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Zusammenfassung

Diese Bachelorarbeit behandelt die Implementierung eines Lösers für Paritätsspiele mittels
NVIDIA CUDA [4]. Ziel ist durch Umsetzung eines bestehenden Algorithmus die Eignung
des Problems für massiv parallele GPU-Programmierung zu evaluieren.

Paritätsspiele werden von zwei Personen auf einem Graphen gespielt, der in unserem
Fall endlich ist. Das Spielziel besteht darin, einen unendlichen Pfad mit bestimmten
Eigenschaften in diesem Graphen zu bilden. Diese Spiele dienen zum einen als alternative
Beschreibung von µ-Kalkül Formeln und können zum Beispiel eingesetzt werden, um zu
prüfen ob für ein gegebenes System ein eine Formel wahr ist (”model checking”) oder
um für eine Formel ein System zu finden, das sie erfüllt (”synthese”) [7]. Auch die
Komplexitätstheorie hat aufgrund der bisherigen Ergebnisse, die vermuten lassen, dass
Paritätsspiele in polynomieller Zeit lösbar sind, reges Interesse an Paritätsspielen. Diese
Spiele werden in Kapitel 2 vorgestellt.

Als Algorithmus zur Lösung dieser Spiele wird in dieser Arbeit die Strategieiteration
präsentiert. Die hier benutzte Variante besteht zum größten Teil aus einem adaptierten
Bellman-Ford Algorithmus, der gut parallelisierbar ist. Diese Eigenschaft soll durch den
Einsatz von GPU-Programmierung, also unter Einbeziehung der Grafikkarte, genutzt wer-
den, um einen Geschwindigkeitsvorteil gegenüber herkömmlichen CPU-basierten Lösern
zu erreichen.

Kapitel 3 befasst sich mit dem PGSolver [6] von Oliver Friedmann, einem Tool zur
Lösung von Paritätsspielen. Ich stelle einige von diesem Programm benutzte Optimierun-
gen sowie Beispiele von Paritätsspielen vor. PGSolver dient als Grundlage zur Erzeu-
gung von Paritätsspielen, zum Lösungsvergleich und wird in Benchmarks verwendet, um
die Verbesserungen des GPU-basierten Algorithmus im Vergleich zu bestehenden CPU-
Implementierungen zu zeigen.

In Kapitel 4 gehe ich näher auf CUDA und dessen Besonderheiten ein. Die Architektur
der GPU-Programmierung wird genauer erläutert und einige wichtige Probleme, die sich
dadurch ergeben werden diskutiert.

Kapitel 5 beschreibt die Besonderheiten meiner Implementierung im Zusammenhang
mit CUDA und befasst sich genauer mit den Problemstellungen die in Verbindung mit
GPU-Programmierung auftreten.

Kapitel 6 liefert eine abschließende Zusammenfassung der Ergebnisse und diskutiert
offene Probleme und Verbesserungen.
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Chapter 1

Introduction

In this work we cover the implementation of a parity game solver using NVIDIA CUDA[4].
By using an existing algorithm, we evaluate whether the problem of solving such games
is suitable for the massively parallel GPU computing architecture.

Parity games are two player games played on finite graphs. During the game, an
infinite path in the graph is formed by the players; certain properties of this path are
then used to determine the winner. Parity games are subject of interest for theoretical
informatics as they offer another representation for µ-calculus formulae. For a given
formula, deciding whether a specific system satisfies it (”model checking”) or finding a
system that satisfies it (”synthesis”) can be done using parity games [7]. They are also
studied in complexity theory for their placement in UP ∩ co-UP [11]. In Chapter 2 these
games will be presented.

For our implementation we choose strategy iteration as a solving algorithm. The
variant used mainly consists of an altered Bellman-Ford algorithm that can be easily
parallelized. This property shall be exploited by using GPU-programming, that is, using
the graphics card for computations. Because of their immense computational power, this
can offer a huge speedup over CPU computation for suitable problems.

In Chapter 3 we present an existing tool for parity game solving, PGSolver [6] by Oliver
Friedmann. This application was used for multiple reasons in our work. First, it provides
us an already existing solver to check our solutions. Second, it offers the possibility to
create parity games of any size that were used for testing and benchmarking. Finally, it
is used in benchmarks where its performance is compared to our GPU-version.

In Chapter 4 we discuss NVIDIA CUDA and the architecture behind GPU-programming.
We show problems that arise when using the graphics card and also give an idea of how
to optimize code for CUDA.

Chapter 5 covers out implementation, especially the CUDA related parts. We see
more specific examples for optimizations as well as benchmarks that show how well our
application performs.

In chapter 6 we give results and future adaptions and improvements of our implemen-
tation.
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Chapter 2

Parity games

2.1 Introduction

This section introduces parity games, first with an informal description, then formally.
We present definitions for determinacy and recapitulate that parity games are memoryless
determined. In Section 2.2 basic ideas of strategy iteration are explained. We present
two algorithms based on strategy iteration, one of which is the algorithm implemented for
this thesis. Section 2.3 gives an overview on other approaches for solving parity games.

2.1.1 Intuitive description

Parity games are two player games played on finite graphs. The directed graph G = (V,E)
is partitioned into two sets of nodes belonging to the respective player. Additionally a
coloring of the graph is given by a function c assigning natural numbers to the nodes.
These colors will sometimes be called priorities of the nodes. A game can be imagined to
proceed as follows:

A token is placed on one node of the graph. A move consists of choosing an outgoing
edge from the node the token is placed on and moving the token along this edge. The
player choosing the edge is the owner of the node the token is currently placed on. Pro-
ceeding in that manner an infinite path on G is formed. The winner of the game is defined
by the parity of the maximal color appearing infinitely often along this path.

Of course it is not possible to play an infinite number of moves, so imagine both
players fix some (finitely described) strategy and hand it over to a judge that decides the
outcome. It can be shown that such finitely described strategies are sufficient to achieve
the best outcome. In fact, so called memoryless or positional strategies, that is, the move
depends only on the current node and not on the past moves, yield the same outcome of
the game. This is called memoryless determinacy of parity games.

2.1.2 Formal description

A parity game is given as (V,E, o, c) where (V, E) is a finite, directed graph, o : V → {0, 1}
assigns an owner to each node and c : V → {0, . . . , d − 1}, d ∈ N is a coloring of V.
We denote by Vi = o−1(i) the set of nodes belonging to player i (i ∈ {0, 1}) and by
Ei = E ∩ (Vi × V ) the edges leaving player i nodes.

2



CHAPTER 2. PARITY GAMES 3

We assume that the graph has no dead ends (nodes without outgoing edges) and thus
every game is infinite. This is not a real restriction as we will see later.

A play π = (v0, v1, v2, . . . ) ∈ V ω is an infinite sequence of nodes in G where
(π(i), π(i + 1)) ∈ E ∀i ∈ N. By c(π) = (c(v0), c(v1), c(v2), . . . ) we denote the se-
quence of colors occurring in π. For any infinite sequence a = (a1, a2, . . . ), Inf(a) =
{k : ai = k for infinitely many i} denotes the set of elements occurring infinitely often in
a. A play π is won by player 0, if max(Inf(c(π))) is even, else player 1 wins.

