). The algo-
rithm picks this entry as current node and adds node 2a to the OUT (1b) set and to the
worklist (and the local predecessor node 1c) since it is contained in genmhp(n). The next
iteration leads to a new entry in MHP(1c) due to the OUT of its predecessor. This results
in a symmetric step so that also 1c is added to MHP(2a). The third iteration takes 2a as
current node, but has no new node that may happen in parallel to it. Consider iteration 5
where the MHP(2b) set differs from OUT (2b) because the kill set ranges over all protected
nodes by the lock, i.e., killmhp(2b) = {1d, 1e, 2c, 2d}.

The algorithm continues this computation until a fixpoint is reached, i.e., the worklist is
empty, and the final step adds begin and end nodes to every node from a different thread.
The following map presents the results where bold entries are obtained by the final step.

MHP = (1a, 1g → {2a, 2b, 2c, 2d, 2e}, 1b → {2a, 2e},
1c, 1f → {2a, 2b, 2c, 2d, 2e}, 1d, 1e → {2a, 2b, 2e},
2a, 2e → {1a, 1b, 1c, 1d, 1e, 1f, 1g}, 2b → {1a, 1c, 1d, 1e, 1f, 1g, }
2c, 2d → {1a, 1c, 1f, 1g})

39

4. Model Checking with May-Happen-in-Parallel Information

4.3. Proof Rules

In this section, we present our combination of the known proof rules from section 2.5
with given MHP information. Like the original versions of monolithic and Owicki-Gries
reasoning, our rules can be automated by means of the presented HSF algorithm in sec-
tion 2.3. We still consider a multi-threaded program that consists of N threads as a tuple
(V, init ,R, error), with V , init , and error as defined in Section 2.4.

4.3.1. Monolithic Proof Rule (MHP)

The extended monolithic proof rules list the same three conditions over a single query
symbol as the clauses CMx from Section 2.5. However, the second clause contains addi-
tional MHP constraints in the body as follows.

CM1-MHP: init(V) → R(V)

CM2-MHP: R(V) ∧ stepi(VG, Vi, V
′
G, V

′
i) ∧ step=i (V, V ′) ∧∧

j∈1..N\{i}
Ä
mhpi,j(pci,pcj) ∧mhpi,j(pc

′
i,pcj)

ä
→ R(V ′)

CM3-MHP: Ri(V) ∧ error(V) → false

As opposed to clause CM2, which implicitly allows interleaving of all applicable threads,
our clause CM2-MHP constraints the possible transition relations to those related in MHP
(with current and successive program location). Obviously, utilizing MHP information is
straight-forward and allows a preselection of transitions.

4.3.2. Owicki-Gries Proof Rule (MHP)

We follow the same idea as above for combining the Owicki-Gries proof rule with MHP
information. The query symbols R1(V), . . . ,RN (V) are auxiliary assertions for reachable
states of each thread i ∈ 1..N .

CO1-MHP: init(V) → Ri(V)

CO2-MHP: Ri(V) ∧ stepi(VG, Vi, V
′
G, V

′
i) ∧ step=i (V, V ′) ∧∧

j∈1..N\{i}
Ä
mhpi,j(pci,pcj) ∧mhpi,j(pc

′
i,pcj)

ä
→ Ri(V

′)

CO3-MHP: Ri(V) ∧
Ä∨

j∈1..N\{i}Rj,l(V) ∧ stepj(VG, Vj , V
′
G, V

′
j) ∧

step=j (V, V ′) ∧∧k∈1..N\{j}
Ä
mhpj,k(pcj ,pck) ∧mhpj,k(pc′j ,pck)

ä)
→ Ri(V

′)

CO4-MHP: Ri(V) ∧ error(V) → false

Clause CO3-MHP allows explicit thread interleaving and, thus, is the proper condition
to utilize MHP. Like in the monolithic proof rules, we constraint possible transition rela-
tions from other threads to those related in MHP (with current and successive program
locations).

