
FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Symbolic Representations of Semilinear
Sets

Michael Kerscher

FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Symbolic Representations of Semilinear Sets

Symbolische Darstellungen von semilinearen
Mengen

Author: Michael Kerscher
Supervisor: Univ.-Prof. Dr. Dr. h.c. Javier Esparza
Advisor: Dipl.-Math. Maximilian Schlund
Date: June 16, 2014

I assure the single handed composition of this master’s thesis only supported by
declared resources.

Munich, June 16, 2014 Michael Kerscher

Acknowledgments

I would like to thank my supervisor Prof. Javier Esparza for giving me the chance
to write my thesis at his chair and accepting to supervise my thesis. Additionally I
would like to express my gratitude to my advisor Maximilian Schlund who intro-
duced me to this interesting topic, gave me lots of helpful comments and advice,
always had time for my concerns, and for his endless patience. Furthermore, I
would also thank Michael Luttenberger who also gave me helpful comments.

Moreover, I am very grateful to Leonhard Rabel who proof-read this thesis, al-
ways listened to my problems and for being a really good friend for many years
now. Also I would like to thank my fellow students, especially Marek Kubica,
Lars Hupel and Paul Emmerich for lots of discussion and them helping me with
programming problems.

Of course I also want to thank the many friends who accompanied me over many
years, where I especially want to mention Bertram Wermuth and Stefan Huber
who always had an open ear for me when I needed them.

At last I want to thank my family for their unconditional support over all the years
and their understanding if I sometimes had only little time for them.

vii

Abstract

In this thesis, we analyse how number decision diagrams can be endowed with a
semiring structure. To show this we define addition and multiplication on these
automata and as well as the Kleene star on semilinear sets so they can be used for
the computation of fixed point equations with the newton method in the FPsolve
tool. As the explicit representation of semilinear sets has several disadvantages,
we translate them into special automata called number decision diagrams which
can be used to efficiently encode Presburger definable sets. We define addition and
multiplication on these automata by only using high-level automata operations
like intersection, union and projection. This number decision diagram represen-
tation has several advantages over the representation as semilinear sets, as these
automata have a canonical representation which allows for efficient equality and
membership tests. At last we also show a method which we suppose to extract a
superset of the constants of the semilinear sets from such an automaton.

ix

Zusammenfassung

In dieser Arbeit zeigen wir, wie number decision diagrams (NDDs) mit einer Se-
miringstruktur ausgestattet werden können. Dazu definieren wir Addition und
Multiplikation auf diesen Automaten. Zusätzlich definieren wir den Kleene Stern
Operator auf Semilinearen Mengen, um diese bei der Berechnung von Fixpunkt-
gleichungen mit Newton- und Kleenelösern in dem Tool FPsolve verwenden zu
können. Da die explizite Representation der Semilinearen Mengen mehrere Nach-
teile besitzt, transformieren wir diese in die NDD Darstellung, welche spezielle
endliche deterministische Automaten sind und dazu genutzt werden können, Pres-
burger definierbare Mengen effizient zu kodieren. Auf diesen Automaten defi-
nieren wir dann nur unter Verwendung von höheren Automatenoperationen wie
Schnitt, Vereinigung und Projektion die Addition und Multiplikation. Die NDD
Darstellung bietet einige Vorteile, da diese Automaten eine kanonische minimale
Darstellung besitzen, was es ermöglicht, effiziente Gleichheits- und Teilmengen-
tests durchzuführen. Zum Schluss zeigen wir ausserdem einen Algorithmus, der
vermutlich eine Obermenge von Konstanten der Semilinearen Menge aus einem
solchen Automaten extrahieren kann.

xi

xii

Contents

Acknowledgements vii

Abstract ix

Outline of the Thesis xvii

I. Introduction and Theory 1

1. Introduction 3
1.1. Motivation . 3
1.2. Previous and Related Work . 3

2. Foundations 5
2.1. FPsolve . 5

2.1.1. Semirings . 6
2.2. Semilinear Sets . 7
2.3. Parikh’s Theorem . 7
2.4. Number Decision Diagrams . 8

2.4.1. Signed Numbers . 9
2.4.2. Vectors of Numbers . 11
2.4.3. Minimality and Canonicity of Number Decision Diagrams . 12

2.5. Presburger Arithmetic . 12
2.5.1. Connection to Semilinear Sets 13
2.5.2. Connection to Automata / Number Decision Diagrams . . . 13
2.5.3. Automata to Semilinear Sets 13

3. Mathematical Theory 15
3.1. Representing Semilinear Sets with Number Decision Diagrams . . 15
3.2. Endowing Semilinear Sets and Number Decision Diagrams with a

Semiring Structure . 15
3.2.1. Representing Semiring Elements 15
3.2.2. Addition . 18
3.2.3. Multiplication . 18

xiii

Contents

3.2.4. Kleene Star . 19
3.2.5. Queries . 25

II. Algorithm and Implementation 27

4. Algorithms 29
4.1. Encoding of Automata Input . 29
4.2. Construction of an Automaton for the Kleene Star 30
4.3. Sum Automaton . 31
4.4. Construction of Automata Recognizing a Vector 32
4.5. Construction of Automata Recognizing a Period 32
4.6. Multiplication on Automata – High Level 33

4.6.1. Automata with One Variable 34
4.6.2. Automata with Many Variables 35

4.7. Direct Construction of the Multiplication Automaton 36
4.7.1. Proof . 38

4.8. Finding Constants in an Automaton 41
4.8.1. Conjecture . 43

4.9. Computing a Minimal Basis . 45

5. Implementation 47
5.1. GENEPI . 47

5.1.1. LASH . 49
5.1.2. MONA . 49
5.1.3. Comparison of LASH vs. MONA 49

5.2. Optimization . 50
5.2.1. LSBF vs. MSBF . 50
5.2.2. Componentwise Addition Compared to Addition of All Com-

ponents at once . 52
5.2.3. Order of Processing of Variables 52

6. Conclusion 55

7. Future work 57
7.1. Heuristic for a Good Processing Order during Multiplication 57
7.2. Extracting Constants from Automatons 57
7.3. Direct Creation of Multiplication Automaton 57

Appendix 61

xiv

Contents

A. FPsolve Benchmark for Semilinear Sets 61

List of Figures 63

List of Algorithms 65

Bibliography 67

xv

Contents

Outline of the Thesis

Part I: Introduction and Theory

CHAPTER 1: INTRODUCTION

This chapter introduces the topic of the thesis and the current state.

CHAPTER 2: THEORETICAL FOUNDATION

The theoretical foundation of the thesis is presented here.

CHAPTER 3: MATHEMATICAL THEORY

Mathematical theory used in the algorithms is explained here.

Part II: Algorithms and real Implementation

CHAPTER 4: ALGORITHMS

In this chapter the algorithms needed to implement the theoretical work are de-
scribed.

CHAPTER 5: IMPLEMENTATION AND OPTIMIZATIONS

The frameworks used and implementation are mentioned here. In addition the
chapter describes optimizations used in the implementation.

CHAPTER 6: CONCLUSION

We conclude the thesis.

CHAPTER 7: FURTHER WORK

Here we will talk about further work.

xvii

Part I.

Introduction and Theory

1

1. Introduction

1.1. Motivation

In this thesis we study symbolic representations of semilinear sets and their possi-
ble usage in tools like FPsolve[STL13]. FPsolve uses semirings to approximate the
solutions of fixed point equations with Newton’s and Kleene’s method. They have
to support efficient operations to get specific information from the solution. For
this we want to use semilinear sets to represent the input. To be able to work with
these semilinear sets, we have to endow them with a semiring structure to be able
to solve the equations on them. But as some operations on semilinear sets like the
multiplication are not efficient and do not support efficient queries like testing if a
vector is included in the set, we want to transform these sets to number decision
diagrams (NDDs). These NDDs are a canonical representation of sets of numbers
and they enable us to easily check for equality of two sets or the inclusion of one
set in the other. We also want to be able to check if a given vector is included
in the set. Therefore we show that these NDDs can be endowed with a semiring
structure and used in tools like FPsolve.

One of our design goals during the implementation was to be independent of the
underlying automata data structures. For this reason we use the GENEPI frame-
work, which serves as an abstraction layer between our implementation and the
actual automata library. All our algorithms are designed to be independent of the
used data structures to be able to easily switch from an automata representation to
other symbolic representations like Presburger formulae. Some of the algorithms
might seem to be overly complicated due to the fact that we do not have access
to the internal data structure but most of them have similar complexity than what
we would get if we had access.

1.2. Previous and Related Work

There have already been implementations of semilinear sets in FPsolve, but in
contrast to this work the multiplication and Kleene star operation required ex-

3

1. Introduction

ponential space which led to the implementation of an over-approximation with
multilinear sets [STL13]. Additionally, some kind of queries are not possible in an
efficient way. For example there is no efficient method to check whether a vector
is included in a set without solving a NP-complete problem. Moreover, the repre-
sentation grows exponentially during multiplication and application of the Kleene
star, and the minimizing process to filter redundant vectors also requires solving
NP-complete problems[STL13].

There is an ongoing research on extracting semilinear sets from NDDs, but at the
moment the known algorithms are only operating on specific subsets of semilin-
ear sets, or are complex and cause blow up in the semilinear set representation. In
[Ler05] Leroux describes a method for deciding in polynomial time whether a least
significant digit first NDD represents a Presburger-definable set. Moreover, he
provides an algorithm which computes, in polynomial time, a Presburger-formula
that defines the set represented by the NDD. For a special case of semilinear sets,
Lugiez characterizes these semilinear sets, where each linear set has the same pe-
riods and computes such sets from an automaton representing them in double
exponential time in [Lug04][Lug05]. Additionally, an algorithm for computing a
quantifier-free formula from an automaton representing the integer elements of a
polyhedron is described by Latour in [Lat05].

But, as these results provide too complicated, and more important, too specific
algorithms for extracting semilinear sets from an automaton representation and
these extracted sets are often blown up, we will stay in the NDD representation
and do not want to convert between these representations in our algorithms.

4

2. Foundations

2.1. FPsolve

To solve a fixed point equation x = f(x) over ω-continuous semirings, one can
compute the sequence 0, f(0), f2(0), . . . which converges to the least fixed point
µf [Kle52] which is the supremum of the sequence 0 ≤ f(0) ≤ f2(0) ≤ This
approach is known as Kleene’s method and it’s convergence can be accelerated
if the underlying semiring is commutative. [EKL07] show that Newton’s method
and the Hopkin-Kozen acceleration are instances of a general algorithm for com-
puting the least fixed point over arbitrary ω-continuous semirings. For idempotent
semirings they also show that their approach reaches µf after n iterations where n
is the number of equations[EKL07].

This result was used in [EKL10] to provide a new generic approach to solve data-
flow equations used in interprocedural dataflow analysis. They use ω-continuous
semirings instead of complete semilattices, which are commonly used in program
analysis frameworks. Also this new approach has the advantage that, contrary
to Kleene’s method, Newton’s method always terminates for arbitrary idempo-
tent and commutative semirings and gets an upper bound of n iterations for n
equations. Further analysis in [LS13] gives a lower bound for the convergence of
Newton’s method over commutative semirings.

FPsolve[FPs14] implements these results and is described in [STL13]. This C++-
framework is an implementation of Newton’s method on arbitrary ω-continuous
semirings. FPsolve is easily extended with new semirings which can be used in the
solver. To this end every semiring has to provide at least an addition, a multiplica-
tion and a Kleene star method. There are already some commonly used semirings
available like the float semiring, the free semiring, the prefix semiring, the tropi-
cal semiring and a semiring for commutative regular expressions. This thesis also
provides an implementation of the semilinear sets represented by NDDs which
can be used in the solver.

5

2. Foundations

2.1.1. Semirings

The following definition of semirings and further information can also be found
in [DKV09].

A monoid is a non-empty set M with an associative binary operation � on M and
a neutral element 1 with m� 1 = 1�m = m for all m ∈M . We write 〈M,�, 1〉 for
such a monoid. A monoid is commutative if m1�m2 = m2�m1 for all m1,m2 ∈M .
A monoid is idempotent if m�m = m for all m ∈M .

A semiring is a set S with two binary operations ⊕ and ⊗ and two elements 0 and
1 such that:

1. 〈S,⊕, 0〉 is a commutative monoid

2. 〈S,⊗, 1〉 is a monoid

3. distributivity laws (a⊕ b)⊗ c = a⊗ c⊕ b⊗ c and c⊗ (a⊕ b) = c⊗ a⊕ c⊗ b
hold for all a, b, c ∈ S

4. 0⊗ a = a⊗ 0 = 0 for all a ∈ S

We write 〈S,⊕,⊗, 0, 1〉 for such a semiring. A semiring is idempotent if 〈S,⊕, 0〉 is
idempotent. It is commutative if a⊗ b = b⊗ a for all a, b ∈ S.

2.1.1.1. ω-continuous Semirings

For further information, these definitions of ω-continuous semirings are also pre-
sented in [Kui97] and [EKL07].

A semiring S is

• complete if the regular finite sums are extended to allow the definition of in-
finite sums which are associative, commutative and distributive.

• naturally ordered if the binary relation ≤ given by a ≤ b ⇔ ∃c.a ⊕ c = b is a
partial order.

• ω-continuous iff S is complete, naturally ordered and sup {∑n
i=0 ai|n ∈ N} =∑

i∈N ai is satisfied.

6

2.2. Semilinear Sets

Example Let N∞ = N∪{∞} then 〈N∞,⊕,⊗, 0, 1〉 is an ω-continuous semiring.

A semiring can be viewed as a ring without subtraction. An example for a semir-
ing is the set of natural numbers N. There are also other important semirings,
which are used in the newton solver like the tropical semiring 〈N∞,min,⊕,∞, 0〉.
And in this work we describe how a semiring structure can be found on semilin-
ear sets.

2.2. Semilinear Sets

The definition of linear and semilinear sets can be found together with some proofs
in [Gin66, pp.143-144] or [Lat05].

Definition L ⊆ Nn is called a linear set if there is a constant c0 ∈ Nn and a finite
number of periods pi ∈ Nn such that L = c0 +

∑m
i=1Npi. We will also write this

as L(c0; p1, . . . , pm). The set of periods {p1, . . . , pm} can also be written as P . This
allows us to use this short notation L(c; p1, . . . , pm) = L(c;P).

Example The linear set L((1, 2); (0, 2), (3, 0)) defines the set L = {(0, 0)+k1(0, 2)+
k2(3, 0)|k1, k2 ∈ N} = {(1 + 3k2, 2 + 2k1)|k1, k2 ∈ N} (see figure 2.1).