For a node s ∈ V , we denote by sE = {v ∈ V : (s, v) ∈ E} the set of successors of s.
Let w ∈ V ∗, w = v0v1 · · · vk be a finite path in G and let σ : V ∗Vi → P(V ) be a partial
function. We call w conform with σ if for every 0 < j < k where vj ∈ Vi, σ is defined
at v0v1 · · · vj and we have vj+1 ∈ σ(v0v1 · · · vj). We call a function σ a strategy of player
i if it is defined on all paths w conform with it that end in a player i node vk and we
have σ(w) ⊂ vkE for these paths. A play π is called conform with σ if every prefix of it
is conform with σ.

A strategy σ is called deterministic if for all paths w on which it is defined, |σ(w)| = 1.
If a strategy σ only depends on the current node, that is, for every two paths w1v, w2v
conform with σ and v ∈ Vi, σ(w1v) = σ(w2v), it is called memoryless or positional. We
can describe such memoryless strategies as σ ⊆ Ei such that ∀s ∈ Vi : sσ 6= ∅. By
Eσ = E(1−i) ∪ σ we denote the restriction of E to σ.

A strategy σ of player i is called winning for a given node s ∈ V if he wins every
play starting from s that is conform with σ. Player i wins a node, if he has a winning
strategy for it. The set of all nodes that player i wins is denoted by Wi and called his
winning set. A set on which player i has a memoryless winning strategy for every node is
called a i-paradise. It is well known that the game graph is partitioned into a 0-paradise
and a 1-paradise. Therefore it suffices to consider memoryless strategies and we drop the
“memoryless” from now one. In section 2.1.3 we present a proof for this fact.

The following two theorems show that there is a deterministic strategy of player i that
wins all nodes in the winning set of player i. The first theorem reduces non-deterministic
strategies to deterministic ones:

Theorem 2.1.1. For every winning strategy σ of player i, there is a deterministic strategy
σ′ winning the same nodes.

Proof. Let S be the set of nodes won by player i when he plays according to σ. Let σ′ ⊆ σ
be any deterministic strategy consisting of edges of σ. Since every game starting from S
and following σ is winning for player i, the particular game resulting when following σ′

will be winning for player i.

The next theorem shows how to combine strategies for different but not necessarily
distinct sets.

Theorem 2.1.2. Let S be the set of nodes won by player i. Then there is a winning
strategy for player i that wins from all nodes in S.

Proof. For every s ∈ S there is a deterministic winning strategy σs that wins s (and
possibly more). Let Ws be the set of nodes won by player i when playing according to σs.
It is clear that

S =
⋃

Ws



CHAPTER 2. PARITY GAMES 4

Let ≺ be a total ordering of the strategies σs, s ∈ S. We now fix the strategy σ that wins
every node in S as follows:

∀v ∈ S : σ(v) = σ∗(v) : σ∗ = min
≺
{σs : v ∈ Ws}

Informally, we have fixed σ to always follow the smallest strategy according to ≺ that is
winning for the current node.

The sequence of strategies we follow this way will be decreasing (a strategy winning
for a node must also be winning for the successor node under that strategy) and thus
eventually constant. As a finite prefix does not change the outcome of the game, the
resulting game is winning for player i.

Note that this theorem implies that the union if i-paradises is again an i-paradise.

Example

Figure 2.1 shows an example of a parity game. Player 0 nodes are drawn as circles, player
1 nodes as squares. The numbers inside the nodes represent their priorities.

Figure 2.1: Example of a parity game

Finding a strategy for the players is easy in that case: Imagine the nodes are numbered
from top to bottom row-wise, so the first row contains nodes 0 and 1, the second row
contains nodes 2, 3, 4 and so on.

The circle of the nodes 0-1-2-3-4 is winning for player 1 as the highest priority is 3,
thus player 0 will try to escape it. The only way he can do so is choosing the edge from
node 2 to node 5. But then the circle 2-5 will be closed which is also winning for player
1.
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On the other hand the circle 7-8 on the bottom is winning for player 0 and he can
choose to close it by choosing the edge from 7 to 8. Moreover he can enter this circle from
node 6.

By this observations, the winning set of player 1 consists of the nodes {0, 1, 2, 3, 4, 5},
player 2 wins the nodes {6, 7, 8}, the strategy choices of player 0 are 7 → 8 and 6 → 8,
player 1 chooses 4→ 1.

2.1.3 Determinacy

Attractors and Traps

Given a set S ⊆ G, the i-attractor of S is the set of nodes from which player i can enforce
a visit of S. Formally we define it inductively as follows:

pre(Y ) = {v ∈ Vi : vE ∩ Y 6= ∅} ∪ {v ∈ V(1−i) : vE ⊂ Y }

pre(Y ) is the set from which player i can enforce a visit to Y in the next step. Now to
compute the i-attractor Attri(X), set X0 = X and for all k ∈ N:

Xk+1 = Xk ∪ pre(Xk)

Definition 2.1.1. Let n ∈ N be the smallest number such that Xn = Xn+1. Then
Attri(X) = Xn.

Note that Attri(X) can be computed in polynomial time. If we want to emphasize
that the attractor is computed in G we write Attri(G,X).

When computing the attractor of X, we can directly compute an attractor strategy
that does enforce the visit of X. For a node s ∈ Attri(X) let the attractor rank be the
smallest n such that s ∈ Xn and s 6∈ Xk ∀k < n. Then for every node in s ∈ Attri(X)\X
choose as strategy an edge leading to some s′ ∈ Attr(X) with lower attractor rank.

Definition 2.1.2. A set S ⊆ G is called an i-trap if

∀s ∈ S ∩ Vi : sE ⊂ S and ∀s ∈ S ∩ V(1−i) : sE ∩ S 6= ∅

Intuitively, the other player (1 − i) can force the token to stay in S thus “trapping”
player i. Trivially, the complement of an i-attractor is an i-trap.

Now we can see why we can restrict ourselves to graphs without dead ends. Usually
when finite plays are allowed, the player that cannot move any more loses. To compute
those regions where one of the players loses in finite time, just find the 1-attractor to
all dead ends for player 0 as well as the 0-attractor for all dead ends of player 1. Inside
those attractors the respective player has the trivial attractor strategy which is winning
for him. Since the complement of an i-attractor is an i-trap, we can simple remove the
attractors without changing the rest of the game.
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Memoryless determinacy

We say that a game is determined if for every node there is a (not necessarily memoryless)
winning strategy for one of the players. Parity games with a given start vertex are
determined. In fact, Martin showed the much more general result for Borel games. Borel
games are games for which the winning condition is a Borel set, where the class of Borel
sets is the smallest class of sets that contains the open sets and is closed under countable
union and complementation. For a more in-depth definition of open sets and the Borel
hierarchy see [13].