Example We illustrate our monolithic proof rule by applying it on the example program
from Figure 4.1 (the Owicki-Gries rule computes similar results). The transition system for
MHP-1 is shown in Figure 4.4 where transition relations are labeled ρ1 to ρ8. We use an

40

4.3. Proof Rules

VG = (x,t,mx), V1 = (pc1), V2 = (pc2)
init(VG, V1, V2) = (pc1 = `0 ∧ pc2 = `6 ∧ x = 0 ∧ t = 0 ∧ mx = 0)
step1(VG, V1, V

′
G, V

′
1) = (mv1(`0, `1) ∧ t′ = 1 ∧ skp(x,mx)) ∨ (ρ1)

(mv1(`1, `2) ∧ mx = 0 ∧ mx′ = 1 ∧ skp(x,t)) ∨ (ρ2)
(mv1(`2, `3) ∧ x′ = 1 ∧ skp(t,mx)) ∨ (ρ3)
(mv1(`3, `4) ∧ mx′ = 0 ∧ skp(x,t)) ∨ (ρ4)
(mv1(`4, `5) ∧ t = 2 ∧ skp(x,t,mx)) (ρ5)

step2(VG, V2, V
′
G, V

′
2) = (mv2(`6, `7) ∧ t = 1 ∧ mx = 0 ∧ mx′ = 1 ∧ skp(x,t)) ∨ (ρ6)

(mv2(`7, `8) ∧ x′ = x + x ∧ skp(t,mx)) ∨ (ρ7)
(mv2(`8, `9) ∧ mx′ = 0 ∧ t′ = 2 ∧ skp(x)) (ρ8)

Figure 4.4.: Representation of program MHP-1 as transition system.

additional global variable t to represent the semantics of start and join, i.e., thread t2
may not start before thread t1 assigns the value 1 to variable t (in transition ρ1) and the
join operation of thread t1 waits until thread t2 assigns the value 2 to the variable t (in
transition ρ8). We aim to prove that the program ends with a value for variable x that is
lower than 3, i.e., error(V) = (pc1 = `5 ∧ pc2 = `9 ∧ x ≥ 3).

s2s1
⍴1 s4s3 s5 s9

⍴3 ⍴4

⍴5

thread 1

thread 2 s7s6 s8

⍴6 ⍴7 ⍴8

⍴2

Figure 4.5.: Execution for program MHP-1.

We verify the example again utilizing the HSF solver and give the the transition system
and the MHP-based proof rule as input. As mentioned in section 2.3, the algorithm com-
putes a sequence of abstract reachability trees for every possible execution. Let us consider
the execution in Figure 4.5 where thread t2 is scheduled at the join statement of thread t1
in program location `4. The program states that are returned by abstract computation are
labeled s1 to s9.

In this example, we assume that the abstraction function initially only takes track of
the program locations, i.e., Preds = {pc1 = `1, . . . ,pc1 = `5,pc2 = `6, . . . ,pc2 = `9}. We
obtain the initial abstract state s1 as follows.

s1 := α(init(V),Preds) = (pc1 = `0 ∧ pc2 = `6)

Note that formulas that do not entail any predicate from Preds are abstracted, e.g., α(x =
0,Preds) = true . For the next step only transition relation ρ1 is applicable due to the
MHP constraints. The transaction ρ6 is not applicable because mhp1,2(pc1,pc2)→ (pc1 =

41

4. Model Checking with May-Happen-in-Parallel Information

`1 ∧pc2 = `6) but not mhp1,2(pc1,pc2)→ (pc1 = `1 ∧pc2 = `7). The abstract successor of
s1 is computed using the abstraction function and rule CM2-MHP as follows.

s2 := α(ρ2,Preds) = (pc1 = `1 ∧ pc2 = `6)

The following computations up to s9 are done similarly.

s3 := (pc1 = `2 ∧ pc2 = `6) s7 := (pc1 = `4 ∧ pc2 = `8)
s4 := (pc1 = `3 ∧ pc2 = `6) s8 := (pc1 = `4 ∧ pc2 = `9)
s5 := (pc1 = `4 ∧ pc2 = `6) s9 := (pc1 = `5 ∧ pc2 = `9)
s6 := (pc1 = `4 ∧ pc2 = `7)

The HSF algorithm stops the reachability computation on s9 since it intersects with the
error state. Yet, we cannot assert that the program is incorrect because abstraction was in-
volved. Consequently, HSF checks whether the logical inference yields a solution that still
violates the property clause (the one that contains the error assertion) when used without
any abstraction. For our example the algorithm returns a solution and, by that, shows the
spuriousness of the counterexample.