Definition S ⊆ Nn is called a semilinear set if it is a finite union of linear sets:
S = L1(c1; p11 , . . . , p1n) ∪ . . . ∪ Lm(cm; pm1 , . . . , pmn). A finite union of semilinear
subsets of Nn is again semilinear.

2.3. Parikh’s Theorem

Let Σ = {ai : 1 ≤ i ≤ n} and let L ⊆ Σ∗ be a context-free language. Then we
can define a function Φ : L → Nn which counts the occurrences of each ai and
returns this number on the i-th component of the resulting vector. Let n = 4 and
w = a1a2a1a4 then Φ(w) = (2, 1, 0, 1). Φ(L) is called a commutative image of L
and is a semilinear subset of Nn[Par66]. More information on Parikh images can
also be found in [Gin66].

7

2. Foundations

0 2 4 6 8 10
0

2

4

6

8

x1

x
2

...

. . .

Figure 2.1.: The linear set L = {(1, 2) + k1(0, 2) + k2(3, 0)}

Parikh’s Theorem states that the Parikh image of any context-free language is
semilinear and every semilinear set coincides with the Parikh image of some reg-
ular languages. It follows that every context-free language has the same Parikh
image as some regular language. For example the language {anbn|n ≥ 0} has the
same Parikh image as (ab)∗. [EGKL11] describe the construction of a finite automa-
ton which recognizes a regular language corresponding to a given context-free
language. Parikh’s proof is a constructive one, but the construction of the automa-
ton is complicated and creates automata of sizeO(nn). [EGKL11] achieves a much
simpler and direct construction in O(4n) for grammars in Chomsky normal form
and a lower bound of Ω(2n).

2.4. Number Decision Diagrams

In this work we use automata accepting sets of vectors of numbers in a binary
encoding called number decision diagrams. We introduce the idea with vectors in N1

and, at the end of this section, we generalise this to vectors in Nk. If we are going
to accept a number n ∈ N1, we have to encode n in such a way that a deterministic
finite automaton (DFA) can recognize it. Every natural number can be represented

8

2.4. Number Decision Diagrams

in binary representation like 〈n〉2 = bk . . . b4b3b2b1b0 with n =
∑k

i=0 2
ibi. A DFA

can read this binary representation as an input word and therefore recognize the
number n. This also works in other bases than 2 and only increases the automaton
alphabet from Σ = {0, 1} to Σ = {0, . . . , base − 1}. In addition it increases the
number of transitions at each state.

5

0
2

1

1

0

3

1
X

1

4

0

1

0

Figure 2.2.: Automaton accepting the number 510 as the binary word 1012 in LSBF
encoding with the invalid state 2

There are two ways to read the binary representation with the automaton. In
MSBF encoding we use the most significant bit first. There is no unique repre-
sentation for a number in binary representation (e.g. 000101 ≡ 101 ≡ 0101) and,
therefore, we have to accept an arbitrary number of zeros at the start of the word.
Because of this the automaton which accepts the binary encoding of b4b3b2b1b0 has
to accept all words 0∗b4b3b2b1b0. In least significant bit first (LSBF) encoding the au-
tomaton must recognize the words in b0b1b2b3b40

∗. The automaton in figure 2.2
reads the number 5 in LSBF as 101 and the language of the automaton is 1010∗.

2.4.1. Signed Numbers

There exist frameworks, which are working only on numbers in N (e.g. MONA),
but there are also frameworks which can recognize all integers in Z like LASH.
As there is no sign symbol (+,−) available in the input alphabet, there also exists
an encoding for negative numbers called two’s complement. A N -bit number in
two’s complement is defined as n = −2N−1bN−1 +

∑N−2
i=0 2ibi. If the N -th bit is 0,

then we only add up positive numbers and get a positive value. But if the N -th

9

2. Foundations

bit is 1 we also add up −2N−1 which is always smaller than the rest of the term
because ∀bi : 2N−1 >

∑N−2
i=0 2ibi. Intuitively, we can see this bit as a sign bit. In

frameworks which accept signed integers (like LASH, see section 5.1.1) the first
transition always encodes the sign bit in MSBF. In LSBF encoding the frameworks
have to distinguish negative and positive numbers with the transition going to the
final state. For positive numbers this 0 transition can be included in the self loop at
the final state. For natural numbers we only have to accept 0∗ from the accepting
state, whereas for integer numbers we can only reach the accepting end state for
negative numbers by a final transition with 1.

1 0
0

2
0

0

3
1

0

1

Figure 2.3.: Automaton accepting multiples of four in LSBF with sign bit

In figure 2.3 there is an automaton which accepts all positive numbers which are
multiples of four {n|n = 4k, k ∈ N} in LSBF encoding. A multiple of four in
binary representation always has the bit sequence 001 as a prefix and then there
is an arbitrary amount of 0’s and 1’s. In LSBF encoding with a sign bit we always
have at least one 0 standing for the +-sign at the end of the word. This is the
transition from state 3 to state 2. It cannot accept a word ending with 1 because
that would encode a negative number.

3 2
0

0

0

1
1

0

1
0

1

Figure 2.4.: Automaton accepting multiples of four in MSBF with sign bit

Figure 2.4 shows an automaton accepting the same set {n|n = 4k, k ∈ N} but in
MSBF encoding. It first reads the sign bit 0 and then read an arbitrary amount of

10

2.4. Number Decision Diagrams

0’s and 1’s which is mostly done in the loop between the states 0 and 1 and we
reach the accepting state only if we have found the postfix 100 in the word which
marks multiples of four.

2.4.2. Vectors of Numbers

In the previous section we explained how NDDs can recognize vectors ~v ∈ N1, but
they can also accept vectors ~v ∈ Nk. The idea is to read one bit simultaneously of
all k components, which can be seen for k = 2 in figure 2.5. There the example au-

tomaton has to read the input vectors
ñ
1
0

ô
,

ñ
0
1

ô
,

ñ
1
1

ô
representing the vectorñ

5
6

ô
in LSBF to reach the accepting state 5. We will use an X in a vector notation

like
ñ

1
X

ô
throughout this thesis to denote that we can accept every v ∈ Σ for the

X component and could also write
ñ
1
0

ô
,

ñ
1
1

ô
.

5

0

0

20 1

1,X

1

0 1

X,1

3

1

0
X

X
0 1

0,X

4

0

1

1

1

0 1

X,0

Figure 2.5.: Automaton accepting the vector (5, 6)T ∈ N2

11

2. Foundations

2.4.3. Minimality and Canonicity of Number Decision Diagrams

Another interesting property of NDDs is their minimality, which is the reason
that some operations are very efficient like checking two NDDs for equality. As
NDDs are deterministic finite automata, there is an algorithm which minimizes
a given automaton A to a minimal one, which is linear in O(|E| log |Q|) with
E being the transitions of A and Q the states of A. A DFA is minimal if there
is no other DFA which is smaller in the number of states recognizing the same
language[DKV09]. After each operation on these automata, which could create
non-minimal automata, these NDDs can always be minimized. There is only one
minimal automaton for a given language, therefore we can use this form as the
canonical representation for a set of vectors. If two automata accept the same lan-
guage and therefore the same set of vectors we know that they have the same min-
imal canonical automaton, which can be checked in linear time regarding the size
of the automaton. Another advantage of this canonicity is that this representation
is always the most memory efficient representation possible.

2.5. Presburger Arithmetic

Presburger arithmetic is the first-order theory of natural numbers with addition
and equality proposed by Presburger[Sta84]. Unlike Peano arithmetic, which has
both the addition and multiplication, Presburger arithmetic lacks multiplication.

It can be shown that Presburger arithmetic is consistent, it is not possible to derive a
statement and its negation from the axioms. Additionally, it is also complete, mean-
ing it is possible to derive each statement in the language of Presburger arithmetic
from the axioms or derive the negated statement. A third and very interesting
property is its decidability, which means that for each statement it is possible to
decide if it is a theorem. Peano arithmetic lacks these properties.

Presburger arithmetic formulae consist of several individual symbols like 0, 1,+,
∃,=,¬ and ⇒, and also symbols for variables like p, q, r, . . . for predicates and
x, a, b, c, . . . for integer variables. A variable which is not bound by a quantifier
is called a free variable. Given a formula φ(x1, x2, . . . , xn), x1, x2, . . . , xn are free
variables in the Presburger formula, which we can assign to the formula. Bound
variables are variables which are bound to a quantifier like x in φ(a) ≡ ∃x.x+ x =
a.

A set A is a Presburger set in Nn if for some P (x1, x2, . . . , xn) in the set of Pres-
burger formulae it is definable as A = {(x1, x2, . . . , xn)|P (x1, x2, . . . , xn)}.

12

2.5. Presburger Arithmetic

2.5.1. Connection to Semilinear Sets

Ginsburg proves in [GS66] that the family of semilinear sets is identical with the
family of sets defined by Presburger formulae and one representation can be calcu-
lated from the other. All results connected to Presburger arithmetic can therefore
also be used in connection with semilinear sets.

2.5.2. Connection to Automata / Number Decision Diagrams

Boudet and Comon devised an algorithm to efficiently compute an automaton
which accepts the set of solutions of a linear Diophantine equation[BC96]. Their
method can be shown to be almost optimal, as for the existential fragment of Pres-
burger arithmetic, which is NP-complete, it runs in exponential time. In addition,
it runs in triply exponential time in the size of the formula for the whole Presburger
arithmetic, which is known to be complete for double exponential space[FR79].
They describe a method for recognizing the solutions of linear Diophantine equa-
tions, inequations and also systems of equations. The latter have the same com-
plexity as the former in the worst case, but are better suited in the practice.

Other related work was done by Muchnik, who devised a way do determine
given an automaton recognizing a set of numbers whether this set is Presburger
definable[Muc03].

2.5.3. Automata to Semilinear Sets

While it is possible to convert automata to semilinear sets, there is no easy way
how to determine the corresponding semilinear set given an automaton which
works on the binary representation of sets of numbers. This transformation from
automata to semilinear sets is interesting because the automata have a canonical
form, while Presburger formulae and semilinear sets lack this canonicity. Also
some operations on automata are efficient whereas doing them on formulae or
semilinear sets directly is inefficient. For example querying if a given vector is
included in a semilinear set v ∈ S, while the same query on an automaton would
be linear in the size of v. But some operations are much easier when the set is
represented in one of these explicit forms like in the semilinear set representation
or as a formula. For example doing a translation by some vector a on the formula
{c+ k1p1 + k2p2|c, p1, p2 ∈ Nn, k ∈ N} is easier on formulae than on automata. The
reason for this is that we can just add it to the constant c in the formula and get

13

2. Foundations

{c+ a+ k1p1 + k2p2|a, c, p1, p2 ∈ Nn, k ∈ N}, while we would have to perform a
multiplication on two automata.

Muchnik characterizes the automata that represent Presburger formulae, but there
is no simple way to extract the semilinear set from this characterization. Lugiez
describes an algorithm in [Lug04][Lug05] which can extract a semilinear repre-
sentation in double exponential time for semilinear sets of the form L(C,P) =⋃

c∈C L(c, P) where all linear sets share the same set of periods.

Some other related work was done by Latour, who describes an algorithm which
could extract quantifier-free formulae that represent the set of integer vectors ac-
cepted by the automaton[Lat04]. His implementation even worked with automata
with more than 10000 states, but they only use automata accepting the encodings
(MSBF encoding) of the natural solutions of systems of linear Diophantine inequa-
tions, i.e. convex polyhedra in Nn. Latour could also extract a quantifier-free for-
mula from a given automaton if this automaton recognized the integer elements
of a polyhedron[Lat05]. In [Ler05] Leroux found a method for deciding if an NDD
represents a Presburger-definable set and computes from this characterization the
corresponding Presburger formula that defines this set[Ler05].

14

3. Mathematical Theory

3.1. Representing Semilinear Sets with Number Decision
Diagrams

We already mentioned in section 2.4.3 that NDDs have a canonical form which
enables us to do some operations much easier. The NDDs can efficiently be con-
structed from Presburger formulae or semilinear sets. As these automatons can
only represent the binary encodings of the original set and we only use operations
under which the automaton representation is closed we again get only automatons
which represent binary encodings of some semilinear set.

3.2. Endowing Semilinear Sets and Number Decision
Diagrams with a Semiring Structure

To use the semilinear sets respectively NDDs to calculate fix points we have to en-
dow them with a semiring structure. We want to get an idempotent commutative
ω-continuous semiring, so we must define an addition, multiplication and star op-
eration. First, we will define these operations on the semilinear sets and then on
the automata representation.

3.2.1. Representing Semiring Elements

We already have a semilinear set which we got as input and has to be transformed
to an NDD. Assume we have a semilinear set S which is a finite union of linear
sets S =

⋃
i L(c;p1, . . . , pmi) with ci, pij ∈ Nn, i ∈ [m], j ∈ [mi]. In this section we

first explain how we can transform a semilinear set to a Presburger formula and
then transform the formula to a system of linear equations. These linear equation
are then used to construct an NDD.

Our example in this case is the regular expression abbc(ab)∗(cc)∗, which has the
Parikh image L((1, 2, 1); (1, 1, 0), (0, 0, 2)). We can rewrite this into a Presburger

15

3. Mathematical Theory

formula: Ψ(~x, µ, λ) ≡

 1
2
1

 + µ

 1
1
0

 + λ

 0
0
2

 = ~x. The goal is to construct an

automaton which will recognize all solutions ~x to satisfy Ψ(~x, µ, λ).

It is possible to create NDDs that accept the solutions of linear equations as their
language by creating an automaton for each equation and then intersect all of

them. Given a constant c =

 1
2
1

 ∈ Nn we can construct a system of linear

equations in a straight forward way.

x1 + 0 + 0 = 1

0 + x2 + 0 = 2

0 + 0 + x3 = 1

To include the periods of our set, we also have to include the µ and λ into the
system and get for our example L((1, 2, 1); (1, 1, 0), (0, 0, 2)):

x1 + 0 + 0− 0− 0 = 1

0 + x2 + 0− µ− 0 = 2

0 + 0 + x3 − µ− 2λ = 1

This system defines all solutions of Ψ~x, µ, λ, but we want all vectors ~x for all pos-
sible µ ∈ N and λ ∈ N. So we introduce an existential quantifier for these variables

and get Φ(~x) ≡ ∃µ, λ ∈ N.

 1
2
1

+ µ

 1
1
0

+ λ

 0
0
2

 = ~x.