Theorem 2.1.3 (Martin). Every Borel game is determined [13]

It can be shown that parity games are Borel games. Parity games are special in the
sense that there is no memory needed while executing the winning strategy. This is called
memoryless determinacy:

Theorem 2.1.4 (Memoryless determinacy). Parity games are memoryless determined

The following proof is taken from [13]. We will show that in every parity game the
vertices are partitioned into winning regions of player 0 and player 1 and each player has
a memoryless strategy for his winning region.

The proof will be an induction over the maximum priority n in the parity game.

Lemma 2.1.1. If the maximum priority occurring in G is 0, then G is partitioned into
a 0-paradise and a 1-paradise.

Proof. Since we assumed there are no dead ends, every game will be infinite. Player 0
will win every infinite game as the only priority occurring is 0.

From now on we will assume the maximum priority to be greater than 0. By induction
and Lemma 2.1.1 we will assume that Theorem 2.1.4 holds for all parity games with
maximum priority less than n.

Induction step. Let i = n mod 2 be the parity of the maximum priority, let W the union
of all (1− i)-paradises (and thus the unique largest (1− i)-paradise). We will show that
player i has a memoryless winning strategy for all nodes in L = G \W . Observe that
W is its own (1 − i)-attractor (nodes in the attractor of W are also won by (1 − i) and
therefore lie in W ), thus L is a (1 − i)-trap. We interpret the graph induced by L as a
new game G′.

Let N = {v ∈ L : c(v) = n} be the set of vertices with maximum priority in G′ and Y
its i-attractor in G′:

Y = Attri(G
′, N) (2.1)

Because L is a (1 − i)-trap, any attractor strategy of player i in G′ is also an attractor
strategy in G: Edges from L to W always start in player i nodes and thus adding W to
G′ to obtain G cannot change the attractor.

Let furthermore Z = L \ Y be the complement of Y in L. Again we interpret the
graph induced by Z as a new parity game H. The situation so far is depicted in Figure
2.2, the grey area is L.
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Figure 2.2: The memoryless strategies from [13]. The grey area is L.

Since Z ∩ N = ∅, H has fewer than n priorities, thus we can apply Theorem 2.1.4
and will find a partition into paradises Z0, Z1 (the corresponding winning strategies are
winning in H). We now show that Z(1−i) = ∅:

Since Z is the complement of an i-attractor in G′, it is a i-trap in G′. Thus if Z(1−i)
is a non-empty winning region of player (1− i) in H, player (1− i) also wins Z(1−i) in G′

with the same strategy. But then he also wins Z(1−i) in G as the play will either stay in
Z(1−i) or at some point enter W where he wins all nodes. This contradicts the assumption
that W is the winning region of player (1− i).

We now claim that player i has the following winning strategy on L: In Z = Zi follow
his winning strategy, in Y \N the attractor strategy, in N choose any successor that lies
in L. Indeed the game will either enter Y and thus N infinitely often or from some point
on stay in Zi. Both possibilities are winning for player i.

2.1.4 Complexity setting

Parity games are very interesting from the complexity theoretic point of view. There are
some natural problems connected to parity games: Deciding which player wins from a
given node, finding the winning sets of the players and finding winning strategies (for a
node or the winning set). The first two problems are of course interreducible: Given the
winning sets it is easy to decide which player wins a given node. And given an algorithm
that decides which player wins a given node, one can easily construct the winning sets.

It has been shown that deciding the winner of a given node is in NP ∩ co-NP. There
are even tighter bounds:

Theorem 2.1.5. Deciding the winner of an initialized parity game is in UP ∩ co-UP [11]

UP is the class of problems accepted by non-deterministic unambiguous turing ma-
chines in polynomial time. Unambiguous means that if the turing machine accepts, there
is exactly one accepting path. So far, no deterministic polynomial time algorithm for
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deciding the winner is known. Furthermore, parity games are the easiest (in a complexity
theoretic sense) of four games all known to be in UP ∩ co-UP: It has been shown that
parity games reduce to mean payoff games, these reduce to discounted payoff games and
these finally reduce to simple stochastic games [3]. Therefore, if some or all of these games
are solvable in polynomial time, it is likely that parity games will be the first of them to
be solved.

2.1.5 Modal µ-calculus

The main application for parity games is in decision procedures for µ-calculus. Deciding
acceptance and non-emptiness for alternating tree automata(ATA) can be reduced to
deciding the winner of a parity game [7]. These automata have a strong connection
to µ-calculus formulas: Model-checking of a µ-calculus formula can be polynomial-time
reduced to deciding acceptance, synthesis reduces (also in polynomial time) to deciding
non-emptiness of an ATA.

2.2 Strategy iteration

Strategy iteration is an approach of finding winning strategies for the players on their
respective winning regions by iteratively improving a strategy until it is optimal. Strategy
iteration was first used to solve stochastic games and discounted payoff games. Because of
the structure of these games, real numbers were used. Jurdzińsky and Vöge came up with
a much more intuitive discrete strategy improvement algorithm [19]. Since then, many
adaptions of that algorithm appeared, all with the goal of better worst-case time bounds.
The most notable idea, introducing the possibility to “give up” for one or both players, is
used in [1], [12], and [15] and will be discussed below. This section gives a brief overview
over a generic approach to strategy iteration as well as two specific implementations, the
one by Jurdzińsky and Vöge and an adaption of the algorithm due to Björklund, Sandberg
and Vorobyov [1] (see [12],[14]) .

2.2.1 Generic strategy iteration

Jurdzińsky and Vöge [19] give a very generic characterization of strategy improvement
algorithms that will be presented here. It is basically a fixed-point iteration that starts
with a strategy for one player and improves it in every iteration step until finally the best
possible strategy is obtained. To achieve that goal we need an ordering of the strategies,
given as a pre-order, and some way to enhance the current strategy.

The pre-order v on the set Strategies0 of strategies for player 0 has to satisfy:

P1 There is a maximum element in the pre-order, i.e. there is a strategy σ such that
κ v σ for all strategies κ

P2 If σ is a maximum element in the pre-order, then σ is a winning strategy for player
0 (from every vertex of the winning set)
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This already simplifies the search for the optimal strategy as we only have to find a
maximum element with respect to v. Finding that element is done using an Improve
operator of the following form:

Improve : Strategies0 → Strategies0

satisfying the following postulates:

I1 If σ is not a maximum element in the preorder, then
σ v Improve(σ) and Improve(σ) 6v σ

I2 If σ is a maximum element in the pre-order, then we have
Improve(σ) = σ

Now the algorithm for finding the winning strategy on the winning region is quite simple:

pick a s t r a t e g y σ for p layer 0
while σ 6= Improve (σ )

σ = Improve (σ )

The difficulties arise when trying to find such a pre-order and Improve operator and
proving that they indeed satisfy the constraints. Both algorithms presented here use the
concept of valuations. These work as follows: For a fixed strategy a value is assigned
to each node that intuitively holds information about how good this node is for player
0. The pre-order is then defined by point-wise comparison, that is, a strategy is better
than another iff for every node the value is at least as good as for the other strategy
and better for at least one node. Improving a strategy usually is realized by switching
to a successor improving the current valuation (see [2]) or more general by choosing a
subset of improving successors(see [12]). Luttenberger showed in [12] that selecting all
improving successors yields Schewe’s locally optimal improvement [14]. It is known that
there always exists improvements such that after |V | steps the optimum is reached [19],
but no algorithm to find those improvements is known.