As a result, we obtain two new predicates that are used to refine the abstraction func-
tions. This allows us to eliminate the source of spuriousness so that the same counterex-
ample will not appear during subsequent abstract reachability computations. The new
predicates are as follows.

Preds := Preds ∪ {(x ≤ 2), (x + x ≤ 2)}

When performing another iteration with the new predicates, it turns out that no abstract
state intersects with the error state. Due to the used MHP information, no assertions about
variables t or mx are necessary to prove safety of the program. This can be demonstrated
by the following solution for reachable states that only contains states with program loca-
tions conform with the MHP set.Ä

(x ≤ 2) ∧ (x + x ≤ 2) ∧ (pc1 = `0 ∧ pc2 = `6 ∨
pc1 = `1 ∧ pc2 = `6 ∨
pc1 = `2 ∧ pc2 = `6 ∨
pc1 = `3 ∧ pc2 = `6 ∨
pc1 = `4 ∧ pc2 = `6 ∨
pc1 = `1 ∧ pc2 = `7 ∨
pc1 = `3 ∧ pc2 = `9 ∨
pc1 = `4 ∧ pc2 = `7)

ä
∨Ä

(x ≤ 2) ∧ (pc1 = `1 ∧ pc2 = `8 ∨
pc1 = `1 ∧ pc2 = `9 ∨
pc1 = `2 ∧ pc2 = `9 ∨
pc1 = `4 ∧ pc2 = `8 ∨
pc1 = `4 ∧ pc2 = `9 ∨
pc1 = `5 ∧ pc2 = `9)

ä
42

Part III.

Results and Conclusion

43

5. Experimental Results

This section gives details on the implementation of our verification methods and experi-
mental results for our example programs to which we applied the presented proof rules.
Both transaction-based reasoning and MHP-based reasoning aims to reduce interleavings
rather than improving precision of the analysis results. Hence, we are mainly interested in
how our tools behave regarding efficiency and scalability. To evaluate efficiency, we com-
pare the observed runtimes with those of two state-of-the-art verifiers for multi-threaded
programs. The first is Impara [34], a verifier that combines partial-order-reduction and
interpolation-based reasoning [23]. The second is Threader [29], the winner of SV-COMP
2013 in the concurrency category. Checking scalability is done by means of different ver-
sions for each example program with linearly increasing program sizes. Note that this
leads to an exponential increased problem size due to the additional number of interleav-
ings.

Our methods for transaction inference and verification are implemented utilizing the
HSF approach from section 2.3. Hence, each verification step is given as input declarative
specification, i.e., as proof rule written in the form of Horn-like clauses. The same holds
for examined example programs, which we manually translate from given C code. For
the MHP-based proof rule we assume that MHP information is given and, hence, add this
information by hand. Thus, the shown runtimes for our MHP approach does not contain
the needed timings for obtaining this information. However, the worst-case-time bound
for reasonable algorithms (cubic to the number of program statements) indicates that the
complexity is rather low compared to the verification task.

Synthetic Examples We use the shown example programs from section 3.2 to demon-
strate the potential of transaction summarization. Remember that accesses to shared vari-
ables are entirely protected by common locks in Program P1-1, whereas race conditions
may occur in both Program P2-1 and P3-1. Such a distinction allows us to identify im-
plications of various transaction sizes since the race conditions lead to additional non-
mover transitions. Every synthetic example program contains four increment statements
(pc1 = `3, pc1 = `7, pc2 = `1, and pc3 = `1). We repeat each of these statements x times
to get the programs P1-x, P2-x, and P3-x for x ∈ {5, 10, 50}, respectively. As mentioned,
this duplication allows us to quantify the scalability of our approach.