To create the automaton which recognizes the set {~x|Φ(~x)} we first create an au-
tomaton for each of the equations of our system of linear equations with an algo-
rithm which is described in section 3.2.1.1. Next, we compute the intersection of
these automata to recognize only the solutions which fulfill all the equations. If we
have n linear equations, then we create an automaton Ai for the i-th equation and
get our result automaton with A =

⋂n
i=1Ai. Now we have an automaton accepting

16

3.2. Endowing Semilinear Sets and Number Decision Diagrams with a Semiring
Structure

L((x1, x2, x3, µ, λ)
T), but we are only interested in

 x1
x2
x3

 so we project away both

µ and λ which is analog to the introduction of the existential quantifier and get an

automaton accepting L(

 x1
x2
x3

).

3.2.1.1. Constructing an Automaton from a Linear Equation

The construction of an automaton which recognizes a given linear equation is de-
scribed in detail in [BC96]. The idea of the algorithm is to start at the original
equation, which we use as the start state of our resulting automaton and create
transitions to new states, which encodes a balance indicating how far we are from
the end state. The following example appears in [BC96], where the linear equation

is x + 2y − 3z = 2. We introduce a vector ~b =

 bx
by
bz

 ∈ N3, which stands for the

bits of the number which we have to read to get to the next state. The next state is

calculated as a1x1 + . . . + anxn = k
~b−→ a1x1 + . . . + anxn = k−(b1a1+...+bnan)

2 . For

example if~b =

 1
1
1

, then we would get a transition from x+2y−3z = 2

 1
1
1


−−−−−→

x + 2y − 3z = 1. If k − (a1b1 + . . . + anbb) is not even, then we add a transition
from the current state to the fail state with~b. From this newly created, valid states
we can again use the algorithm and generate new states. We have finished when
there is no new state for which we have to calculate its transitions. The state with
the constant 0 is then marked as the final state. The resulting automaton for this
example can be seen in figure 3.1, where the number of the state indicates the right
side of the equation.

An upper bound for the number of states and transitions for automatons gener-
ated by this algorithm is also stated in [BC96]. For an equation

∑n
i=1 aixi = k, the

number of states in the resulting automaton is at most |k|+∑n
i=1 |ai|+ 1 and each

state has at most 2n transitions.

17

3. Mathematical Theory

0

0 1

0 1

0,1

1

1

0

1

-1

0

1

0

2

0

1

0

1

0

1

0 1

0 1

0,1

1

0

0

0

0

1

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

-2

1

1

0

1

0

1

0 1

0 1

0,1

0

1

0

Figure 3.1.: The automaton for x+ 2y − 3z = 2

3.2.2. Addition

Addition on semilinear sets is defined as the union of two semilinear sets. Given
two semilinear sets S1 and S2, we get S = S1 ⊕ S2 = S1 ∪ S2[Gin66]. If we do a
union on two automata, we get a resulting automaton, which recognizes words of
both input automata.

Example For S1 = {c1; p1, p2}, S2 = {c2; p3}we get S1⊕S2 = {c1; p1, p2}∪{c2; p3}
(ci are constants, pi are periods).

3.2.3. Multiplication

Given two semilinear sets S1 and S2 we define multiplication as follows: S =
S1 ⊗ S2 = {L1 ⊗ L2|L1 ∈ S1, L2 ∈ S2} (L1,2 are linear sets) with L1 ⊗ L2 =
{v1 + v2|v1 ∈ L1, v2 ∈ L2, v1,2 ∈ Nk} (with k the dimension of v and + the vector
addition in Nk). This definition says that we add all vectors of S1 with all vectors
of S2.

18

3.2. Endowing Semilinear Sets and Number Decision Diagrams with a Semiring
Structure

L1(c1;P1)⊗ L2(c2, P2) =

c1 +
j∑

i=0

mip1i |mi ∈ N

⊗
{
c2 +

l∑
i=0

nip2i |ni ∈ N
}

=

c1 + c2 +
j∑

i=0

mip1i +
l∑

i=0

nip2i |ni,mi ∈ N, p1i , p2i ∈ Nk


= L(c1 + c2; p11 , . . . , p1j , p21 , . . . , p2l)

= L(c1 + c2;P1 ∪ P2)

Example For S1 = {c1; p1, p2}∪{c2; p3, p4}, S2 = {c3; p5, p6}we get S = S1⊗S2 =
{c1 + c3; p1, p2, p5, p6} ∪ {c2 + c3; p3, p4, p5, p6}.

The multiplication on the explicit semilinear set representation causes exponential
growth in the size of the semilinear set. Let n be the number of linear sets in S1 and
m be the number of linear sets in S2 then the number of linear sets in S = S1 ⊗ S2

is polynomial in n ·m because we calculate the Cartesian product of all linear sets
of S1 and S2. Without simplification/minimization of the resulting semilinear set
S, practical computation with these sets will be too expensive.

But in the corresponding automata A1 and A2 we encode binary representations of
all vectors in S1 and S2. Therefore the individual linear sets are no longer accessi-
ble to us. But in this representation it is possible to calculate A for L(A) = S1 ⊗ S2

by adding up all accepting words from A1 to all accepting words in A2. This is
done by creating an automaton which accepts {~v1 + ~v2|~v1 ∈ S1, ~v2 ∈ S2}.

3.2.4. Kleene Star

If L is a formal language, then the Kleene closure L∗ is defined as
⋃

i∈N Li where
Li is L concatenated i-times LL . . . L︸ ︷︷ ︸

i-times

[EP02]. In general the Kleene closure can

be defined on semirings by S∗ =
∑∞

i∈N Si[DKV09][Kui97]. However, we cannot
practically sum up to infinity so we have to find another way to calculate S∗. In
our case we are working with Parikh images (see section 2.3) so we can assume
our semiring to be idempotent and commutative.

Semilinear sets can have many different representations and we will use one of
them in this section for an example and the proof of our method to calculate
the Kleene star. For example the explicit semilinear set representation can be
converted easily to commutative regular expressions. We need a a mapping for

19

3. Mathematical Theory

each component of our vectors in Nk to a letter vk in the alphabet of the reg-
ular language. Then we can convert the semilinear set S = L((1, 0); (0, 2)) ∪
L((2, 1); (1, 0), (3, 1)) to the regular expression v1(v2v2)

∗ + v1v1v2(v
∗
1 + (v1v1v1v2)

∗)
with + being the alternative operator by writing the corresponding letter vi for the
i-th vector component m times if m is its value and for periods we star the cor-
responding expression. The resulting regular expression can also be easily trans-
formed back so we can switch between these representations if one of them is
better suited. Other symbolic representations are the NDDs, but in this case the
transformation is not as efficient as with regular languages.

Example This is an example demonstrating the calculation of S∗ in the domain
of commutative regular expressions with S = u0u

∗
1 + v0v

∗
1 . We briefly recall that

(xy∗)∗ = 1 + xx∗y∗ and (x+ y)∗ = x∗y∗ and (x∗y∗)∗ = x∗y∗ [Koz94].

S∗ = (u0u
∗
1 + v0v

∗
1)

∗

= (1 + u0u
∗
0u

∗
1)(1 + v0v

∗
0v

∗
1)

= 1 + u0u
∗
0u

∗
1 + v0v

∗
0v

∗
1 + u0v0u

∗
0u

∗
1v

∗
0v

∗
1

This is what we want to get as a result after applying the Kleene star to S. But this
is not possible when working with NDDs representing semilinear sets because we
do not have any way to work on the equations directly. We only have S and the
constants (in our example u0 and v0).

We want to derive an algorithm with only addition and multiplication of S and
the given constants because in the automata representation we do not have access
to the linear sets anymore but only to S and the set of constants needed for S. It is
possible to achieve parts of the missing factors by using powers of S.

S2 = (u0u
∗
1 + v0v

∗
1)

2

= u20u
∗
1 + v20v

∗
1 + u0v0u

∗
1v

∗
1

We see that we get a higher order constant (more constants of different factors
combined in one) when using a higher power of S. Given a set S with 5 different
constants, we have to calculate at least S5 to get the constant c1c2c3c4c5 for ci ∈
C = constants(S).

There are still periods missing in the result. In our example these missing periods
are u∗0 and v∗0 , and the cannot be created by using powers of S. They can only be

20

3.2. Endowing Semilinear Sets and Number Decision Diagrams with a Semiring
Structure

obtained by multiplying Si with C∗ =
∏

i c
∗
i with ci ∈ C. That way we can get u∗0

and v∗0 into the equation.

To get back to our example, we calculate S∗′ = 1 + S · C∗ + S2 · C∗

S∗′ = 1 + (u0u
∗
1 + v0v

∗
1)(u

∗
0v

∗
0)+

(u20u
∗
1 + v20v

∗
1 + u0v0u

∗
1v

∗
1)(u

∗
0v

∗
0)

= 1 + u0u
∗
1u

∗
0v

∗
0 + v0v

∗
1u

∗
0v

∗
0+

u20u
∗
1u

∗
0v

∗
0 + v20v

∗
1u

∗
0v

∗
0 + u0v0u

∗
1v

∗
1u

∗
0v

∗
0

=?

S∗ = 1 + u0u
∗
0u

∗
1 + v0v

∗
0v

∗
1 + u0v0u

∗
0u

∗
1v

∗
0v

∗
1

We can see that S∗ ⊆ S∗′ and S∗′ ⊆ S∗ and therefore S∗ = S∗′ when we look
carefully at the equations. S∗′ has a longer and more complicated representation
but both expressions represent the same set.

3.2.4.1. Proof

We claim that S∗ = 1 + (
∑n

k=1 S
k)
∏n

j=1 v
∗
i,0 and prove this by induction on the

number of constants n in our semilinear set S. In this proof the constant of the
i-th linear set is denoted with vi,0 while the j-th period of the i-th linear set is
denoted with vi,j . For the limit of the products we use mv or mi, which represents
the number of periods in the i-th linear set respectively the linear set which we
mark with the letter v. For the base cases we omit the index i for the constants and
periods which indicates the linear set and just use vj .

The base case n = 0 is trivial with S = 0 and S∗ = 1 + 0 · 0∗ = 1 + 1 = 1 (with
idempotence). For n = 1 let S = v0·

∏n
j=1 v

∗
j . This results in S∗ = 1+v0v

∗
0 ·
∏n

j=1 v
∗
j =

1 + S1 · v∗0 . The case n = 2 is more interesting and also brings an intuition for the
operation. Let S = v0 ·

∏mv
j=1 v

∗
j + w0 ·

∏mw
j=1w

∗
j then we obtain with the equalities

(x+ y)∗ = x∗y∗ and (x∗)∗ = x∗:

21

3. Mathematical Theory

S∗ =

Ñ
v0 ·

mv∏
j=1

v∗j + w0 ·
mw∏
j=1

w∗
j

é∗

=

Ñ
1 + v0v

∗
0 ·

mv∏
j=1

v∗j

éÑ
1 + w0w

∗
0 ·

mw∏
j=1

w∗
j

é
= 1 + v0v

∗
0 ·

mv∏
j=1

v∗j + w0w
∗
0 ·

mw∏
j=1

w∗
j + v0w0v

∗
0w

∗
0 ·

mv∏
j=1

v∗j ·
mw∏
j=1

w∗
j

=? 1 + S1v∗0w
∗
0 + S2v∗0w

∗
0

It remains to show the last equality by showing that both equations include the
other. The “⊆”-case is trivial and it can be seen easily that the first two sums are
in S1v∗0w

∗
0 and the last one is included in S2v∗0w

∗
0. The other direction “⊇” requires

a case distinction to show that all elements are included. For 1 we can trivially
see that this is the case and proceed with S1v∗0w

∗
0, which is found in v0v

∗
0 ·
∏mv

j=1 v
∗
j

when we have the case that w∗
0 is empty. If v∗0 is empty then it is included in w0w

∗
0 ·∏mw

j=1w
∗
j . If both v∗0 and w∗

0 are present, we can find it in v0w0v
∗
0w

∗
0 ·
∏mv

j=1 v
∗
j ·
∏mw

j=1w
∗
j .

The last case is S2v∗0w
∗
0, which can be easily found in v0w0v

∗
0w

∗
0 ·
∏mv

j=1 v
∗
j ·
∏mw

j=1w
∗
j .

Now we show that this also holds for n + 1 and let S =
∑n+1

i=1 vi,0 ·
∏mi

j=1 v
∗
i,j =∑n

i=1 vi,0 ·
∏mi

j=1 v
∗
i,j + vn+1,0 ·

∏mn+1

j=1 v∗n+1,j .

22

3.2. Endowing Semilinear Sets and Number Decision Diagrams with a Semiring
Structure

S∗ =

Ñ
n∑

i=1

vi,0 ·
mi∏
j=1

vi,j

é∗

︸ ︷︷ ︸
induction hypothesis

·

Ñ
vn+1,0 ·

mn+1∏
j=1

v∗n+1,j

é∗

=

Ñ
1 +

(
n∑

i=1

Si

)
·

n∏
j=1

v∗j,0

éÑ
1 + vn+1,0v

∗
n+1,0 ·

mn+1∏
j=1

v∗n+1,j

é
= 1 +

(
n∑

i=1

Si

)
·

Ñ
n∏

j=1

v∗j,0

é
+

Ñ
vn+1,0v

∗
n+1,0 ·

mn+1∏
j=1

v∗n+1,j

é
+

(
n∑

i=1

Si

)
·

Ñ
n∏

j=1

v∗j,0

é
vn+1,0v

∗
n+1,0 ·

mn+1∏
j=1

v∗n+1,j

= 1 +

(
n∑

i=1

Si

)
·

Ñ
n∏

j=1

v∗j,0

é
+

Ñ
vn+1,0v

∗
n+1,0 ·

mn+1∏
j=1

v∗n+1,j

é
+

(
n∑

i=1

Si

)
·

Ñ
n+1∏
j=1

v∗j,0

é
vn+1,0 ·

mn+1∏
j=1

v∗n+1,j

=? 1 +

(
n+1∑
i=1

Si

)
·
(
n+1∏
i=1

v∗i,0

)

= 1 +

(
n∑

i=1

Si

)
·
n+1∏
j=1

v∗j,0 + Sn+1
n+1∏
j=1

v∗j,0

The last equality has to hold and we start with showing the “⊆”-case:

• 1 ⊆ 1 is trivial.

•
(∑n

i=1 S
i
)
·
Ä∏n

j=1 v
∗
j,0

ä
can be found in

Ä∑n+1
i=1 Si

ä
·
Ä∏n+1

i=1 v∗i,0
ä

with v∗n+1,0 = ε.