In some sense strategy improvement and the search for better Improve operators can
be compared to the simplex algorithm and the choice of pivot elements when optimizing
over a polytope. Both algorithms have worst case exponential running time in all known
variants [5], but they perform really well in practice (see [17] and our results). For linear
programming however, a polynomial time algorithm is known (that works in a completely
different way than simplex) whereas for parity games this is not the case.

2.2.2 Jurdzińsky and Vöge

Jurdzińsky and Vöge [19] also give an implementation of this generic approach that will
be briefly presented here. They use the notion of finite cycle domination games, finite
games equivalent to parity games. Since memoryless strategies suffice for parity games,
once a cycle is closed the game can be ended because exactly the nodes in the cycle will be
visited infinitely often. Thus one only has to evaluate the cycle to determine the winner.

The valuation is computed using the following fact: Fixing deterministic strategies for
both players one can immediately tell who wins a given node. Given two strategies, the
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value of a node v is defined as a triple (λ, π,#) where λ is the maximum priority in the
cycle of the play starting in v, π is the set of priorities greater than λ encountered on the
way to the cycle and # is the length of the path from v until λ is reached.

A valuation of a strategy σ of player 0 is then created by solving the one player game
of player 1 when strategy σ is fixed for player 0, thus finding the best counter-strategy
for player 1, and then determining the value for the nodes. Finding the counter strategy
and computing the values of the nodes can be done in one step using an adapted shortest
path algorithm.

2.2.3 Generalization/Refinement of Jurdzińsky and Vöge

As mentioned earlier, one important change that leads to a much more compressed repre-
sentation of values is the idea to allow players to end a game they would lose by “giving
up” which is usually represented by a special sink node. This idea is used in [1] and
[14] and refined for parity games in [12]. Because of the compact valuation and the good
complexity bound in [12] this algorithm is the one implemented in this bachelor’s thesis.
There is also another reason why we choose this algorithm: Schewe’s algorithm uses a
bipartite graph, the algorithm of Jurdzińsky and Vöge assumes that every color is used
at most once. The algorithm we use does not suffer from such a restriction. Formally the
algorithm looks as follows:

For a parity game A = (V,E, o, c) we introduce the sink game A⊥ = (V⊥, E⊥, o⊥, c⊥)
where V⊥ = V ∪{⊥}, E⊥ = E ∪ (V1×{⊥}), o⊥ = o∪{⊥}, c⊥ = c∪ (⊥, 0) although color
and ownership of ⊥ are of no importance.

We call a cycle 1-dominated if the highest priority occurring in this cycle is odd. Our
algorithm will start with a strategy σ⊥ that contains no 1-dominated cycle and every
Improve step will maintain this fact as an invariant. Because we only fix strategies for
player 0 we cannot prevent player 1 from playing winning self cycles (cycles consisting
only of his own nodes), thus we remove them in a polynomial time preprocessing step.

We will again compute a valuation for the current strategy that assigns values to each
of the nodes and then improve the strategy using the computed values. The value of a
node will be given as a color profile, that is, an integer vector of size d, where d − 1 is
the greatest priority used, or one of {−∞,∞}. There is a total ordering on those values
given as follows:

A value p is smaller than p′ (we write p ≺ p′) if the highest index i where they differ
is even and pi < p′i or the highest index i where the differ is odd and p′i < pi. We write
p � p′ if p is smaller or equal than p′. This ordering tries to capture the intuition that
even priorities are good for player 0, odd ones are not, and greater priorities are more
important than lesser ones. Additionally we set ∞ as the maximum element of ≺, −∞
as the minimum element. The set of all color profiles will be denoted by P .

We will sometimes add a single priority to a color profile. This is defined as increasing
the corresponding coordinate of the vector by one, or, if the profile is one of {−∞,∞},
not changing it at all. Such an addition will be written as s + p, s ∈ V, p a color profile,
where we add the priority of s to p.

The value of a node for a fixed strategy is the best possible outcome player 0 can
guarantee when starting from that node. Because of our preprocessing step and the
possibility to give up, player 0 will never run into a losing cycle, thus values will either be
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∞ if player 0 wins from this node, or some vector that represents a final play that ends
in the sink. These values can be computed as follows:

For a strategy σ (for which the graph contains no 1-dominated cycles) define
V⊥ : V ∪ {⊥} → P as V⊥(⊥) = (0, . . . , 0), V⊥(v) =∞ ∀v ∈ V .

Then the valuation is given as the fixed point of the following operator when starting
from V⊥

Fσ[V⊥](⊥) = (0, . . . , 0)

Fσ[V⊥](s) = s+ min
≺
{(V )(t) : (s, t) ∈ E1} if s ∈ V1,

Fσ[V⊥](s) = s+ max
≺
{(V )(t) : (s, t) ∈ σ} if s ∈ V0

Improving the strategy is realized by using “all profitable switches”:

Improve(σ) := {(s, t) ∈ E0 : Vσ(s) � s+ V(t)}

It can be shown that by improving the strategy this way, no 1-dominated cycles will
be introduced. As starting strategy without 1-dominated cycles we choose σ⊥ as the set
V0 × {⊥}, that is, player 0 gives up immediately.

Using this strategy improvement algorithm the optimal strategy will be found after at
most |V | · ( |V |

d
+ 1)d iterations where one improvement step needs O(|V | · |E|) time.

2.3 Other Algorithms

There are numerous other algorithms for solving parity games that so far all exhibit super-
polynomial running time. Some of them will be presented below. We will always use n
as number of nodes, d as number of priorities and e as number of edges to describe the
running time.

The recursive algorithm by Zielonka [20] decomposes the parity game into multiple
smaller games in a manner closely related to the proof of Theorem 2.1.4. The winning
strategy is always composed of winning strategies of some smaller games as well as at-
tractor strategies. It has a worst case time complexity of O(e · nd).

The strategy improvement algorithm by Jurdzińsky and Vöge discussed earlier exhibits
a running time of O(2e · n · e).

The optimal strategy improvement method by Schewe [14] improves the process of
choosing a better strategy and thus improves the worst case time bound to
O(e · (n+d

d
)d · log(n+d

d
)).