To underline the strength of MHP based verification, we present the program P4-1 that
is shown in Figure 5.5. It induces a race condition due to the unprotected access of global
variable x in thread-3. However, variable x is correctly protected by a common lock in
thread-1 and thread-2. This allows the threads to execute atomically relative to each
other. Only transitinos from thread-3 have to be scheduled in any possible interleaving.

Competition Example The program stack-safe-5 is a benchmark from the SV-COMP 2013
competition. It belongs to the most challenging examples for the partial-order-reduction

44

method implemented in Impara. During execution, two threads are used to push 5 items
onto a stack and pop the same items from the stack, respectively. Each operation is pro-
tected by the same mutex m resulting in a program without any race condition. The safety
assertion checks whether an underflow (< 0 elements) or an overflow (> 5 elements) oc-
cur. Similar to the synthetic examples, we vary the number of elements stored in the stack,
either 5 or 10. Additionally we use the slightly modified examples stack-unsafe-5 and
stack-unsafe-10 where an underflow of the stack may occur.

Results The experiments were performed on an Intel Xeon E5-2680 system with 2.8 GHz
and 8GB main memory. Table 5.1 shows the runtimes for each benchmark. We report
the expected verification result in Column 2 and a measure of the size of its control loca-
tion domain in Column 3. The timings of our new verification approaches are shown in
Columns 4 to 8 where the first three columns present partial results for executing mover-
analysis, transaction-in/out-analysis, and safety-checking, respectively. Column 7 sums
these partial results (TOG-HSF stands for the Transaction-Owicki-Gries proof rule imple-
mented using HSF). In Column 8, we show the results that are obtained utilizing MHP-
based reasoning by the monolithic proof rules. Column 9 presents results for Owicki-Gries
reasoning based on the HSF implementation for direct comparison with the TOG-HSF
column. (OG-HSF stands for Owicki-Gries proof rule implemented using HSF.) The last
three columns show runtimes that are obtained with the two mentioned state-of-the-art
verifiers. The results in column 10 are obtained with Impara [34] whereas the last two
columns show runtimes of two proof rules implemented in Threader (the first is based on
the Owicki-Gries rule, the second on the rely-guarantee rule).

For the sake of a better overview, we repeat the programs P1-1, P2-1, and P3-1 in the
Figures 5.2, 5.3, and 5.4, respectively. We mark specific program statements with “o” indi-
cating the ones which are repeated x times to get programs P1-x, P2-x, and P3-x.

 0

 100

 200

 300

 400

 500

 600

 0 50000 100000 150000 200000 250000 300000

ti
m

e
 (

se
c)

|PC1| * |PC2| * |PC3|

P1
P3

Figure 5.1.: Verification time for P1-x and P3-x with different program sizes.

The runtimes illustrate that reduction has a big impact on verification time for multi-
threaded programs. Especially transaction-summarization benefits from large atomic trans-

45

5. Experimental Results

action sequences. The most evident example is program P1-x where our approach out-
performs existing state-of-the-art verifiers by several orders of magnitude. Transaction
inference obtains here only four transactions for the whole program, which dramatically
reduces the number of possible thread interleavings. Note that the time for transaction
inference is negligible compared to the model checking time. The MHP-based method is
less efficient since it has to perform satisfiability computations for each interleaving step
(even if MHP information constraints most interleavings).

Figure 5.1 illustrates the verification time for transactional reasoning of program P1-
x and P3-x relatively to the product of the program size. In both examples the model
checking approach scales linearly with the input size (for x ∈ [0, 3 ∗ 106]) since the number
of transactions remains the same. However, when comparing P1-x and P3-x it gets obvious
that the efficiency of the transactional approach reduces with an increasing number of race
conditions. Due to the unprotected access to variable y in the latter example program
(in thread-3), thread-1 gets x additional transactions for each program statement that
accesses y. Consequently, there are 2 ∗ x additional interleaving points leading to the
illustrated performance difference.