•
Ä
vn+1,0v

∗
n+1,0 ·

∏mn+1

j=1 v∗n+1,j

ä
is included in S1 · v∗n+1,0 =

∑n+1
i=1 vi,0 ·

∏mi
j=1 v

∗
i,j ·

vn+1,0, in the last iteration n+ 1 of the sum with the last period v∗n+1,0.

• It remains to show that
(∑n

i=1 S
i
)
·
Ä∏n+1

j=1 v
∗
j,0

ä
vn+1,0 ·

∏mn+1

j=1 v∗n+1,j is in-
cluded:

–
(∑n

i=1 S
i
)
·∏n+1

j=1 v
∗
j,0 if the periods of the last set/iteration

∏mn+1

j=1 v∗n+1,j

are missing.

– Sn+1∏n+1
j=1 v

∗
j,0 ⊆ Sn

Ä∏n
j=1 v

∗
j,0

ä
· S · v∗n+1,0 otherwise

23

3. Mathematical Theory

The other direction “⊇” can be shown by splitting up the sum and we see that

• (
∑n

i=1 S
i) ·∏n+1

j=1 v
∗
j,0 is included in

– (
∑n

i=1 S
i)·(∏n+1

j=1 v
∗
j,0)vn+1,0 ·

∏mn+1

j=1 v∗n+1,j if there is at least one constant
vn+1

– (
∑n

i=1 S
i) · (∏n

j=1 v
∗
j,0) otherwise.

The remaining Sn+1∏n+1
j=1 v

∗
j,0 can be rewritten to Sn ·S∏n+1

j=1 v
∗
j,0 = Sn · (∑n+1

i=0 vi,0 ·∏mi
j=1 v

∗
i,j)
∏n+1

j=1 v
∗
j,0 which is included in:

• (
∑n

i=1 S
i) · (∏n+1

j=1 v
∗
j,0)vn+1,0 ·

∏mn+1

j=1 v∗n+1,j (last iteration n of the sum).

We have shown that both “⊆” and “⊇” holds and therefore our assumption S∗ =
1 + (

∑n
k=1 S

k)
∏n

j=1 v
∗
i,0 is true. �

3.2.4.2. Using a Minimal Basis Instead of Constants

The Kleene star is computable with the formula S∗ = 1 + (
∑n

k=1 S
k)
∏n

j=1 v
∗
i,0 =

1 + (
∑n

k=1 S
k) · C∗ where C∗ is the product of all stared constants in n iterations

for n constants (and therefore n linear sets). But as we are defining the Kleene star
on NDDs we cannot directly extract the constants from an NDD efficiently. For
this reason we would have to track all constants during all operations which is
very inefficient as we face an exponential blow up during multiplication. In the
Kleene star algorithm we only need the constants to generate the set C∗, but we do
not need them for recreating the linear sets themselves. It would suffice to have
a set B∗ which is equivalent to C∗. The constants vi,0 for i ∈ [n] may be linear
dependent and we could calculate a minimal basis B for the set which generates
the same set as C∗ when we apply the star operator to it.

One problem we now face is the missing number of constants respectively linear
sets which are represented by the NDD, but it is needed for the upper bound of
iterations in the algorithm. It is an open problem if the number of iterations |B|
in S∗ =? 1 + (

∑|B|
k=1 S

k) · B∗ is a valid upper bound or if we loose precision. This
problem can be circumvented by increasing the iterations until we reach the point
where (

∑m
k=1 S

k) = (
∑m+1

k=1 Sk).

24

3.2. Endowing Semilinear Sets and Number Decision Diagrams with a Semiring
Structure

3.2.5. Queries

3.2.5.1. Equality/Inclusion Tests

An interesting test which we want to be able to do with our sets is to test if two sets
are equal or if one is included in the other. In the semilinear set representation we
cannot simply check for equality because semilinear sets and Presburger formulae
are missing the canonicity property. One can define sets which are equal but have
a different representation and a check for equality would involve sophisticated
tests to check if both sets include the other. On the other hand, it is simple to
check if one automaton A is included in the other automaton B by checking if
A ∩ B = ∅. There is an algorithm by Hopcroft which can test equality of two
automata inO(|Σ| · |A| · |B|) [HK71]. But as we work with minimal DFAs we know
that these DFA have a unique representation for a given set and we can simply
check for equality by comparing if the states and transitions between the state are
equal modulo the state ids.

3.2.5.2. Inclusion of a Vector in a Set

We want to check if a given vector is in the set. This is a hard problem in the
explicit semilinear set representation as we have no direct way to find out which
linear combination of the periods has to be used to create the vector in the general
case.

Example Given the semilinear set L = {(1, 4, 2); (3, 2, 4), (2, 3, 2), (3, 2, 3)} ∪
{(3, 2, 4); (2, 0, 1), (2, 1, 4)} we cannot efficiently test if the vector v = (17, 18, 19) ∈
L. This is because (17, 18, 19) = (1, 4, 2) + 1 · (3, 2, 4) + 2 · (2, 3, 2) + 3 · (3, 2, 3), but
to determine the factors 1, 2, 3 for the periods we have to solve the NP-complete
knapsack problem.

Still it is possible to represent the semilinear set L as a number decision diagram
A. This automaton A recognizes words which represent binary representations of
all solutions in L. Thus, we only have to ask A if it accepts the solution v in its
binary representation, which can be done in O(|v|).

25

3. Mathematical Theory

26

Part II.

Algorithms and Implementation

27

4. Algorithms

The algorithms described in this chapter are designed to work with automata by
only using high-level operations like union, intersection and projection. For that
reason some of the algorithms might seem overly complicated as we are not work-
ing directly on the transitions and states of the automata. In most cases the com-
plexity of the algorithms would not change if we would use a more direct ap-
proach by working on the transitions and states.

4.1. Encoding of Automata Input

As described in section 2.4 we can recognize sets of numbers with a special kind of
automata called number decision diagrams. In this thesis we also want to recognize
vectors of natural numbers Nk so we have to encode these vectors of numbers in
such a way that we are able to feed them into the automaton.

There are several ways to linearize the words which represent vectors of numbers.
One would be to encode two words a0a1. . .an and b0b1. . .bn by concatenating the
input words a0a1. . .anb0b1. . .bn.

Another possibility is to use an interleaving encoding like a0b0a1b1. . .anbn. The ex-

ample in figure 4.1 shows the interleaving LSBF encoding of the vector

 1
2
3


10

=

 10
01
11


2

with sign bits. The first three transitions are the least significant bits of the

three numbers. As the binary representation of 1 has only one bit, the sign bit of
the first vector is already read in the fourth transition between the states 5 and 4.
The loop at the end can read arbitrary many 0s for each of the vector components,
but at least one 0 because of the sign bit. As we have three components, this loop
has length three.

29

4. Algorithms

8 7
1

0

9
0

1

0

0
2

0
3

1
4

1
5

0
6

10

Figure 4.1.: Automaton accepting (1, 2, 3) with interleaving encoding as
101011(000)∗

4.2. Construction of an Automaton for the Kleene Star

As described in section 3.2.4 we can calculate the Kleene star closure by adding up
increasing powers of the original set multiplied with the constants c of S used as
periods p until we reach the fixed point. If we would know the number of linear
sets in the semilinear set, we would have an upper bound of n in the calculation
of S∗ = 1+ (

∑n
k=1 S

k)
∏n

j=1 v
∗
i,0. But as we want to calculate the Kleene star with a

minimal basis of the constants we will iterate the loop until our resulting set does
not change anymore.

Input: Automaton A
Output: Kleene star closure on the recognized set S
B ←get minimal basis of constants of A;
B∗←constants∗;
SΣ←1;
/* semiring 1 */
SAcc←1;
/* init with semiring 1 */
result←1;
repeat

old result←result;
SAcc←SAcc ·A;
SΣ←SΣ + SAcc;
result = 1 +B∗ · SΣ;

until old result ≡ result;
return result;

Algorithm 1: Calculating the Kleene star of S recognized by A

Algorithm 1 uses the minimal basis B of the constants from the semilinear set S
represented by A and converts them to B∗. We use the fact, described in section
3.2.4, that we do not need the actual set of stared constants C∗, but it suffices to
have an equivalent set B∗ = C∗ which we use to accelerate the calculation of
the Kleene star. This minimal basis is stored explicitly with the automaton and
is always minimized after each operation like multiplication or addition to elimi-

30

4.3. Sum Automaton

nate linear dependent vectors. These vectors of the minimal basis of constants are
converted to periods by creating linear equations which are used to compute the
automaton to recognize these new periods.

The sum
∑k

i=1 S
i is calculated by using Horner’s method such that we can save

many expensive multiplication steps needed for calculating Si. The resulting sum
is multiplied with the set of periods B∗ and added to the semiring 1 which is
1 = ((0, . . . , 0︸ ︷︷ ︸

k−times

);∅).

4.3. Sum Automaton

To multiply semilinear sets in automata representation we need to construct an
automaton which recognizes the set {(x, y, z) ∈ N3|x+y = z} to be able to add the
vectors of two automata. We assume our input automaton accepts input ~x ∈ N3

such that we have three components with x being the first operand, y the second
operand and z is the solution. Then, we rewrite the formula x+ y = z to 1 · x+ 1 ·
y − 1 · z = 0 and get the coefficients (1, 1,−1) for the variables (x, y, z).

For the actual construction of this automaton with GENEPI we can use the func-
tion genepi set linear equality() which takes an array of coefficients, in
our case (1, 1,−1) and a constant 0. GENEPI then returns the automaton shown
in figure 4.2. Section 3.2.1.1 describes in detail how such an automaton is con-
structed.

1

0 0 1

0 1 0

0,1,1

2

0 0 1 1

0 1 0 1

1,0,0,1

3

1

1

0

X

X

X

0

0

1

0 0 1 1

0 1 0 1

0,1,1,0

0 1 1

1 0 1

0,0,1

Figure 4.2.: Automaton accepting {(x, y, z) ∈ N3|x+ y = z}

31

4. Algorithms

The sum automaton in figure 4.2 accepts all triples where the third component is
the sum of the first two components. If we are in state 1 in the automaton then we
can use the self loop with the three vectors (0, 0, 0)T , (0, 1, 1)T , (1, 0, 1)T and stay
in state 1. If the first two components are 1 then component 3 has to be 0 and we
have to remember a carry bit. This is done by going into state 3. We stay in state
3 as long as we have to remember the carry bit. With the vector (0, 0, 1)T we can
leave the carry state and return to the accepting state 1 again. All transitions to the
invalid state 2 are invalid words which are not recognized by the automaton.

4.4. Construction of Automata Recognizing a Vector

To create an automaton which recognizes a specific vector v ∈ Nk we can can use
the GENEPI function genepi set linear equality() to accept the solutions
of a set of linear equations. We explained in section 3.2.1, how we can transform a
vector to a system of linear equations which can then be transformed to an NDD.

In our algorithm 2 we create for every component i of v ∈ Nk an automaton Ai

which recognizes the i-th component of the vector. Next we split the system of
linear equations

∧k
i=1 1 · xi = vi into k independent equations. The coefficients αi

of the linear equation for each component are αj∈[k];j 6=i = 0;αi = 1; c = vi, which
we can pass to the GENEPI function genepi set linear equality() and get
Ai in return. These automata Ai are then intersected with the set N that recognizes
Nk. The result of our algorithm is A = N ∩A1 ∩ . . . ∩Ak.

This construction looks inefficient as we might create the automaton in a more

direct way. For example to read the vector
ñ
100
011

ô
we could simply generate the

automaton by creating the transitions directly from the given vector where we
always take the last bit of each component and create the transition. This would

produce the automaton (p)

ñ
0
1

ô
−−−−→ (p′)

ñ
0
1

ô
−−−−→ (p′′)

ñ
1
0

ô
−−−−→ (p′′′) ∈ F . But we

want to restrict our algorithms to high-level functions to be independent of the
underlying data structure.

4.5. Construction of Automata Recognizing a Period

The creation of an automaton recognizing a period N · g for g ∈ Nk, which we
see in algorithm 3, works very similar to the creation of an automaton recog-

32

4.6. Multiplication on Automata – High Level

Input: Vector ~v ∈ Nk

Output: Automaton A which accepts the representation of ~v
Result←CreateAutomatonAcceptingNk;
for i = 0 to k do

Ai←FromLinearEquation(vi = xi);
Result←Result ∩Ai;

end
return Result

Algorithm 2: Calculating automaton accepting a constant

nizing a vector. We already described the mathematical background in section
3.2.1, where we noted that we introduce a new variable µ in our system of equa-
tions. The used system of equations is

∧k
i=1−xi + gi · µ = 0 and we pass them to

genepi set linear equality(). This is not the final automaton as it has an
additional µ-component, which we would have to feed to the automaton in order
to check a word for acceptance. But we are only interested in the existence of such
a µ. In section 3.2.1 we applied the existential quantifier to the corresponding for-
mula to get solutions for all µs. In the automaton representation, we can project
the µ component and get the final automaton.

Input: Vector ~g ∈ Nk

Output: Automaton A which accepts the representation of the period ~g
Result←CreateAutomatonAcceptingNk;
for i = 0 to k do

Ai←FromLinearEquation(−1 · xi + gi · µ = 0);
Result←Result ∩Ai;

end
Result←πµ(Result);
return Result

Algorithm 3: Calculating automaton accepting a period

4.6. Multiplication on Automata – High Level

To implement multiplication on automata we can only rely on automata opera-
tions like intersection and projection. In section 3.2.3 we describe how multipli-
cation is defined on semilinear sets, but this definition cannot be applied directly
to automata. The definition S = S1 ⊗ S2 = {L1 ⊗ L2|L1 ∈ S1, L2 ∈ S2} would re-
quire us to be able to access the linear sets in S, which is not possible. Instead,

33

4. Algorithms

we can use an alternative definition S = {~v1 + ~v2|v1 ∈ S1, v2 ∈ S2}. Multiplication
of two semilinear sets is the addition of each vector of the first operand with each
vector of the second operand. This is possible as we have all vectors respectively
all binary representations of them in the automaton. We can do this by adding up
all included vectors of both automata with the sum automaton AΣ we defined in
section 4.3, which accepts

{
(x, y, z) ∈ N3|x+ y = z

}
.

4.6.1. Automata with One Variable

We start by assuming all vectors ~v ∈ N1 to be of dimension 1. Let A1 and A2 be
our input automata then we like to create the automaton A which accepts as its
language the binary representation of the set {v|v1 + v2 = v, v1 ∈ A1, v2 ∈ A2}. We
already have the sum automaton AΣ that accepts

{
(x, y, z) ∈ N3|x+ y = z

}
, which

calculates the sum of the first two components and returns the summand in the
third component. But for this approach the two operands have to be in the same
automaton.