The small progress measure algorithm by Jurdziński [10] uses the notion of progress
measures. Those assign tuples of values to each node dependent on the node’s priority,
owner and successors in a specific manner. Because of the way values are assigned, progress
measures can only exist on the winning set of player 0. It can be shown that a finite
domain of these values suffices to express such a measure. To find the winning regions,
the algorithm starts with tuples of 0 assigned to every node and iteratively increases those
values violating the progress measure relation. The part of the game where the progress
measure is successfully created is then won by player 0, on the other part the values will
exceed the precomputed bounds and consequently those nodes will be won by player 1.
Worst case time complexity: O(d · e · (n

d
)d/2).
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There also exist multiple randomized algorithms for solving parity games. As com-
puting winners of nodes given a strategy for one player is possible in polynomial time, a
guess-and-check algorithm can just randomly select a strategy and compute the set it is
winning on. This is repeated until the game is partitioned into winning regions.

The randomized strategy iteration of Björklund, Sandberg and Vorobyov [1] is an
adaption of strategy iteration working on mean payoff games. Parity games can be reduced
to mean payoff games in polynomial time[11]. This algorithm achieves a time bound of
min(O(n4 · e · d · (n/d+ 1)d), 2O(

√
n logn)



Chapter 3

PGSolver

3.1 Overview

PGSolver [6] is a tool developed by Friedmann and Lange that serves as a benchmarking
tool for different algorithms to solve Parity Games. It contains implementations of about
10 algorithms including Zielonka’s recursive algorithm [20], the strategy-improvement
algorithms due to Jurdzińsky and Vöge[19] and due to Schewe [14], as well as algorithms
solving parity games via reduction to discounted payoff games. There is also a reduction of
parity games to SAT formulas due to Friedmann. Moreover, PGSolver offers the possibility
to integrate user-written solvers (written in OCaml) into PGSolver.
For benchmarking purposes, PGSolver also brings tools to generate several different parity
game instances of arbitrary size, especially worst-case examples for the solving algorithms
provided. This makes it a very useful tool for comparing not only Landau-Notation
but also real running times on multiple examples. In our work, PGSolver is used to
provide example games for benchmarking as well as verifying our solutions. Furthermore,
computation times of our implementation and PGSolver are compared to each other in
benchmarks.

Section 3.2 will cover optimizations used in PGSolver and is intended to give ideas for
possible improvements that can generally be applied when solving parity games. Section
3.3 will show some of the games provided by PGSolver that were used for benchmarking
our implementation.

3.2 Optimizations

PGSolver offers many optimizations to provide better running times. Those optimizations
are not part of our implementation. Some of them will be described below.

3.2.1 SCC Decomposition

Using for example Tarjan’s algorithm, one can decompose the game graph into strongly
connected components. When collapsed to a single node each, the resulting graph forms
a directed acyclic graph. A SCC S is called proper if it actually contains an edge (that is,
there are not necessarily distinct nodes u, v ∈ S such that (u, v) ∈ E). It should be clear

13
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that those SCCs which have no exiting edges can be solved without knowledge of the rest
of the game.

Once the winning sets for those SCCs are computed, one can compute the attractors
for the respective player and remove them from the game. In this process, some SCCs
might be ”damaged” and can be further decomposed. Applying the same steps repeatedly
will lead to an algorithm solving the whole game by breaking it down into multiple smaller
games.

3.2.2 Special case solving

Some types of games can be solved very efficiently by applying polynomial-time prepro-
cessing algorithms. We can assume the game to be a single proper SCC. Improper SCCs
are only single nodes for which the winner can be computed by solving the successor
SCCs. There are several special cases with easy solutions:

One-parity games

If all nodes in a proper SCC have the same parity, trivially the corresponding player wins
no matter what. Any strategy suffices here.

Self-cycle games

Suppose there is a cycle of player i nodes where the highest priority is winning for player
i. Then clearly he wins on all nodes of this cycle and its attractor. Such cycles can be
found in the following way:

1) restrict the graph to player i nodes: G′ = (G ∩ V1, E ∩ V1 × V1)

2) for each node s ∈ G′ check if s is reachable from s in G′ using only nodes with
priorities not greater than c(s)

Step 2) can be done with an altered DFS and thus the algorithm runs in polynomial time.
In the same way, one-player games can be solved. (A game is called a one-player game if
all nodes of one of the players have out-degree 1)

Priority compression

The number of priorities in a parity game (or, more precisely, the maximum priority used)
has, for most current solvers, a direct effect on the running time of those solvers. Trying
to reduce this number is therefore a natural approach to speed up the solving process.
One important idea to do so is the following:

Suppose there is no node with priority c. Then the outcome of the game will not
change if we replace every occurence of c + 1 by c − 1. Thus we can lower all priorities
greater than c by 2, reducing the maximum priority by 2.

This approach can be repeated until every priority between 1 and the maximum pri-
ority is used. (Note that we cannot guarantee that 0 is used.)
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Priority propagation

Since our plays are infinite, after visiting a node s, one of its successors will always be
visited. This fact can be used to reduce the priorities:

If all successors of s have greater priorities than s itself, the outcome of the game does
not change if we change the priority of s to the lowest priority of its successors. In the
same way, if all predecessors of s have greater priorities, we can change the priority of s
to the lowest priority of its predecessors.

3.2.3 Special parity games

PGSolver not only provides tools for solving parity games, but also delivers multiple
possibilities to generate parity games. Two of those that were used in our Benchmarks
shall be presented here.

Jurdzińsky games

This family of games was introduced by Jurdziński [10] in order to show the exponential
worst case behavior of his small progress measure algorithm. It is defined using two
parameters, l, b ∈ N. The game Jl,b consists of l “levels” that contain b “blocks” each.
One of those levels is called “odd”, the other l − i are called “even”. The block building
the odd level looks as follows:

Figure 3.1: Odd building block

The blocks for the k-th even level are of the following structure:

Figure 3.2: Even building block

Those levels then are connected by adding edges from every even level to the odd level,
connecting the player 0 nodes from the even level to the player 1 vertex of the odd level
and vice versa. See Figure 3.3 for an example.

Elevator verification games

These games are created by encoding an elevator system of n floors and a fairness con-
straint into a µ-calculus formula and then converting this formula into a parity game.
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Figure 3.3: The game J4,3

They grow in size very fast but have constant maximum parity of 3. The elevator state
is modeled as a combination of the floor it is in, its door state and a list of requests. The
door can be either open or closed. The elevator will always move towards the next request,
open its door if a floor that was requested is reached (which removes this request), and
handle new requests in a FIFO (first in, first out) principle. The fairness constraint states
that a requested floor will eventually be visited.

Random games

Two types of random games were used in our benchmarks, denoted by random games and
clustered random games.

Random games are dependent on 4 parameters: Number of nodes, highest priority,
minimal and maximal outdegree. The game is then generated by randomly adding edges
as long as there is a node violating the lower bound. This creation scheme leads almost
always to a graph consisting of one big SCC.

To avoid this behavior, clustered random games are created in a much more sophis-
ticated fashion: They depend on nine parameters including node count, highest priority,
recursion depth r and breadth b as well as an interconnection rate x. If recursion depth is
zero, the game created equals a random game. Otherwise, for recursion depth r, b many
clustered random games of recursion depth r−1 are created such that the combined node
count of them is equal to the nodes desired for the final game. Those games are then
connected by x many edges.