As opposed to P3-x, the program P2-x induces race conditions on variable x. This vari-
able is contained in the error assertion and, hence, is not abstracted by the refinement
procedure of HSF. This explains the slow runtimes compared to the other examples. Nev-
ertheless, both transactional reasoning and the MHP-based approach is faster than the
other verification methods.

As mentioned, program P4-x highlights the strength of may-happen-in-parallel infor-
mation. As opposed to program-wide transactions, assertions can be made about pairs of
threads. The example contains a race condition because of the read access to variable x in
thread-3. However, this access has no influence on the error assertion and on the inter-
play between thread-1 and thread-2. MHP information provides hints to the verifier
that constraints interleaving during the locked regions. Transactional reasoning does not
benefit since the race condition make every statement that accesses x to a non-mover.

Even though our approaches show the best times for the unsafe stack example, the safe
version underlines again that small atomic regions lead to less efficiency.

Benchmark Availability For reproducibility, the benchmark files for programs P1-x, P2-
x, P3-x, and P4-x are online available. You can also find further information regarding this
thesis among necessary binaries and a script file that automates the test runs at
http://www7.in.tum.de/thesis/.

46

http://www7.in.tum.de/thesis/

int x=2, y=2, mx=0, my=0;

// Thread-1
int a;
0: acquire(mx);
1: a = x;
2: acquire(my);

o 3: y = y+a;
4: release(my);
5: a = a+1;
6: acquire(my);

o 7: y = y+a;
8: release(my);
9: x = 2*x+a;

10: release(mx);
11:

// Thread-2

0: acquire(mx);
o 1: x = x+2;

2: release(mx);
3:

// Thread-3

0: acquire(my);
o 1: y = y+2;

2: release(my);
3:

Figure 5.2.: Program P1-x

// Thread-1
int a;
0: acquire(mx);
1: a = x;
2: acquire(my);

o 3: y = y+a;
4: release(my);
5: a = a+1;
6: acquire(my);

o 7: y = y+a;
8: release(my);
9: x = 2*x+a;

10: release(mx);
11:

// Thread-2

o 0: x = x+2;
1:

// Thread-3

0: acquire(my);
o 1: y = y+2;

2: release(my);
3:

Figure 5.3.: Program P2-x

// Thread-1
int a;
0: acquire(mx);
1: a = x;
2: acquire(my);

o 3: y = y+a;
4: release(my);
5: a = a+1;
6: acquire(my);

o 7: y = y+a;
8: release(my);
9: x = 2*x+a;

10: release(mx);
11:

// Thread-2

0: acquire(mx);
o 1: x = x+2;

2: release(mx);
3:

// Thread-3

0: acquire(my);
o 1: y = y+2;

2: release(my);
3: y = 2;
4:

Figure 5.4.: Program P3-x

int x=2, mx=0;

// Thread-1

0: acquire(mx);
o 1: x = x+1;

2: release(mx);
3:

// Thread-2

0: acquire(mx);
o 1: x = x-1;

2: release(mx);
3:

// Thread-3
int a;

0: a=x;
1:

Figure 5.5.: Program P4-x with the given error assertion error(V) = x = 1 ∧ pc1 = `3 ∧
pc2 = `3 ∧ pc3 = `1