To combine the two operands in one automaton we have to change the encoding
of the input automata. We create two new automata A′

1 and A′
2 which have three

components each. The encoding of A′
1 will be (a1,N,N), which accepts a vector

with the original language of A1 in its first component and all natural numbers in
the remaining two components. A′

2 has a similar encoding but with the original
language in the second component (N, a2,N). This operation is called inverse pro-
jection and defined as πs(A) = {(x1, . . . , xn)|∃v ∈ A, v[1] = xi1 ∧ . . . ∧ v[n] = xin},
where s is a bit pattern like (1, 1, 0, 1, 1, 0) and ij is the j-th component of s which
is 0. In our example this results in i1 = 3 and i2 = 6. It takes an automaton A
and changes the encoding in such a way that the i-th component of A will be at
position ij and each position l with s[l] = 1 accepts all natural numbers N. The
dimension of the new automaton A′ is equal to the length of the bit pattern s. We
use a short notation π−1

[x,y,z]n
(A), which implies a bit pattern of length n and the bits

x, y and z are set to 0 and all others are set to 1. The amount of 0 in the bit pattern
has to match the dimension of A.

With this operation we can define A′
1 = π−1

[1]n
(A1) and A′

2 = π−1
[2]n

(A2) with n is
the dimension of vectors in Ai times 3. These two automata are then intersected:
A′ = A′

1 ∩ A′
2. The language of A′ is the set of the binary representations of A1

and A2 in the first two components {(a1, a2,N)|a1 ∈ A1, a2 ∈ A2}. Now we can
intersect the automaton A′ with the sum automaton AΣ to get an intermediate
result AI = A′ ∩ AΣ = A1 ∩ A2 ∩ AΣ. AI accepts all binary representations of
the set {(a1, a2, a)|a1 + a2 = a, a1 ∈ A1, a2 ∈ A2}. The final automaton A should

34

4.6. Multiplication on Automata – High Level

only contain the summand so we project the first two components and get A =
π{1,2}(AI), which accepts {a|a1 + a2 = a, a1 ∈ A1, a2 ∈ A2}.

4.6.2. Automata with Many Variables

We just described the algorithm for automata which have only one variable/vec-
tors ~v ∈ N1 of dimension one. But the algorithm should also handle input au-
tomata that accept vectors ~v ∈ Nk. To extend the algorithm we have to modify
the encoding of A′

1 and A′
2 to include all components of A1 and A2. As we use the

interleaving encoding we define A′
1 = π−1

[3i−2|i∈[k]]n
(A1), with n is the dimension of

vectors in Ai times 3k. Thus, the encoding of A is transformed from (a1, a2, . . . , ak)
to (a1,N,N, a2,N,N, . . . , ak,N,N). Similarly we define A′

2 = π−1
[3i−1|i∈[k]]n

(A2) and
transform (b1, b2, . . . , bk) to (N, b1,N,N, b2,N, . . . ,N, bk,N). Then we proceed as be-
fore and intersect the transformed automata to get A′ = A′

1∩A′
2 = π−1

[3i−2|i∈[k]]n
(A1)

∩A′
2 = π−1

[3i−1|i∈[k]]n
(A2), which has the encoding (a1, b1,N, a2, b2,N, . . . , ak, bk,N).

From here there are two possible ways of computing the sum of the respective
sums. The first way is to create a large sum automaton AΣ[k]

which calculates the
sum of all ai and bi components at once and intersect this sum automaton AΣ[k]

with A′. But this option gets problematic as AΣ[k]
tends to get very big for growing

k. An analysis of this problem is found in section 5.2.2.

One way to circumvent this big sum automaton is to use the generic sum automa-
ton AΣ which calculates one component sum and apply it to all ai, bi sequentially.
As the individual resulting sum ci = ai + bi depends only on the individual ai
and bi this does not change the result of our algorithm. We can even permute the
order in which we process the components. To operate on each of the components
we have to inverse project the components from the generic sum automaton to the
respective component to be calculated next. For example to calculate the second
component c2 = a2 + b2 we calculate the sum automaton AΣ2 = π−1

[4,5,6]3n
(AΣ) by

positioning the generic sum automaton to the position of the second components.
The resulting automaton for input vectors ~v ∈ N2 can be seen in figure 4.3.

The intermediate automaton AI = A′∩AΣ1∩ . . .∩AΣk
is created by intersecting all

these small sum automata AΣi with the combined input automaton A′ we created
earlier. AI recognizes the set {(a1, b1, c1, . . . , ak, bk, ck) : ai ∈ A1, bi ∈ A2, ci =
ai+bi, i ∈ [k]}. To get the final result automaton we project all ai and bi components
A = π{3i−2|i∈[k]}∪{3i−1|i∈[k]}(AI) to recognize the set {(c1, . . . , ck) : ai ∈ A1, bi ∈
A2, ci = ai + bi, i ∈ [k]}.

35

4. Algorithms

1

X X X

X X X

X X X

0 0 1

0 1 0

0,1,1
2

X X X X

X X X X

X X X X

0 0 1 1

0 1 0 1

1,0,0,1

3

X

X

X

1

1

0

X

X

X

X

X

X

X

X

X

0

0

1

X X X X

X X X X

X X X X

0 0 1 1

0 1 0 1

0,1,1,0

X X X

X X X

X X X

0 1 1

1 0 1

0,0,1

Figure 4.3.: Sum automaton AΣ2 which calculates the sum of a2 and b2 for input
vectors ~v ∈ N2

4.7. Direct Construction of the Multiplication Automaton

Given the two input automata A1 = (Q1,Σ, δ1, q1, F1) und A2 = (Q2,Σ, δ2, q2, F2)
we can also directly construct the multiplication automaton A = (Q1 × Q2 ×
{0, 1},Σ, δ, q1 × q2 × 0, F1 × F2 × 0) with the rules:

i) δ1(q1, 0) = q′1 ∧ δ2(q2, 0) = q′2 ⇒ δ((q1, q2, 0), 0) = (q′1, q
′
2, 0)

ii) δ1(q1, 0) = q′1 ∧ δ2(q2, 1) = q′2 ⇒ δ((q1, q2, 0), 1) = (q′1, q
′
2, 0)

iii) δ1(q1, 1) = q′1 ∧ δ2(q2, 0) = q′2 ⇒ δ((q1, q2, 0), 1) = (q′1, q
′
2, 0)

iv) δ1(q1, 1) = q′1 ∧ δ2(q2, 1) = q′2 ⇒ δ((q1, q2, 0), 0) = (q′1, q
′
2, 1)

v) δ1(q1, 0) = q′1 ∧ δ2(q2, 0) = q′2 ⇒ δ((q1, q2, 1), 1) = (q′1, q
′
2, 0)

vi) δ1(q1, 0) = q′1 ∧ δ2(q2, 1) = q′2 ⇒ δ((q1, q2, 1), 0) = (q′1, q
′
2, 1)

vii) δ1(q1, 1) = q′1 ∧ δ2(q2, 0) = q′2 ⇒ δ((q1, q2, 1), 0) = (q′1, q
′
2, 1)

viii) δ1(q1, 1) = q′1 ∧ δ2(q2, 1) = q′2 ⇒ δ((q1, q2, 1), 1) = (q′1, q
′
2, 1)

36

4.7. Direct Construction of the Multiplication Automaton

Input: Automaton A1, Automaton A2

Output: Automaton A which contains the result of A1 ⊗A2

A′
1←π−1

3i,i∈[k](A1);
A′

2←π−1
3i+1,i∈[k](A2);

AΣ←sum automaton;
A′←A′

1 ∩A′
2;

Result←CreateAutomatonAcceptingNk;
for i = 1 to k do

AΣi ←π−1
{3i−2,3i−1,3i}(AΣ);

Result←Result ∩AΣi ;
end
Result = π{3i−2|i∈[k]}∪{3i−1|i∈[k]},i∈[k](Result);
return A

Algorithm 4: Calculating the multiplication automaton via intersection with AΣ

The third element of the tuple in the resulting automaton indicates the carry bit.
The transition function can be read intuitively from the generic sum automaton
shown in section 4.3. With this construction the sum is implicitly calculated dur-
ing the construction and not in the intersection of the three automata. We do not
have to calculate the big intermediate intersection automata and only create the
resulting non-deterministic automaton, which we can determinize and minimize
to get the final NDD.

The resulting sum automaton A is a product automaton of A1 and A2, where each
product state exists with state 0 and state 1.

We then create transitions in the result automata such that they accept the sum of
the numbers represented by the words of A1 and A2. The state 0 and state 1 will
be used as a carry state which represents that we have a carry bit at the moment.

We start at q1 × q2 × 0. If we have a transition q1
0−→ q′1 in A1 and a transition

q2
0−→ q′2 in A2, we add a transition q1 × q2 × 0

0−→ q′1 × q′2 × 0 in A. With doing this
we calculate the sum of 0+ 0 = 0. There are two other possibilities which leave us
with no carry bit i.e. q1

0−→ q′1 ∧ q2
1−→ q′2 and q1

1−→ q′1 ∧ q2
0−→ q′2. They represent

0+1 = 1 resp. 1+0 = 1 so we have to add the transition q1×q2×0
1−→ q′1×q′2×0.

If we have the transitions q1
1−→ q′1 ∧ q2

1−→ q′2 in the original automaton, this
represents 1 + 1 = 10, where we are left with a carry bit. To remember this carry
bit we use the states q1,i×q2,i×1. So we add the transition q1×q2×0

0−→ q′1×q′2×1
to the automaton.

37

4. Algorithms

A state is a final/accepting state if both q1 and q2 in A1 resp. A2 are accepting
states.

These have been all possible transitions starting at q1× q2× 0. Now we handle the
cases where we are in q1 × q2 × 1 (we now have a carry bit). We have again three
possible cases were we still have a carry bit and therefore stay in the carry states.
These are the input transitions q1

0−→ q′1 ∧ q2
1−→ q′2 and q1

1−→ q′1 ∧ q2
0−→ q′2, which

represent 0 + 1(+1) = 10 resp. 1 + 0(+1) = 10. For these we add the transition
q1 × q2 × 1

0−→ q′1 × q′2 × 1 and q1
1−→ q′1 ∧ q2

1−→ q′2 which represents 1 + 1(+1) = 11

for which we add the transition q1 × q2 × 1
1−→ q′1 × q′2 × 1.

States where we carry a bit cannot be accepting states. The only way to reach a
final state from q1 × q2 × 1 is to have the transitions q1

0−→ q′1 ∧ q2
0−→ q′2, which

represent 0+0(+1) = 1. We add q1×q2×1
1−→ q′1×q′2×0. If q′1 and q′2 are accepting

states, q′1 × q′2 × 0 is also an accepting state. This is because if we have accepted a
word in A1 and A2 and do not carry a carry bit, we have simultaneously read two
accepting words from the input automata and implicitly calculated the sum in the
resulting sum automaton.

An example for this construction can be seen in figure 4.4, where the sum of two
automata is calculated. The first automaton accepts 0 and 1 while the second one
only accepts 1. When using the transition rules from above we construct an au-
tomaton which can read 1 and 2 in binary representation with LSBF encoding.

4.7.1. Proof

In this section we will use the notation 〈x〉 to denote the value of the word x, which
is a binary representation in LSBF encoding. Additionally [x] is used for the word
representation of the value x. To show that our construction correctly calculates
the sum automaton we have to prove two statements. First, that for every accepted
word [x] ∈ L(A1) and [y] ∈ L(A2) we have an accepting word [z] ∈ L(A1+2) with
z = x + y. And secondly, that every z ∈ A2 can be divided into x and y such that
they are accepted in L(A1) respectively L(A2).

“⇒”: To show the first part we assume that we have a word x that is accepted in
A1 starting at state p, and accepting in state p′, (p) x−→ (p′) ∈ F1 and a word y such
that (q) y−→ (q′) ∈ F2 with states q, q′ in A2. Then, we have to show two cases:

a) (p, q, 0)
z=[〈x〉+〈y〉]−−−−−−−→ (p′, q′, 0) ∈ F1+2

38

4.7. Direct Construction of the Multiplication Automaton

2

0

1
1

0

(a) Automaton accepting 0 and 1

+
2’

0

1’
1

(b) Automaton accepting 1

(2,2’,0)
(1,1’,0) 1

(2,2’,1)

0
1

(c) Sum automaton accepting 1 and 2 as the sum of a) and b)

Figure 4.4.: Example of a sum of two automata

b) (p, q, 1)
z=[〈x〉+〈y〉+1]−−−−−−−−−→ (p′, q′, 0) ∈ F1+2

Induction over n = min{|x|, |y|} is used to prove this. We start the induction at
n = 0 and know that |x| = 0 ∨ |y| = 0 and without loss of generality we can
assume |x| = 0, x = ε. Because of x = ε we know that p = p′ and therefore
p ∈ F1 and with (q)

y−→ (q′) and q′ ∈ F2 we know by construction of A1+2 that
(p, q′, 0) ∈ F1+2.

The word z is accepted in both cases:

1) (p, q, 0)
z=y−−−→ (p, q′, 0) ∈ F1+2 by rule i) and ii) as we always read 0 in A1.

2) (p, q, 1)
z=[〈y〉+1]−−−−−−→ (p′, q′, 0) ∈ F1+2

In case 2) we use induction over m = |y|. For m = 0 and y = ε we have p = p′∧q =

q′ and read 1, and it is trivial to see that (p, q, 1) 1−→ (p, q, 0) ∈ F1+2 with transition
rule iv). Now we handle the induction step m→ m+ 1 to read [〈y〉+ 1] and use a
case distinction on y0 where y = y0y

′ such that y′ is a shorter word than y:

• y0 = 0: z = [1]y′ ⇒ (p, q, 1)
1−→ (p′, q′, 0)

y′−→ (p′′, q′′, 0) by rule v) and the
induction hypothesis for the sequence which reads y′.

39

4. Algorithms

• y0 = 1: z = [0]y′ ⇒ (p, q, 1)
0−→ (p′, q′, 1)

[〈y′〉+1]−−−−−→ (p′′, q′′, 0) due to the transi-
tion rule vi) and the induction hypothesis.

In the induction step n → n + 1 we have the words x = x0x
′ and y = y0y

′ and do
a case distinction on the values of x0 and y0.