Some of the explanations above are simplified, for example the recursion breadth of
clustered random games does not have to be a constant but can be given as a range from
which it is then chosen uniformly at random.
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NVIDIA CUDA

4.1 Introduction

Graphics cards are powerful computation devices used in many applications like physics
simulation, medical imaging and stock market analysis. By design, the GPU has immense
parallel computation power. In this chapter we have a look at the architecture behind
GPU programming. Section 4.2 introduces the basics about threads and how they are
processed. Section 4.3 consists of a simple example CUDA code. Section 4.4 shows
effects of branching inside warps. In Section 4.5 the specifics of memory usage in CUDA
are discussed. Section 4.6 points out important things to think about when optimizing
CUDA code. A more detailed description of CUDA can be found in [4].

4.2 Kernels, threads and multiprocessors

Latest developments in CPUs move away from more and more powerful single-core CPUs
and instead focus on multi-core setups. GPUs were designed for parallelism right from the
beginning and for that reason contain much more cores. The basic unit in GPUs are the
so called ”Streaming Multiprocessors”. A multiprocessor can hold up to 196 CUDA cores
and manages several hundreds of parallel threads. To efficiently manage the threads, they
are split up into warps of 32 threads each and then scheduled for execution by the warp
scheduler. The execution can only happen concurrently if all threads in one warp execute
the same instructions; if that is not the case, the threads that diverge are executed serially
until they converge again. This architecture is called Single-Instruction, Multiple Thread
architecture. An example for this can be found in section 4.3

Every piece of code that is to be executed on the GPU must be structured into kernels
and is then run in parallel by multiple threads. A typical application can launch tens of
thousands of threads. For easier handling of such enormous numbers CUDA structures
them into grids and blocks as follows:

• Threads are grouped together into blocks that can be 1-, 2- or 3-dimensional. Up to
1024 Threads can be grouped into one block. All blocks have the same size specified
by the programmer

• The blocks are then arranged in a 1-, 2- or 3-dimensional grid.

17
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Figure 4.1: Example grid with 3x3 blocks of dimension 4x4x3 taken from [18]

All threads then execute the same kernel. Different data can be processed via the threa-
dIdx and blockIdx which are individual for every thread. (See example below)

Each block is then passed to a Multiprocessor and processed there. Up to 16 Blocks
can reside in one Multiprocessor concurrently. It is important to note that a kernel call
will immediately return the control to the CPU thus making it possible to use the CPU
otherwise until the kernel’s computation is finished.

4.3 CUDA Example

This example shows the important aspects of a GPU implementation to multiply a vector
with a given scalar. The complete example can be found in the appendix, Listing 7.1.
Let us first look at an implementation for the CPU:

void mult cpu ( int∗ vec , int mult , int s i z e ) {
for ( int i = 0 ; i < s i z e ; i++) {

vec [ i ] ∗= mult ;
}

}
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In CUDA, instead of a loop we can assign a single thread to each of the elements of
the vector and do all the work in parallel. The kernel then looks as follows:

// g l o b a l marks t h i s as a k e rne l
g l o b a l void mult ( int∗ vec , int mult ) {

// every thread proce s s e s the element accord ing to h i s ID
vec [ threadIdx . x ] ∗= mult ;

}

Here we assume that our block has only one dimension (x). Therefore we only need
to take threadIdx.x into account. Inside our main function, we need to specify how many
threads we need. For simplicity we just choose size many threads in a grid of size 1. Here
we want to multiply by 3.

// c a l l the k e rne l wi th 1 b l o c k o f s i z e many threads
mult<<<1, s i z e >>>(vec D , 3 ) ;

The vector passed is named vec D and points to some location in the device memory.
Before calling, we need to copy our vector that is stored in the host memory(e.g. RAM)
to the graphics card:

// dec l a r e the dev i c e po in t e r
int∗ vec D ;
// a l l o c a t e dev i c e g l o b a l memory
cudaMalloc(&vec D , s i z e ∗ s izeof ( int ) ) ;
// copy the array to the dev i c e
cudaMemcpy( vec D , vec , s i z e ∗ s izeof ( int ) , cudaMemcpyHostToDevice ) ;

After the kernel is finished, we use cudaMemcpy again to get the result back to the CPU.
Because a thread block can only contain 1024 threads, this code will not work for

bigger vectors. Instead we need to split the work into multiple blocks and then address
the vector inside the kernel not only by threadIdx, but also by blockIdx.

4.4 Divergence

We now have a look at divergence and how it is handelled internally. Consider the
following kernel:

g l o b a l void even ( int∗ vec ) {
i f ( threadIdx . x % 2 == 0) {

vec [ threadIdx . x ] += 1 ;
} else {

vec [ threadIdx . x ] += 2 ;
}

}

and assume for simplicity that every line can be executed in one clock cycle. The execution
is depicted on the left of Figure 4.2. Now let us change the code as follows:

g l o b a l void even ( int∗ vec ) {
vec [ threadIdx . x ] += 1 + ( threadIdx . x % 2)

}
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This kernel does exactly the same as our first kernel, but the execution, that is depicted
on the right of Figure 4.2, is faster. It is of course not always possible to completely
eliminate branching but one should try to keep branching inside warps to a minimum.
As a worst case example imagine one thread per warp doing some extremely expensive
operation. This leads to a slowdown factor of 32 compared to grouping those expensive
operations together and execute them in parallel (provided the expensive operation is
always the same).

Figure 4.2: Execution using divergent (left) and non-divergent(right) kernel

4.5 Memory layout

While good memory layout can positively influence any application, the GPU suffers even
more from bad layout than for CPU. Because of high latency and other restrictions, it is
extremely important to choose data structures and program code around memory usage.
There are four types of memory on a graphics card and the choice which one to use has
a big influence on running time. The GPU cannot access data that is not stored on the
graphics card. Therefore the CPU has to transfer the data needed for the computation
using CudaMemcpy. The four types of memory are:

Global memory

The RAM-like memory of the graphics card with size of up to 4 GB. A good bandwidth
(> 100GB/s) can be achieved on this memory using specific access patterns, but the
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latency is quite high. A small part of global memory is dedicated to texture memory
and constant memory. Both serve as a read-only memory that is automatically cached.
(Read-only means the data has to be written by the CPU via CudaMemcpy.) All threads
can access global memory.

Data access is extremely fast in global memory when the access is coalesced, that
means, the adresses required by the different threads lie in the same 128-bit fragment of
the global memory. Such 128-bit fragments can be loaded into registers in one step rather
than copying the data for each thread individually. According to NVIDIA, latency can
be as high as 800 clock cycles. [4]

Local memory

Local memory is the private memory of each thread where specific data like large struc-
tures that would consume too much register space are stored. It is also used in case of
register spilling, that is, if a thread uses more registers than available. Local memory is
located off-chip in the device memory and thus underlies the same restrictions as global
memory (high latency, coalesced access)

Shared memory

Shared memory is a very fast on-chip memory that can be accessed by all threads of one
block. The latency is much lower than for global memory, but the size available is at most
48KB per multiprocessor. It can be seen as a ”user managed cache”. A restriction for
shared memory performance are the bank conflicts: Shared memory is divided into 32 so
called ”banks”. When two threads access different data in the same bank, their access is
serialized. More information about bank conflicts can be found in [4]

Registers

Registers work the same way as for CPUs as an on-chip memory for the current compu-
tations and local variables of each thread. They are very fast, but also very limited in
size. At most 64000 32-bit registers per multiprocessor are available, thus at 2000 threads
residing on one multiprocessor (which is the maximum) each thread has access to about
32 registers.