47

5. Experimental Results

Program

Exp. Result

≈ ∗|PC
i |

Mover

In-Out

TOG-HSF

Total

Mon-MHP

OG-HSF

Impara

OG-Threader

RG-Threader

P1-1
X

1
∗

1
0
2

0.4s
0.2s

0.4s
1.0s

21.6s
31.3s

0.9s
6.3s

1m
22s

P1-5
X

1
∗

10
3

0.8s
0.4s

1.8s
3.0s

1m
51s

13m
4s

1m
50s

4m
41s

T/O
P1-10

X
4
∗

1
0
3

1.5s
0.7s

3.8s
6.0s

6m
23s

78m
16s

T/O
T/O

T/O
P1-50

X
3
∗

1
0
5

19.3s
7.1s

1m
15s

1m
41s

T/O
T/O

T/O
T/O

T/O
P2-5

×
1
∗

10
3

0.9s
0.4s

1m
21s

1m
22s

1m
2s

33m
33s

58s
17m

12s
T/O

P2-10
×

4
∗

10
3

1.7s
0.6s

7m
23s

7m
25s

8m
24s

T/O
T/O

T/O
T/O

P2-50
×

3
∗

10
5

24.1s
6.7s

T/O
T/O

T/O
T/O

T/O
T/O

T/O
P3-5

X
1
∗

1
0
3

0.9s
0.4s

15.8s
17.1s

2m
42s

12m
19s

1m
23s

10m
17s

T/O
P3-10

X
4
∗

1
0
3

1.6s
0.6s

28.5s
30.7s

10m
9s

T/O
T/O

T/O
T/O

P3-50
X

3
∗

1
0
5

19.3s
5.8s

9m
14s

9m
39s

T/O
T/O

T/O
T/O

T/O
P4-5

X
2.5
∗

10
1

0.4s
0.2s

1.6s
2.2s

0.7s
13.3s

1m
37s

46.7s
30m

19s
P4-10

X
1
∗

1
0
2

0.5s
0.3s

3.7s
4.5s

1.6s
2m

44s
T/O

3m
3s

T/O
P4-50

X
2.5
∗

10
3

2.8s
2.6s

3m
31s

3m
37s

50.5s
T/O

T/O
66m

22s
T/O

stack-safe-5
X

1
∗

1
0
2

0.1s
0.1s

1.9s
2.1s

6.8s
8.7s

1m
45s

14.6s
1.4s

stack-safe-10
X

1
∗

1
0
2

0.1s
0.1s

25.4s
25.6s

34.7s
47.4s

10m
20s

2m
43s

4.7s
stack-unsafe-5

×
1
∗

10
2

0.1s
0.1s

0.3s
0.5s

0.9s
5.0s

2.7s
21.9s

0.8s
stack-unsafe-10

×
1
∗

10
2

0.1s
0.1s

0.3s
0.5s

0.9s
4.9s

1m
7s

4m
28s

1.2s

Table
5.1.:The

colum
ns

“TO
G

-H
SF”

and
“M

H
P”

represents
m

odelchecking
tim

e
using

our
new

proofrules.The
colum

n
“Total”

gives
the

tim
ings

added
from

transaction
inference

(C
olum

ns
4

and
5)

and
m

odel
checking

(C
olum

n
6).

The
fastest

verification
resultam

ong
those

displayed
in

colum
ns

7,8,9,10,11,12
is

show
n

in
bold

font.T/O
stands

for
tim

e
outafter

90
m

inutes.

48

6. Summary and Conclusion

We conclude the thesis with a short overview of the main contributions and their implica-
tions on the verification of multi-threaded software. Additionally, we present some areas
of possible future work.

Summary of contributions Most importantly, the state-space-explosion problem remains
one of the biggest challenges in computer science. However, we have shown that there are
two promising reduction techniques for efficient verification of concurrent programs (at
least when applied to our example programs). Both MHP information and transaction
summarization can dramatically reduce the number of thread interleavings that have to
be explored. The two approaches operate on different reduction schemes, i.e., MHP in-
formation reduces states by exclusion whereas transaction reasoning reduces transition
sequences that execute atomically. This difference leads to some valuable insights when
comparing experimental results.

Precise knowledge about program locations that may happen in parallel allows fine-
grained interleaving decisions for verification. As opposed to transaction summarization,
assertions can be made about pairs of threads instead of considering thread-local states
individually. We showed by example P4-x that there are cases in which MHP-based rea-
soning outperforms our method based on transactions. Simplified, these cases happen
when race conditions only occur between specific pairs of threads. Transactional reason-
ing manages a thread-local view on these race conditions and, hence, can not benefit from
such interaction behavior.