• x0 = 0∨y0 = 0 (three cases) z = [〈x〉+ 〈y〉] = [〈x0〉+ 〈y1〉][〈x′〉+ 〈y′〉] with the

sequence (p, q, 0)
[〈x0〉+〈y1〉]−−−−−−−→ (p′, q′, 0)

[〈x′〉+〈y′〉]−−−−−−−→ (p′′, q′′, 0) where we use the
first three transition rules for the first transition and the induction hypothesis
on the sequence for the shorter word [〈x′〉+ 〈y′〉].

• x0 = 1 ∧ y0 = 1 ⇒ z = [〈x〉 + 〈y〉] = [0][〈x′〉 + 〈y′〉 + 1] has to be read with

a sequence (p, q, 0)
[0]−−→ (p′, q′, 0)

[〈x′〉+〈y′〉+1]−−−−−−−−→ (p′′, q′′, 0) where we can apply
the induction hypothesis on the smaller word.

“⇐”: The other direction, that all words accepted by A1+2 have to be the sum of
an x ∈ L(A1) and a y ∈ L(A2), can be shown by splitting z = [〈x〉 + 〈y〉], which
is accepted by (p, q, 0)

z−→ (p′, q′, 0), into its two components x and y. The first
component x, which has to be accepted by A1 by the sequence (p)

x−→ (p′) ∈ F (A1)

and the second component y in A2, which is read with (q)
y−→ (q′). From the

construction we see that we can extract both summands by looking at the sequence
of states that are accepting z, and reconstruct the word x by looking at the first
component p of the state tuple (p, q, {0, 1}) and use the transitions between these
states in A1 to extract it. The same can be done for the word y and the second
component q to reconstruct the sequence of states in A2 which have been used to
accept y. This might not be a unique word because if both transitions (p) 0−→ (p′)∧
(p)

1−→ (p′) are in A1, then both words would be a candidate for the summand.

To prove this direction we have to show that:

a) (p, q, 0)
z=[〈x〉+〈y〉]−−−−−−−→ (p′, q′, 0′) ∈ F1+2 ⇒ (p)

x−→ (p′) ∈ F1 ∧ (q)
y−→ (q′) ∈ F2

b) (p, q, 1)
z=[〈x〉+〈y〉+1]−−−−−−−−−→ (p′, q′, 0) ∈ F1+2 ⇒ (p)

x−→ (p′) ∈ F1 ∧ (q)
y−→ (q′) ∈ F2.

For this we use an induction over n = |z| and start with n = 0, z = ε. For z = ε we
have p = p′ ∧ q = q′ and show both a) and b) with

1) (p, q, 0)
0−→ (p, q, 0) ∈ F1+2 then by construction ε ∈ L(A1) ⇒ p ∈ F1 ∧ ε ∈

L(A2)⇒ q ∈ F2.

40

4.8. Finding Constants in an Automaton

2) (p, q, 1)
1−→ (p, q, 0) ∈ F1+2 then this transition was added by the transition

rule v) and we have (p)
0−→ (p) ∧ (q)

0−→ (q) and by construction of (p, q, 0) ∈
F1+2 we have p ∈ F1 ∧ q ∈ F2.

In the induction step n → n + 1 we write [〈x〉 + 〈y〉] = z = z0z
′ such that z0 is

the last bit and z′ is a smaller word which can already be read. We will do a case
distinction on z0 and for z0 = 0 we have to show:

1) (p, q, 0)
0−→ (p′, q′, 0)

[〈x′〉+〈y′〉]−−−−−−−→ (p′′, q′′, 0) ∈ F1+2, which is achieved with the
first transition rule with x0 = 0 ∧ y0 = 0 and the induction hypothesis.

2) (p, q, 1)
0−→ (p′, q′, 0)

[〈x′〉+〈y′〉+1]−−−−−−−−→ (p′′, q′′, 0) ∈ F1+2

Part 2) consists of two cases because either we read a 1 in A1 or in A2 while the
other reads a 0:

• (p)
0−→ (p′)

x′
−→ (p′′) ∈ F1 ∧ (q)

1−→ (q′)
y′−→ (q′′) ∈ F2 by rule vi) and induction

hypothesis for x′ and y′.

• (p)
1−→ (p′)

x′
−→ (p′′) ∈ F1∧ (q)

0−→ (q′)
y′−→ (q′′) ∈ F2 by rule vii) and induction

hypothesis.

The second case is z0 = 1 for which we show both a) and b) with:

1) (p, q, 0)
[1]−−→ (p′, q′, 0)

[〈x′〉+〈y′〉]−−−−−−−→ (p′′, q′′, 0) ∈ F1+2 which has analogous to 2)
in z0 = 0 the two cases, that we read either a 1 in A1 and 0 in A2 or we read
0 in A1 and 1 in A2.

2) This is analogous to 1) in the case z0 = 0 where we read (p, q, 1)
1−→ (p′, q′, 1)

[〈x〉+〈y〉+1]−−−−−−−→ (p′′, q′′, 0) ∈ F1+2. This transition sequence can be added by the
last transition rule and for the rest we can apply the induction hypothesis.

This concludes the proof. We now know that the sum automaton recognizes all
sums of all words that are accepted by A1 and A2 and all words recognized by
A1+2 are sums of words accepted by A1 and A2. �

4.8. Finding Constants in an Automaton

There have been several attempts (see section 2.5.3 and 1.2) to recover the semilin-
ear set from an automaton. In section 3.2.4 and 4.2 we stated that we need only the
constants of the semilinear set for the construction of the Kleene star automaton
and we can neglect the periods. This section describes an algorithm, which is a

41

4. Algorithms

good heuristic to find constants by operating on the directed graph which repre-
sents our automaton. We then find all simple paths from the start state to all accept-
ing end states. A simple path is a path where each vertex is included only once.
We suppose that we can find a superset of necessary constants that are needed to
recreate the semilinear set if we would also find the periods, but have not been
able to prove it yet.

10

X

11

0

9

1

1

20

3

1

4

0

5

1

6
0 7

1

8X

0

1

1

0

1

0

1

0

1

0

• 1
0−→ 2

0−→ 4
0−→ 8

1−→ 10 = 8

• 1
0−→ 2

0−→ 4
1−→ 8

1−→ 10 = 12

• 1
0−→ 2

1−→ 5
1−→ 9

1−→ 11 = 14

• 1
1−→ 3

0−→ 6
1−→ 5

1−→ 9
1−→ 11 = 29

• 1
1−→ 3

0−→ 6
0−→ 7

0−→ 9
1−→ 11 = 17

• 1
1−→ 3

1−→ 7
0−→ 9

1−→ 11 = 11

Figure 4.5.: All simple paths and the corresponding constants in an example au-
tomaton accepting S = L1(8; 4) ∪ L2(8; 3)

Example In figure 4.5 one can see all found simple paths in the automaton from
the start state 1 to both accepting states 10 and 11. The result is a superset of
constants as we only need the constants 8 for both our linear sets L1 and L2. Note
that we do not always get the same constants which have been in the input because
the result might show that the canonical form does not need this constant. For
example see the set S2 = L3(4; 2) ∪ L4(10; 3) which is equivalent to the semilinear

42

4.8. Finding Constants in an Automaton

set S2 ≡ S3 = L5(4; 2) ∪ L6(13; 3). We can see that the constant 10 of L4 is also
included in L3 because 10 = 4 + 3 · 2. So we do not need 10 in L6 and can safely
use 13 as constant.

Note that we require all simple paths from the start state to all end states, not only
the shortest ones. We therefore modify a depth-first search approach to find cycle
free paths.

The idea is to begin at the starting node and descend into the first neighbour state.
We save the already visited states in a sequence called visited to be able to check
if we already visited a state. We do a depth-first descend and always descend
into the first neighbour of the new state until we find an accepting end state. In
this situation we rebuild our path by looking at visited and save the sequence of
matching words along this path. As there might be more than one transition from
one state to another we might end up with more than one word that is accepted
on this path. The path marked with an X in figure 4.5 is such a path as it contains
the transition 4→ 8, which accepts both 0 and 1. The resulting words on the path
1→ 2→ 4→ 8→ 10 are therefore 〈0001〉 = 810 and 〈0011〉 = 1210.

When we find an end state, we return the result(s) found and delete the last node
we visited while backtracking. Now we are back at an earlier node and visit the
next node in the neighbour list until there is no unvisited neighbour. This way we
find all possible paths through the graph from the start state to one accepting end
state. To get all simple paths to all end states we run this algorithm for all pairs of
the start state and all end states.

We suppose that this algorithm returns a superset of constants needed to construct
the semilinear set represented by the automaton. Despite much effort we could
not yet find a proof that this is correct, nor could we find a counter example. We
tried to find counter examples by looking at the structure of automata and tried to
construct counter examples based on different structures but failed in finding one.
Most of our attempts have been cases were our algorithm could find an optimized
set of constants.

4.8.1. Conjecture

This section shows why this algorithm is at least a valid approach for linear sets.
An automaton which accepts the solutions to a linear equation has only one final
state. This follows from the construction of number decision diagrams from a lin-
ear equation as shown in [BC96]. A linear set L(c;P), which can be transformed
to such a linear equation, can therefore be recognized by an automaton with one

43

4. Algorithms

Input: Graph G, sequence of visited states, end state
Output: a superset of constants
/* The first part of the algorithm handles the case we

found an end state. Reconstruct the path and return
all possible transition sequences */

last←visited.last();
neighbours←G.nodes[last].neighbours;
for i = 0 to #neighbours do

node←neighbour[i];
if node ≡ end then

/* visited contains the full path from start to
end */

visited.append(node);
/* this might return more than one transition

sequence if multiple transitions have been
possible between two states */

constants at path←transitions on path(visited);
constants.append(constants at path);
visited.deleteLastElement();

end
end
/* at this point we have the binary representation of

each constant */
result←{};
for i = 0 to #constants do

sum←0k;
constant←constants[i];
for j = 0 to #(constant.transitions) do

/* calculate the value of the constant from the
transition sequence */

sum←sum + constant.transitions[j]·2j ;
end
result.append(sum);

end
/* now result contains integer constants */

44

4.9. Computing a Minimal Basis

/* recursion, visit all neighbours */
for i = 0 to #neighbours do

node←neighbours[i];
if visited contains node then

/* we have already been here */
continue;

end
visited.append(node);
/* DepthFirst returns all results (if any). Concat

to the result */
result.concat(DepthFirst(G, visited, end));
visited.deleteLastElement();

end
return result

Algorithm 5: Retrieving constants from automaton

final state. This linear set L has a minimal element c with respect to the lexico-
graphic order on the vector space. This minimal element c is also the shortest
accepting word in the automaton. If there would be a shorter accepting word than
c, it would also be smaller than c with respect to lexicographic ordering and this
element would therefore be the minimal element.

4.9. Computing a Minimal Basis

The amount of constants which have to be processed and converted to periods in
the Kleene star algorithm 1 is posing a problem. If we store the constants to each
automaton explicitly, then we get an exponential blowup during multiplication
because the constant from each linear set has to be added to all other constants
and creates a new linear set for each pair of constants (see section 3.2.3). Also if
we use the algorithm 5 for retrieving constants from an automaton, we get redun-
dant constants that are not needed and cause unnecessary work while calculating
the Kleene star. For that reason we need an algorithm to minimize a superset of
constants to get a minimal basis for the Kleene star algorithm as already stated in
3.2.4.2. This minimal basis is calculated with the algorithm 6 where we check for
each element of the set of constants whether it is a linear combination of the other
remaining constants and remove it if this is the case. This resulting set depends
on the order in which the constants are checked as we remove all unnecessary el-
ements in the for-loop. One of these removed elements might be the basis for one

45

4. Algorithms

of the later constants, but at least we do not have any linear dependant constants
in our set and it is smaller or equal the size of the original set.

Input: list of i constants ci ∈ Nk

Output: minimal basis for the constants
for i = 0 to #constants do

element←constants[i];
if element is a linear combination of the remaining constants then

constants.remove(i);
end

end
return constants;

Algorithm 6: Calculating a minimal basis from a set of constants

46

5. Implementation

The implementation of semilinear sets represented as NDDs is done in the C++-
framework FPsolve, which has solvers for systems of equations over ω-continuous
semirings. FPsolve has a very flexible architecture, which enables the user to eas-
ily switch the used solver by using template parameters, as the API for the solvers
is very generic. There are also different semirings like the float semiring, the trop-
ical semiring and even generic semirings like the tuple semiring, which can be
used to combine two semirings and calculate the solutions in both semirings at
the same time. Each semiring provides a generic semiring API, which allows the
solver to be unaware of the actual used semiring. Still, it can use properties given
by templates to distinguish for example commutative from non-commutative or
idempotent from non-idempotent semirings to be able to optimize computation in
certain cases. An overview of the basic architecture can be seen in figure 5.1, were
we also included the structure for our semiring implementation.

5.1. GENEPI

For the actual implementation of above algorithms we used the GENEPI library,
which is a GENEric Presburger programming Interface. The library does not do actual
computing by itself, but uses a plugin system that enables the user to use different
backends depending on the requirements[Gen14]. One big advantage of GENEPI

is that the abstraction provides a clean and generic API which does not depend
on the underlying data structure so that the user only provides a plugin for an
automaton library and GENEPI is able to use it without the user needing to know
about this data structure. If the user later decides that a formula based approach
might get faster results, he simply exchanges the automaton based plugin with the
formula based plugin and his program, which depends only on the GENEPI API,
is still working.

The API offers generic functions to create data structures, which are recognizing
sets like the empty set ∅ or the number sets N,Z or R (depending on the under-
lying backend, not each set is supported). GENEPI also handles all the required
data structures needed by the backend and does all the allocating and freeing of

47

5. Implementation

FPsolve

NewtonConcrete NewtonSymbolic Kleene

SemiringA SemiringB Semilinear sets

Genepi

LASH MONA Omega

Figure 5.1.: Architecture of the semilinear set implementation

memory. In contrast to the original frameworks GENEPI checks the input for cer-
tain assertions to help the programmer avoid errors. As an example it checks if the
dimension of two input automatons match each other and throws an error other-
wise. In addition, GENEPI also provides some convenience functions, which are
composed of small backend functions. Thus, each backend only has to provide ba-
sic functionality. As an example the equality or inclusion check in the MONA plu-
gin is composed of set complement, set intersection and is empty.

There are also methods to create automata recognizing the solutions of linear
equalities or other linear operations. Once we have automata we can operate on
them as well. GENEPI has functions for set intersection, union, complement, pro-
jection or inverse projection. Beside these manipulating functions it is also possible
to query these automata. For example you can ask the set if it is empty, full or finite
or test two sets if they are equal or included in one another. Another important
function for our work is the ability to check if a vector belongs to a set.