4.6 Optimizing CUDA code

There are several possible bottlenecks that can slow down CUDA applications to the point
where using the GPU is actually slower than doing the computation on the CPU. Some
of them will be discussed below.

Branching

As mentioned before, threads will be grouped into warps of size 32 that will be executed
concurrently. It is extremely important to avoid branching inside such warps as this
will reduce performance drastically as seen in section 4.4. A single divergent thread can
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already affect the performance achieved for that warp drastically. Thus the code should
be structured in a way to avoid branches inside warps.

Memory usage

The second big factor is memory usage. While the programmer cannot decide to store data
on registers or local memory, he has direct access to texture memory, constant memory,
global memory and shared memory.

Texture memory offers different addressing and caching modes as well as interpolation
between data points. This can be very helpful and speed up the computation, but if
the interpolation is not needed it may actually lead to worse performance than global
memory.

Constant memory also offers caching for data that remains the same during the kernel
launch. Total amount of constant memory is 64KB.

Shared memory is the fastest type of memory the programmer has direct access to.
As for constant memory, shared memory is restricted in size: 64KB of shared memory
can be used per multiprocessor. It is advisable to copy data that will be used multiple
times from global to shared memory.

Register usage

The programmer can not directly influence which data is stored on registers, but he should
try to avoid cluttering them with unnecessarily many local variables. Since every multi-
processor has a limited register count, the amount of registers used per thread will directly
influence how many threads can reside on one multiprocessor and thus the computation
speed. It is often not trivial how to reduce the number of registers used as even seemingly
insignificant changes like the point of declaration of variables can change the amount of
registers used.

Coalesced access

Another important point is the access pattern on global memory. As mentioned before,
data from global memory is accessed in blocks of size 32, 64 or 128 bit. Reducing the
number of such transfer operations by accessing data blockwise will enhance performance
greatly. Data structures should be chosen such that access always happens in a coalesced
fashion if possible.
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Implementation

5.1 Introduction

This chapter covers our implementation of strategy iteration in CUDA. In Section 5.2 we
discuss some CUDA specific details of our implementation. In Section 5.3 we evaluate the
performance of our implementation by means of benchmarks. In Section 5.4 we present
further improvements.

5.2 Implementation Details

5.2.1 Data structures

Below you find a more detailed description of the data structures used for representing the
game. We use two representations of the parity game: The first one is based on the Boost
Graph Library[16] which allows us to make use of the already existing implementations
of Tarjan’s strongly connected components algorithm, the other one is tailored towards
the GPU.

Boost Graph

The struct used to represent a parity game with the Boost Graph Library (BGL)[16] looks
as follows:

typedef boost : : a d j a c e n c y l i s t<boost : : vecS , boost : : vecS ,
boost : : b i d i r e c t i o n a l S> boost graph ;

typedef struct bg{
boost graph ∗ g ;
l i s t <int>∗ v0 ;
l i s t <int>∗ v1 ;
vector<int>∗ p r i o r i t i e s ;
vector<bool>∗ p a r t i t i o n ;
bg ( ) ;
bg ( int n ) ;
void add vertex ( int index , bool owner , int p r i o r i t y ) ;
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} boost graph S ;

The upper typedef defines which representation inside BGL is used, namely a bidirec-
tional adjacency list with vectors as containers for both edges and nodes.

The struct then consists of the boost graph as well as additional information: The
vertex owners (in form of the boolean vector partition), the priorities and two lists v0 and
v1. These lists are mainly used for the conversion to the array graph discussed in the next
section. During this conversion nodes are removed. To prevent BGL from re-labelling the
vertices they are not actually removed from the graph but only from the list v0 or v1.

Since CUDA can handle only the C fragment of C++, boost graph is not suitable for
use inside of kernels.

Array Graph

The second struct used consists of data structures that can be directly passed to any
kernel. It looks as follows:

typedef struct{
int node count ;
int p r i o r i t y c o u n t ;
int∗ edges ;
int∗ edge border s ;
int∗ p r i o r i t i e s ;
bool∗ p a r t i t i o n ;
unordered map<int , int>∗ o ld to new ;
unordered map<int , int>∗ new to o ld ;
int edge count ( ) ;
void pr in t ( ) ;
void t o F i l e ( s t r i n g f i l ename ) ;

} array graph ;

Here the information that was previously stored only implicitly is now directly acces-
sible as node count, priority count , edge count(). The graph is represented as an array of
edges and the corresponding edge borders. The interpretation is the following:

To represent the graph we use a very compact adaption of an adjacency list: We store
all the edges in a single array, edges. We use a second array, edge border, to mark the which
edges belong to which node. The edges with indices edge borders[n] to edge borders[n+1]−1

belong to the node n. This representation is very suitable for CUDA because its com-
pactness reduces memory copies and it is traversable efficiently.

Additionally the priorities and partition are stored. Since the conversion may re-label
some nodes, a mapping between the labels before and after is stored (and vice versa).

Parsing a game

The process of parsing a game given by PGSolver is the following: First the game is
converted into a Boost Graph. In this Boost Graph some preprocessing is applied to
guarantee the properties needed by our algorithm (no winning 1-cycles). Then the graph
is converted to an Array Graph in a fashion to optimize it for CUDA code. This is achieved
through rearranging the nodes to make coalesced access more likely. (see Section 5.3.3)
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5.2.2 Kernels

Now we present the kernels implemented.

Initialize and init valuation

These two kernels just handle basic initialization such as setting all values to infinity.
Because we use integer arrays that can only store a finite domain of numbers, we had to
represent infinity by some fixed number. Thus we used the fact that color profiles are
always non-negative and represent an infinite value by setting the first entry of that value
to −1.

f sigma

This kernel is the implementation of the Fσ-operator discussed in chapter 2. It exists in
multiple versions for different reasons:

f sigma and f sigma big: CUDA does not allow dynamic memory allocation inside the
kernel. Therefore there are two versions implemented that are basically equal except for
the array used to temporarily store valuations. f sigma can handle valuations with up to
128 priorities, f sigma big makes it possible to use up to 1024 priorities.

f sigma shared uses shared memory. It shows the basic idea of repeatedly copying
parts of the valuation into shared memory because there is not enough space to copy the
complete valuation.

update strategy

Here the strategy improvements are computed. It works according to the ”all possible
improvements” idea.

Device functions

For comparing and max/min of valuations, the functions in dev functions.cu were used.
These functions are called very often and thus making them as efficient as possible is an
important part of optimizing the code.