Although our MHP-based approach compares favourably with state-of-the-art verifiers,
we showed that transaction summarization is in most cases even more advanced. A priori
identified transactions can significantly improve the efficiency of compositional verifica-
tion of multi-threaded programs, yet without requiring deep and intricate modification
of the underlying solving techniques. Our experimental evaluation shows that the con-
ceptual separation of concerns, i.e., treatment of equivalence between interleavings via
transactions and keep track of interleavings using compositional proof system, can lead to
two orders of magnitude reduction of verification time.

Future Work The shown examples indicate encouraging efficiency and scalability re-
sults, however there are more comprehensive test cases necessary to emphasize on the
practical benefit. Additional real-world examples would also boost further improvements
of both MHP-based and transactional reasoning.

In order to enhance practicality, the approaches must support additional features of ex-
isting threading libraries or concurrency APIs. Some examples are dynamic thread cre-
ation/joining, barriers, condition variables, lock-free data structures, tasks, or transac-
tional memory. All of these features enable further reduction potential by more precise

49

6. Summary and Conclusion

information about concurrency behaviour of different threads. For MHP-based reason-
ing the information can be directly used to reduce control locations that may happen in
parallel, e.g, statements from a started thread may not happen before the respective start
statement of another thread. Regarding our other approach, transactions can be extended
for regions that are free from interference of other threads, e.g., by utilizing lock-free algo-
rithms and corresponding data types.

Currently, our proof rules do not support procedure handling. Thus, we rely on inlin-
ing which may highly reduce the efficiency of model checking. As opposed to sequential
software, interference of other threads may prevent simple procedure summarization (by
composition of all procedure transitions). There are efforts that incorporate procedures
of concurrent software into transaction summaries [30]. Unfortunately, unbounded stacks
are necessary for the implementation which would require considerable changes in the
solving process. A meaningful idea for future work is to summarize procedures in cases
without interleaving and inline procedures in all other cases.

50

Bibliography

[1] Shivali Agarwal, Rajkishore Barik, Vivek Sarkar, and Rudrapatna K. Shyamasundar.
May-happen-in-parallel analysis of x10 programs. In PPoPP, pages 183–193, 2007.

[2] Rajeev Alur, Robert K. Brayton, Thomas A. Henzinger, Shaz Qadeer, and Sriram K.
Rajamani. Partial-order reduction in symbolic state space exploration. In CAV, pages
340–351, 1997.

[3] Tony Andrews, Shaz Qadeer, Sriram K. Rajamani, Jakob Rehof, and Yichen Xie. Zing:
A model checker for concurrent software. In CAV, pages 484–487, 2004.

[4] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. The MIT Press,
2008.

[5] Rajkishore Barik. Efficient computation of may-happen-in-parallel information for
concurrent java programs. In LCPC, pages 152–169. Springer-Verlag, 2006.

[6] Dirk Beyer and Stefan Löwe. Explicit-state software model checking based on CEGAR
and interpolation. In FASE, 2013.

[7] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement. In CAV, 2000.

[8] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In
POPL, 1977.

[9] Evelyn Duesterwald and Mary Lou Soffa. Concurrency analysis in the presence of
procedures using a data-flow framework. In TAV4, pages 36–48, 1991.

[10] Tayfun Elmas, Shaz Qadeer, Ali Sezgin, Omer Subasi, and Serdar Tasiran. Simplifying
linearizability proofs with reduction and abstraction. In TACAS, pages 296–311, 2010.

[11] Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. A calculus of atomic actions. In
POPL, pages 2–15, 2009.

[12] Cormac Flanagan, Stephen N. Freund, Marina Lifshin, and Shaz Qadeer. Types for
atomicity: Static checking and inference for java. ACM Trans. Program. Lang. Syst.,
30(4), 2008.

[13] Cormac Flanagan and Shaz Qadeer. Transactions for software model checking. Electr.
Notes Theor. Comput. Sci., 89(3):518–539, 2003.

[14] Cormac Flanagan and Shaz Qadeer. Types for atomicity. In TLDI, pages 1–12, 2003.

51

Bibliography

[15] Patrice Godefroid. Partial-Order Methods for the Verification of Concurrent Systems - An
Approach to the State-Explosion Problem. PhD thesis, University of Liege, Computer
Science Department, 1994.