GENEPI offers a built in plugin loader, which loads plugins during runtime in
order to avoid recompiling, and functionality to check the environment for failed
plugins.

48

5.1. GENEPI

5.1.1. LASH

The LASH toolset (Liège Automata-based Symbolic Handler) is a C-based toolset
that was written around 2000 and offers data structures for several different sets.
The LASH-NDD library (number decision diagram) can be used to recognize vec-
tors of unbounded integers, which are slightly more expressive than Presburger
Arithmetic[Boi14].

LASH-RVA (Real Vector Automaton) is another library in the LASH toolset, which
is able to represent sets of vectors of unbounded reals or integers.

As we focus only on sets of natural numbers, we are going to use the NDD library
as a GENEPI backend. The NDD library uses number decision diagrams as an
internal data structure to recognize the set. It supports the LSBF and MSBF encod-
ing of numbers and is therefore interesting for comparing operations on different
encodings without the necessity of changing code.

5.1.2. MONA

MONA is a C-based tool, which can translate formulas to finite-state automata and
implements decision procedures for the weak monadic second-order theory of one
or two successors (WS1S/WS2S) [KM01]. To accomplish this, MONA has its own
data structures for expressing and manipulating finite-state automata. These DFA
implementation uses an efficient shared binary decision diagram (BDD) to store
all transitions in one compact table. Although most of the code was also written
around 2000, it is still maintained by the authors by fixing bugs and porting the
codebase to new compilers and toolchains. MONA uses the LSBF encoding for the
internal representation of the recognized vectors.

5.1.3. Comparison of LASH vs. MONA

We experimented with FPsolve and calculated the solutions to some randomly cre-
ated quadratic equations with MONA and LASH (both LSBF and MSBF). The used
equations for this benchmark can be found in appendix A. For this benchmark we
recorded the maximum amount of memory and the time FPsolve needed to cal-
culate the solution. Each equation was solved with our semiring implementation
with each of the three GENEPI plugins MONA,LASH-LSDF and LASH-MSDF. The
results that can be seen in figure 5.2 show that the MONA plugin is faster by or-
ders of magnitude than both LASH plugins. This might come from the efficient

49

5. Implementation

0 5 10 15 20 25 30
0

2

4

6

8

·105

test case

m
ax

m
em

or
y

MONA
LASH-MSDF
LASH-LSDF

(a) Used memory (peak)

0 5 10 15 20 25 30

10−1

100

101

102

103

test case

ti
m

e

MONA
LASH-MSDF
LASH-LSDF

(b) Runtime (logarithmic time axis)

10−1 100 101 102 103

MONA

LASH-MSDF

LASH-LSDF

time

(c) Runtime (logarithmic time axis)

Figure 5.2.: Comparison of MONA and LASH

DFA implementation of MONA which is based on a shared BDD and other opti-
mizations.

5.2. Optimization

5.2.1. LSBF vs. MSBF

There are examples for sets of numbers where the LSBF and MSBF representation
have very different automata sizes. For the automata with basis 2, which we use
in this thesis, the set of all powers of two

{
2i|i ∈ [k]

}
is representable in O(k) in

LSBF while the MSBF automaton has a size in O(2k)[Boi]. Latour experimented
in [Lat05] on sizes in MSBF and LSBF representation and found that the MSBF
encoding produces smaller automata than the LSBF encoding. A huge impact can

50

5.2. Optimization

0 20 40 60 80 100

0

200

400

LASH-MSDF time

L
A

SH
-L

SD
F

ti
m

e

(a) Runtime

0 0.2 0.4 0.6 0.8 1

·106

0

0.2

0.4

0.6

0.8

1

·106

LASH-MSDF max. memory

L
A

SH
-L

SD
F

m
ax

.m
em

or
y

(b) Used memory (Peak)

0 0.2 0.4 0.6 0.8 1

·104

0

0.5

1

·104

LASH-MSDF result states

L
A

SH
-L

SD
F

re
su

lt
st

at
es

(c) Automata states

Figure 5.3.: Comparison of LASH MSDF and LSDF plugin

be seen with the presence of a sign bit while there was almost no difference in the
absence of a sign bit.

With the flexible GENEPI framework it is easily possible to change the underly-
ing backend of our algorithms. We used the same equations as in section 5.1.3
and compared the runtime, peak memory usage and the number of states of the
MSBF and LSBF encoding of the solution for each problem instance in figure 5.3
and found, that for most of our problem instances the encoding is not important.
But we can see that the MSBF encoding is slightly more efficient on average both
in runtime and amount of states in the solution automaton and that the LSBF can
have outliers in the runtime and amount of states for a few problem instances.
Despite that, the amount of used memory (peak) is about the same for both encod-
ings.

51

5. Implementation

2 4 6 8

101

102

103

104

105

106

k

si
ze

(a) Exponential growth of automaton size

k size
1 12
2 61
3 270
4 1147
5 4764
6 19513
7 79242
8 320119
9 1289016

(b) Table of the
size of the
automata

Figure 5.4.: Size of the sum automaton for k variables

5.2.2. Componentwise Addition Compared to Addition of All
Components at once

As already described in section 4.6 we used an optimization for the multiplication
algorithm. We have to calculate the sum of all ai ∈ A and bi ∈ B to get the result-
ing set. This could be done by creating one big sum automaton which calculates
the sum of all pairs of ai, bi at once, but this automaton grows exponentially in the
dimension of the recognized vectors as can be seen in figure 5.4. For this reason we
do not want to generate the automaton that calculates the sum for k vector compo-
nents at once. Instead we use the sum automaton for one component which is of
size 12 and calculate the sum for each of the components in an extra step. Between
these steps we can additionally project away the unnecessary components, which
already have been used to calculate the sum, in order to keep the number of states
in the intermediate automata as small as possible.

5.2.3. Order of Processing of Variables

While implementing the multiplication algorithm, some problem instances used
huge amounts of memory. This happens while intersecting with the generic sum
automaton as it creates automata with sizes in order of the double size of the orig-
inal automaton. If we were to intersect the generic sum automaton with the next

52

5.2. Optimization

component, the automaton would have grown to infeasible sizes. We briefly recall
from section 4.6.2 that one component/variable was encoded in such a way that
the encoding of the i-th variable was ai for the first automaton ai, bi for the second
and aibici for the result automaton with ci = ai + bi after intersecting with the
sum automaton. After calculating the sum ci we do not need ai and bi anymore.
For that reason we can project away these components and possibly reduce the
amount of states and transitions in the automaton.

But we discovered that the size of the projected automata is not always smaller
than the original automaton (after intersecting with the generic sum automaton).
This might come from the fact that while removing information from the automa-
ton we get a non deterministic automaton as a result which as the be converted
into a deterministic automaton. The determinization can cause a blowup of the
automaton and can even double the size instead of reducing it.

To circumvent this we change the order of the variables that we intersect the
generic sum automaton. For some input automata the order in which we cal-
culate the sum of the components has a big impact on the size of the intermediate
automata. An unfortunate ordering might cause a huge blow up during the in-
tersection and projection while others generate very small intermediate automata
for the same input automata. But for some input automata the size of the inter-
mediate automata are the same for each permutation of the order on the variables.
Bonfante and Leroux discovered in [BLR07] that the problem of finding an optimal
order for intersecting automata is NP-complete. Thus, to find a reasonably good
permutation, we need a heuristic, which enables us to calculate the result without
using an unreasonable amount of memory.

For finding a good heuristic we have to reflect on the information about the au-
tomaton which is available to us. We are given an automaton representing a vector
of sets of numbers. To be able to calculate the Kleene star closure of the set in an
efficient way, we are also given a minimal basis of the constants which gives us a
rough idea about the length of the words representing the numbers for each com-
ponent of the vector. We do not have more information readily available but the
automaton which is kind of a black box for our purpose which we can ask for
certain properties but it is an open problem which properties will provide a good
heuristic for calculating the sum of the two input automata.

53

5. Implementation

54

6. Conclusion

In this thesis we defined the Kleene star operator on semilinear sets where we only
used the constants and powers of the original sets. We then transformed semilin-
ear sets to NDDs and defined the semiring structure with addition, multiplication
and the Kleene star on these automata by only using high-level operations like
union, intersection, projection and inverse projection. The multiplication poses a
problem because of the exponential growth in the explicit semilinear set represen-
tation. But it is also problematic in the automata representation when only using
high-level operations. This is due to the intermediate automata growing very fast
while the size of the result after projection would be much smaller. Experiments
with the order in which vector components are summed up show that for some in-
put instances there is a big difference in the size of the intermediate automata de-
pending on the order. Despite our efforts we could not find a heuristic for a good
order of the components. To tackle the problems of the high-level approach for the
multiplications we give an algorithm for a direct construction of the resulting mul-
tiplication automaton based on the transitions of the input automata. But as our
implementation uses GENEPI as an abstraction layer we cannot access the transi-
tions of the input automata. Instead we have to rely on the high-level approach
to be able to use GENEPI, which has the big advantage that we can switch the
backend without effort. While the direct construction approach does not create as
many intermediate automata we still get a huge and non-deterministic automaton,
which has to be determinized and minimized. Finally we describe an algorithm
which we suppose extracts a superset of necessary constants of the semilinear set
from the automata representing these sets but could not prove yet.

55

6. Conclusion

56

7. Future work

7.1. Heuristic for a Good Processing Order during
Multiplication

The high-level multiplication algorithm still poses a problem regarding the order
in which we calculate the sum of the components of our input automata (see sec-
tion 5.2.3). At the moment we add up the components in their order of appearance
in the input vector but as we mentioned there might be a better order in which we
do the necessary automata intersections. We were not able to find a good heuristic
to calculate such an order. Perhaps there is enough data in the automata which is
efficiently extractable to calculate a good order. Another possible way would be
to store some meta data with the automaton which is updated during addition,
multiplication and the Kleene star which gives us enough information.

7.2. Extracting Constants from Automatons

In section 4.8 we describe an algorithm which might extract necessary constants
from a given automaton that are needed to recreate the represented semilinear set.
It is still an open question to define which constants are necessary when we do not
know the periods which are still hidden in the automaton. After defining which
constants are necessary it might be possible to prove the algorithm. Additionally,
it would be also of interest to extract only a minimal set of constants, which define
the same semilinear set with the hidden periods in the automaton.

7.3. Direct Creation of Multiplication Automaton

As already mentioned the high-level approach for creating the multiplication au-
tomaton is not very efficient because many very big intermediate automata are
created during the calculation of the result. One possible solution is the direct

57

7. Future work

construction of the resulting multiplication automaton by not using black-box au-
tomata but directly looking at the internal data structure and create the result di-
rectly without creating several huge intermediate data structures. But this has
the disadvantage that we cannot use the flexibility of GENEPI anymore as GENEPI

does not support working directly on the automaton with its API. For this ap-
proach one has to choose an automata framework and use it without the GENEPI

abstraction layer. Another approach is to extend GENEPI with a middle-level API
which gives the programmer generic access to the structure of the automata to
get transitions between states without touching the internal data structures. These
data structures can be complex and optimized. For example the data structures
used in MONA encode the transitions of an automaton in a very efficient way. They
are based on binary decision diagrams[KM01], which is quite different to the LASH

DFA implementation. The solution with a generic middle-level API that enables
the programmer to extract transitions and create new ones would be preferable.
This is because the internal optimizations (i.e. the BDD structure of MONA) can
be used without having to operate directly on its internal data structure. In addi-
tion, it is still possible to switch the backend to experiment with different automata
libraries.

58

Appendix

59

A. FPsolve Benchmark for Semilinear
Sets

These 30 test cases can be used as input for the tool FPsolve. They have been
randomly generated, such that we have quadratic equations with at most 4 letters.
We calculated the least fixed point of these equations with the Newton Concrete
solver of FPsolve and measured the memory consumption, runtime and the size of
the solution for each of the three plugins MONA,LASH-MSDF and LASH-LSDF.

1 : <x0> ::= "<c:1,c:6,d:1,b:5>"<x0><x0> | \
"<a:5,a:4,a:6,d:4>"<x0><x0> | "<d:3,c:2,b:2,b:3>"<x0><x0> | "<>";

2 : <x0> ::= "<a:4,b:6,d:6,b:3>"<x0><x0> | \
"<c:4,a:1,d:1,b:6>"<x0><x0> | "<a:1,d:5,b:3,a:1>"<x0><x0> | "<>";

3 : <x0> ::= "<d:1,c:3,c:5,c:2>"<x0><x0> | \
"<b:2,d:6,a:2,d:6>"<x0><x0> | "<a:4,c:3,c:1,a:6>"<x0><x0> | "<>";

4 : <x0> ::= "<b:4,b:3,b:2,a:6>"<x0><x0> | \
"<a:5,c:5,c:2,c:5>"<x0><x0> | "<a:4,c:3,d:5,a:4>"<x0><x0> | "<>";

5 : <x0> ::= "<d:5,a:1,a:6,a:2>"<x0><x0> | \
"<c:6,a:3,a:2,c:5>"<x0><x0> | "<a:6,a:5,c:1,a:2>"<x0><x0> | "<>";

6 : <x0> ::= "<a:5,d:2,a:2,a:5>"<x0><x0> | \
"<c:5,d:5,a:3,a:6>"<x0><x0> | "<a:6,c:2,d:3,c:4>"<x0><x0> | "<>";

7 : <x0> ::= "<b:6,a:2,b:6,b:5>"<x0><x0> | \
"<d:5,b:3,a:3,a:2>"<x0><x0> | "<d:2,c:5,c:5,d:1>"<x0><x0> | "<>";

8 : <x0> ::= "<a:3,c:2,c:2,c:6>"<x0><x0> | \
"<a:4,a:1,c:2,d:4>"<x0><x0> | "<d:5,a:4,d:5,d:3>"<x0><x0> | "<>";

9 : <x0> ::= "<b:6,d:1,d:3,c:3>"<x0><x0> | \
"<c:4,c:1,d:2,d:6>"<x0><x0> | "<d:6,b:5,c:3,c:1>"<x0><x0> | "<>";

10: <x0> ::= "<b:4,a:1,b:5,a:1>"<x0><x0> | \
"<a:1,a:4,d:6,c:6>"<x0><x0> | "<b:4,b:5,b:4,c:4>"<x0><x0> | "<>";

11: <x0> ::= "<b:6,b:1,a:3,a:5>"<x0><x0> | \
"<c:6,c:1,c:6,b:5>"<x0><x0> | "<c:5,c:1,c:6,b:3>"<x0><x0> | "<>";

12: <x0> ::= "<d:5,a:5,a:1,a:2>"<x0><x0> | \
"<a:4,d:2,c:4,d:6>"<x0><x0> | "<b:2,c:4,a:3,d:2>"<x0><x0> | "<>";

13: <x0> ::= "<c:2,d:3,b:4,a:3>"<x0><x0> | \
"<c:3,a:3,c:4,c:1>"<x0><x0> | "<d:6,d:6,b:4,d:4>"<x0><x0> | "<>";

14: <x0> ::= "<d:3,d:1,d:4,a:3>"<x0><x0> | \
"<c:5,a:2,a:6,b:5>"<x0><x0> | "<a:5,a:6,d:4,d:2>"<x0><x0> | "<>";

15: <x0> ::= "<a:3,c:2,b:6,d:1>"<x0><x0> | \
"<b:4,d:6,b:2,a:3>"<x0><x0> | "<c:5,c:2,b:1,b:3>"<x0><x0> | "<>";

61

A. FPsolve Benchmark for Semilinear Sets

16: <x0> ::= "<c:5,d:4,b:6,b:3>"<x0><x0> | \
"<d:6,d:2,d:2,a:5>"<x0><x0> | "<b:2,a:5,c:5,b:4>"<x0><x0> | "<>";

17: <x0> ::= "<d:6,b:5,b:5,a:3>"<x0><x0> | \
"<a:6,a:5,b:3,b:4>"<x0><x0> | "<d:5,a:4,d:6,d:2>"<x0><x0> | "<>";

18: <x0> ::= "<a:1,c:4,d:1,d:5>"<x0><x0> | \
"<a:1,b:2,d:6,b:5>"<x0><x0> | "<b:6,a:6,c:4,a:4>"<x0><x0> | "<>";

19: <x0> ::= "<c:2,a:1,b:4,c:4>"<x0><x0> | \
"<d:3,d:4,c:1,c:5>"<x0><x0> | "<d:6,d:5,b:1,d:1>"<x0><x0> | "<>";

20: <x0> ::= "<c:5,c:4,a:6,b:2>"<x0><x0> | \
"<c:2,a:4,c:1,c:1>"<x0><x0> | "<d:1,b:6,a:5,c:3>"<x0><x0> | "<>";

21: <x0> ::= "<c:1,d:1,d:4,a:5>"<x0><x0> | \
"<d:2,d:4,d:4,c:5>"<x0><x0> | "<d:6,c:5,d:6,a:2>"<x0><x0> | "<>";

22: <x0> ::= "<c:3,d:3,c:4,b:6>"<x0><x0> | \
"<b:4,d:1,d:1,d:4>"<x0><x0> | "<b:2,b:2,c:6,c:5>"<x0><x0> | "<>";

23: <x0> ::= "<a:5,c:6,c:6,d:3>"<x0><x0> | \
"<c:4,d:1,d:2,a:5>"<x0><x0> | "<c:5,b:5,a:6,c:2>"<x0><x0> | "<>";

24: <x0> ::= "<c:6,c:4,a:1,c:2>"<x0><x0> | \
"<b:6,c:6,c:2,c:2>"<x0><x0> | "<a:2,c:5,b:3,a:1>"<x0><x0> | "<>";

25: <x0> ::= "<a:4,d:1,b:2,d:2>"<x0><x0> | \
"<b:3,a:1,b:6,c:6>"<x0><x0> | "<a:1,b:2,a:6,c:2>"<x0><x0> | "<>";

26: <x0> ::= "<c:4,a:2,b:6,c:2>"<x0><x0> | \
"<a:5,a:1,b:5,d:2>"<x0><x0> | "<c:6,a:4,a:1,c:5>"<x0><x0> | "<>";

27: <x0> ::= "<c:2,c:4,b:2,d:4>"<x0><x0> | \
"<d:5,b:3,b:2,b:4>"<x0><x0> | "<d:6,c:1,b:1,d:5>"<x0><x0> | "<>";

28: <x0> ::= "<a:1,c:1,d:3,c:1>"<x0><x0> | \
"<b:6,c:4,a:5,a:4>"<x0><x0> | "<d:4,b:5,a:5,b:1>"<x0><x0> | "<>";

29: <x0> ::= "<b:6,a:1,d:3,c:2>"<x0><x0> | \
"<c:5,a:5,d:5,b:6>"<x0><x0> | "<d:1,c:1,c:4,c:4>"<x0><x0> | "<>";

30: <x0> ::= "<b:3,c:2,a:1,a:4>"<x0><x0> | \
"<d:4,b:5,b:2,a:1>"<x0><x0> | "<c:3,c:6,b:2,c:1>"<x0><x0> | "<>";

62

List of Figures

2.1. The linear set L = {(1, 2) + k1(0, 2) + k2(3, 0)} 8
2.2. Automaton accepting the number 510 as the binary word 1012 in

LSBF encoding with the invalid state 2 9
2.3. Automaton accepting multiples of four in LSBF with sign bit 10
2.4. Automaton accepting multiples of four in MSBF with sign bit . . . 10
2.5. Automaton accepting the vector (5, 6)T ∈ N2 11

3.1. The automaton for x+ 2y − 3z = 2 18

4.1. Automaton accepting (1, 2, 3) with interleaving encoding as 101011(000)∗ 30
4.2. Automaton accepting {(x, y, z) ∈ N3|x+ y = z} 31
4.3. Sum automaton AΣ2 which calculates the sum of a2 and b2 for input

vectors ~v ∈ N2 . 36
4.4. Example of a sum of two automata 39
4.5. All simple paths and the corresponding constants in an example

automaton accepting S = L1(8; 4) ∪ L2(8; 3) 42

5.1. Architecture of the semilinear set implementation 48
5.2. Comparison of MONA and LASH . 50
5.3. Comparison of LASH MSDF and LSDF plugin 51
5.4. Size of the sum automaton for k variables 52

63

List of Figures

64

List of Algorithms

1. Calculating the Kleene star of S recognized by A 30

2. Calculating automaton accepting a constant 33

3. Calculating automaton accepting a period 33

4. Calculating the multiplication automaton via intersection with AΣ . 37

5. Retrieving constants from automaton 45

6. Calculating a minimal basis from a set of constants 46

65

Bibliography

[BC96] Alexandre Boudet and Hubert Comon. Diophantine equations, pres-
burger arithmetic and finite automata. In Hélène Kirchner, editor, Trees
in Algebra and Programming CAAP ’96, volume 1059 of Lecture Notes in
Computer Science, pages 30–43. Springer Berlin Heidelberg, 1996.

[BLR07] Guillaume Bonfante and Joseph Le Roux. Intersection Optimization is
NP-Complete. In Sixth International Workshop on Finite-State Methods and
Natural Language Processing - FSMNLP 2007, Postdam, Germany, 2007.

[Boi] Bernard Boigelot. Symbolic Methods for Exploring Infinite State Spaces.
PhD thesis.

[Boi14] Bernard Boigelot. The lash toolset. http://www.montefiore.ulg.
ac.be/˜boigelot/research/lash/, May 2014.

[DKV09] Manfred Droste, Werner Kuich, and Heiko Vogler. Handbook of Weighted
Automata. Springer Publishing Company, Incorporated, 1st edition,
2009.

[EGKL11] Javier Esparza, Pierre Ganty, Stefan Kiefer, and Michael Luttenberger.
Parikhs theorem: A simple and direct automaton construction. Infor-
mation Processing Letters, 111(12):614 – 619, 2011.

[EKL07] Javier Esparza, Stefan Kiefer, and Michael Luttenberger. On fixed point
equations over commutative semirings. In Wolfgang Thomas and Pas-
cal Weil, editors, STACS 2007, volume 4393 of Lecture Notes in Computer
Science, pages 296–307. Springer Berlin Heidelberg, 2007.

[EKL10] Javier Esparza, Stefan Kiefer, and Michael Luttenberger. Newtonian
program analysis. Journal of the ACM, 57(6):33:1–33:47, October 2010.

[EP02] Katrin Erk and Lutz Priese. Theoretische Informatik. Springer-Lehrbuch.
Springer, 2002.

[FPs14] FPsolve. Solver for polynomial equations over ω-continuous semirings.
https://github.com/mschlund/FPsolve, May 2014.

67

http://www.montefiore.ulg.ac.be/~boigelot/research/lash/
http://www.montefiore.ulg.ac.be/~boigelot/research/lash/
https://github.com/mschlund/FPsolve

Bibliography

[FR79] Jeanne Ferrante and Charles W Rackoff. The computational complexity of
logical theories. Lecture Notes in Mathematics. Springer, Berlin, 1979.

[Gen14] Genepi. Generic presburger programming interface. http://tapas.
labri.fr/trac/wiki/GENEPI, May 2014.

[Gin66] Seymour Ginsburg. The Mathematical Theory of Context-Free Languages.
McGraw-Hill, Inc., New York, NY, USA, 1966.

[GS66] Seymour Ginsburg and Edwin H. Spanier. Semigroups, presburger
formulas, and languages. Pacific Journal of Mathematics, 16(2):285–296,
1966.

[HK71] J. Hopcroft and R. Karp. A linear algorithm for testing equivalence of
finite automata. Technical Report 0, Dept. of Computer Science, Cornell
U, December 1971.

[Kle52] S. Kleene. Introduction to Metamathematics, 1952.

[KM01] Nils Klarlund and Anders Møller. MONA Version 1.4 User Manual.
BRICS, Department of Computer Science, Aarhus University, January
2001. Notes Series NS-01-1. Available from http://www.brics.dk/
mona/. Revision of BRICS NS-98-3.

[Koz94] Dexter Kozen. A completeness theorem for kleene algebras and the
algebra of regular events. Information and Computation, 110:366–390,
1994.

[Kui97] Werner Kuich. Semirings and formal power series: Their relevance to
formal languages and automata. In Grzegorz Rozenberg and Arto Sa-
lomaa, editors, Handbook of Formal Languages, pages 609–677. Springer
Berlin Heidelberg, 1997.

[Lat04] L. Latour. From automata to formulas: convex integer polyhedra. In
Logic in Computer Science, 2004. Proceedings of the 19th Annual IEEE Sym-
posium on, pages 120–129, July 2004.

[Lat05] Louis Latour. Presburger Arithmetic: From Automata to Formulas. PhD
thesis, Université de Liège, 2005.

[Ler05] Jerome Leroux. A polynomial time presburger criterion and synthesis
for number decision diagrams. In Proceedings of the 20th Annual IEEE
Symposium on Logic in Computer Science, LICS ’05, pages 147–156, Wash-
ington, DC, USA, 2005. IEEE Computer Society.

68

http://tapas.labri.fr/trac/wiki/GENEPI
http://tapas.labri.fr/trac/wiki/GENEPI
http://www.brics.dk/mona/
http://www.brics.dk/mona/

Bibliography

[LS13] Michael Luttenberger and Maximilian Schlund. Convergence of new-
tons method over commutative semirings. In Adrian-Horia Dediu,
Carlos Martı́n-Vide, and Bianca Truthe, editors, Language and Automata
Theory and Applications, volume 7810 of Lecture Notes in Computer Sci-
ence, pages 407–418. Springer Berlin Heidelberg, 2013.

[Lug04] Denis Lugiez. From Automata to Semilinear Sets: a Solution for Poly-
hedra and Even More General Sets. Research report 21-2004, LIF, Mar-
seille, France, april 2004. http://pageperso.lif.univ-mrs.fr/
˜edouard.thiel/RESP/Rapports/21-2004.html.

[Lug05] Denis Lugiez. From automata to semilinear sets: A logical solution for
sets L(C,P). In Michael Domaratzki, Alexander Okhotin, Kai Salomaa,
and Sheng Yu, editors, Implementation and Application of Automata, vol-
ume 3317 of Lecture Notes in Computer Science, pages 321–322. Springer
Berlin Heidelberg, 2005.

[Muc03] An. A. Muchnik. The definable criterion for definability in presburger
arithmetic and its applications. Theor. Comput. Sci., 290(3):1433–1444,
January 2003.

[Par66] Rohit J. Parikh. On context-free languages. J. ACM, 13(4):570–581, Oc-
tober 1966.

[Sta84] Ryan Stansifer. Presburgers article on integer airthmetic: Remarks and
translation. Technical Report TR84-639, Cornell University, Computer
Science Department, September 1984.

[STL13] Maximilian Schlund, Michał Terepeta, and Michael Luttenberger.
Putting newton into practice: A solver for polynomial equations over
semirings. In Ken McMillan, Aart Middeldorp, and Andrei Voronkov,
editors, Logic for Programming, Artificial Intelligence, and Reasoning, vol-
ume 8312 of Lecture Notes in Computer Science, pages 727–734. Springer
Berlin Heidelberg, 2013.

69

http://pageperso.lif.univ-mrs.fr/~edouard.thiel/RESP/Rapports/21-2004.html
http://pageperso.lif.univ-mrs.fr/~edouard.thiel/RESP/Rapports/21-2004.html

	Acknowledgements
	Abstract
	Outline of the Thesis
	Introduction and Theory
	Introduction
	Motivation
	Previous and Related Work

	Foundations
	FPsolve
	Semirings

	Semilinear Sets
	Parikh's Theorem
	Number Decision Diagrams
	Signed Numbers
	Vectors of Numbers
	Minimality and Canonicity of Number Decision Diagrams

	Presburger Arithmetic
	Connection to Semilinear Sets
	Connection to Automata / Number Decision Diagrams
	Automata to Semilinear Sets

	Mathematical Theory
	Representing Semilinear Sets with Number Decision Diagrams
	Endowing Semilinear Sets and Number Decision Diagrams with a Semiring Structure
	Representing Semiring Elements
	Addition
	Multiplication
	Kleene Star
	Queries

	Algorithm and Implementation
	Algorithms
	Encoding of Automata Input
	Construction of an Automaton for the Kleene Star
	Sum Automaton
	Construction of Automata Recognizing a Vector
	Construction of Automata Recognizing a Period
	Multiplication on Automata – High Level
	Automata with One Variable
	Automata with Many Variables

	Direct Construction of the Multiplication Automaton
	Proof

	Finding Constants in an Automaton
	Conjecture

	Computing a Minimal Basis

	Implementation
	Genepi
	Lash
	Mona
	Comparison of Lash vs. Mona

	Optimization
	LSBF vs. MSBF
	Componentwise Addition Compared to Addition of All Components at once
	Order of Processing of Variables

	Conclusion
	Future work
	Heuristic for a Good Processing Order during Multiplication
	Extracting Constants from Automatons
	Direct Creation of Multiplication Automaton

	Appendix
	FPsolve Benchmark for Semilinear Sets
	List of Figures
	List of Algorithms
	Bibliography