[16] Patrice Godefroid. Partial-Order Methods for the Verification of Concurrent Systems - An
Approach to the State-Explosion Problem. Springer, 1996.

[17] Sergey Grebenshchikov, Nuno P. Lopes, Corneliu Popeea, and Andrey Rybalchenko.
Synthesizing software verifiers from proof rules. In PLDI, 2012.

[18] Cliff B. Jones. Specification and design of (parallel) programs. In IFIP Congress, 1983.

[19] Shmuel Katz and Doron Peled. Verification of distributed programs using represen-
tative interleaving sequences. Distributed Computing, 6(2):107–120, 1992.

[20] Flavio Lerda, Nishant Sinha, and Michael Theobald. Symbolic model checking of
software. Electr. Notes Theor. Comput. Sci., 89(3):480–498, 2003.

[21] Lin Li and Clark Verbrugge. A practical mhp information analysis for concurrent java
programs. In LCPC, pages 194–208, 2005.

[22] Richard J. Lipton. Reduction: A method of proving properties of parallel programs.
Commun. ACM, 18(12):717–721, 1975.

[23] Kenneth L. McMillan. Lazy abstraction with interpolants. In CAV, 2006.

[24] Mayur Naik, Chang-Seo Park, Koushik Sen, and David Gay. Effective static deadlock
detection. In ICSE, pages 386–396, 2009.

[25] G. Naumovich and G. S. Avrunin. A conservative data flow algorithm for detecting
all pairs of statements that may happen in parallel. Technical report, Amherst, MA,
USA, 1998.

[26] Gleb Naumovich, George S. Avrunin, and Lori A. Clarke. An efficient algorithm for
computing mhp information for concurrent java programs. In ESEC/FSE-7, pages
338–354, 1999.

[27] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of Program Analy-
sis. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999.

[28] Susan S. Owicki and David Gries. An axiomatic proof technique for parallel programs
I. Acta Inf., 6, 1976.

[29] Corneliu Popeea and Andrey Rybalchenko. Threader: A verifier for multi-threaded
programs - (competition contribution). In TACAS, pages 633–636, 2013.

[30] Shaz Qadeer, Sriram K. Rajamani, and Jakob Rehof. Summarizing procedures in con-
current programs. In POPL, pages 245–255, 2004.

[31] Thomas W. Reps, Susan Horwitz, and Shmuel Sagiv. Precise interprocedural dataflow
analysis via graph reachability. In POPL, 1995.

52

Bibliography

[32] Richard N. Taylor. Complexity of analyzing the synchronization structure of concur-
rent programs. Acta Inf., 19:57–84, 1983.

[33] Antti Valmari. A stubborn attack on state explosion. Formal Methods in System Design,
1(4):297–322, 1992.

[34] Björn Wachter, Daniel Kroening, and Joel Ouaknine. Verifying multithreaded soft-
ware with Impact. In FMCAD, 2013.

53

	Abstract
	Outline of the Thesis
	Introduction and Background Theory
	Introduction
	Foundations
	Model Checking
	Logical Foundations
	Linear Arithmetic
	Horn-like Clauses

	Solving Horn-like Clauses
	Multi-threaded Programs
	Proof Rules for Verification of Multi-threaded Programs
	Monolithic Proof Rule
	Owicki-Gries Proof Rule
	Rely-Guarantee Proof Rule

	Verification Methods
	Model Checking with Transaction Summarization
	Lipton's Theory of Reduction
	Illustration
	Transaction Inference
	Locks-Held Information
	Mover Information
	Phase Information
	Transaction Boundaries

	Proof Rule
	Soundness Proof (Sketch)

	Model Checking with May-Happen-in-Parallel Information
	Illustration
	Dataflow Analysis for MHP
	Parallel Execution Graph
	Analysis

	Proof Rules
	Monolithic Proof Rule (MHP)
	Owicki-Gries Proof Rule (MHP)

	Results and Conclusion
	Experimental Results
	Summary and Conclusion
	Bibliography