5.3 CUDA related design

This section is intended to show in more detail the design choices and experiments we
made and whether they did work out or not.

5.3.1 Kernel launch

In our first implementation a single kernel would handle the complete procedure of evalu-
ating and updating the strategy. This kernel was launched with one block of 1024 threads.
Because of the architecture of CUDA GPUs, only a small proportion of the computational
power (only one multiprocessor) was used and thus the program ran very slowly. When
trying to launch the kernel with multiple blocks so that it can be distributed across all
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multiprocessors, we encountered one of CUDA’s restrictions: Threads cannot be synchro-
nized across blocks. The only way to synchronize all threads in the different blocks is to
split the task into multiple calls to (not necessarily different) kernels. Therefore now the
code is split up in parts between which a synchronization is necessary and the kernels
are launched with multiple blocks and at least one thread per node. The execution now
proceeds as follows:

i n i t i a l i z e
repeat {

i n i t v a l u a t i o n
repeat {

f s i gma ( )
cudaThreadSynchronize ( )

} u n t i l ( va lua t i on does not change )
update s t ra t egy ( )
cudaThreadSynchronize ( )

} u n t i l ( s t r a t e g y does not change )

5.3.2 Code development

We now turn to how the CUDA code developed over time and what optimizations we
found.

Kernels

Of course all the kernels changed when we moved from one block to multiple blocks with
one thread per node. Before the threads would loop through all the nodes, after the
change every thread processes exactly one node. There were also other changes we made
over time:

f sigma did change mainly to remove branching whenever possible. This includes com-
bining min and max into one function which is discussed below. Another change to
optimize memory access was to use the intermediate array val as long as possible and
copy it to global memory only after everything else is finished.

One of our ideas was to enhance f sigma using shared memory to store the valuation.
It did not work out as expected and is discussed in “other ideas” below.

update strategy did not change at all except for the function compare that is part of
the device functions discussed below.

Device functions

Two versions of the function that maximizes valuations, max old and max new, as well
as the final version, now named update, can be found in Listings 7.2, 7.3, 7.41 in the
appendix. max old and max new result in exactly the same outcome but max new is

1You might notice the seemingly unnecessary variable always true which has, as its name states,
always the value true. Despite we cannot think of any logical reason why removing this variable should
change anything, the code produces different (false) results when it is removed, replaced by true or marked
as const. Therefore we assume there is some compiler error here.
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faster. This is because it uses less computations, stores results like the parity instead
of computing them twice and returns when val1 is found to be greater than val2 while
max old finishes its loop no matter what. Another change is that we store val1 [ i ] and
val2 [ i ] into local variables. This is done to make storing on registers for the full duration
of the loop more likely.

The function update is a bit more sophisticated because it can maximize or minimize
depending on the player given. First it computes the variable cs, the comments in the
code contain a table of the values cs can take. This computation allows us to distinguish
the cases where we need to do nothing (cs > 1), we simply need to copy from val2 to val1
(cs == 1) or both values are finite and we need to compare them.

Comparison is done similar to max new now also taking into account player and op-
ponent.

5.3.3 Preprocessing

The integral part of the preprocessing necessary is guaranteeing that no winning self-
cycles for player 1 exist. We present two possible approaches here: Removing the cycles
or breaking them by adding player 0 nodes.

Cycle removal

Given a parity game with graph G we want to remove all winning 1-cycles. To find such
circles we use the following algorithm:

1) G′ = (V1, E ∩ (V1 × V1))
2) Launch Tarjan ′ s a lgor i thm on G′ ,

l e t c be the vec to r o f SCCs f o r the nodes
3) For each v in G′ with odd p r i o r i t y p
4) i f the re i s a non−empty path from v to v

us ing only p r i o r i t i e s not g r e a t e r than p
5) mark SCC c (v ) f o r removal
6) Remove a l l marked SCCs and t h e i r 1−Attractor in G.

Step 2 is done using Tarjan’s algorithm provided by the Boost Graph Library. Step
4 is a simple BFS/DFS that can be additionally limited to stay in the already computed
SCC. Computing the attractor in step 6 works according to the definition of the attractor
by computing pre repeatedly until a fixed-point is reached.

Cycle breaking

A much simpler approach to guarantee that there are no winning self-cycles for player 1
is to ensure that there are no cycles for player 1 at all. This is done by inserting a player
0 node before each player 1 node (see Figure 5.1).

Cycle breaking is of course a much faster algorithm but it comes at a cost: The
resulting graph has more nodes then when applying the cycle removal algorithm. The
benchmarking section delives a comparison between the two algorithms.



CHAPTER 5. IMPLEMENTATION 28

Figure 5.1: Cycle breaking, before(left) and after(right)

Sink node

The second important part of preprocessing is the introduction of a sink node. In our
implementation, this node only exists virtually: As every player 0 node is connected to
the sink node via an edge, the value of a player 0 node can never be worse than the value
of the sink node plus its own priority. Thus instead of actually adding the sink node,
we start maximizing player 0 nodes from the all zeros vector (the priority of the node is
added after maximizing over all successors).

5.3.4 Node ordering

When arranging the graph as an array, the question arises whether node order matters
and if so, how to order the nodes. The first thing to notice is that player 0 nodes are
treated differently than player 1 nodes: The first are subject to maximizing, the second
to minimizing the values. Thus one of our approaches was to order the nodes according
to ownership. This approach turned out not to be fruitful. In the current version we
combined min/max into one function that uses the player in its computation.

Another thing to look for is coalesced memory access. We made the assumption
that most edges in a graph are between nodes that lie in the same strongly connected
component (SCC). Therefore we tried ordering nodes according to their SCCs and found
a speedup in many cases (see Section 5.4).

5.3.5 Other ideas

Below you can find some additional ideas we tried that did not quite work out as expected.
One observation was that valuations are always addressed in a ”backward” manner,

that is, when comparing two values the comparison proceeds from highest to lowest pri-
orities. Therefore we tried to store valuations ordered from highest to lowest priority to
improve caching, but it had nearly no effect

Choosing the amount of threads per block was also a question to which we cannot
present a conclusive answer: According to multiple tutorials, 128 or 256 threads per block
is optimal for most problems, but we observed nearly identical times on sizes 64, 512 and
1024 threads per block.

Another experiment included shared memory to store the valuations. The resulting
kernel can still be found as f sigma shared. We tried to store two different things in
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valuation: The intermediate array val that each thread uses as well as parts of the val-
uation. Our reason for storing val in shared memory is that locally declared arrays are
often moved from the registers to local memory which we want to avoid. The valuations
resides in global memory and is accessed multiple times, therefore we hoped to improve
performance by using shared memory as some sort of cache. The main idea is to split the
valuation into smaller parts that fit into shared memory, copy one part there, process all
edges ending in that part, then proceed with the next part. The current implementation
of this idea had nearly no effect on the running time at all.

Below is a code fragment that shows how we copy the valuation. SHARED SIZE is a
constant that holds how many bytes of shared memory we assign to each block.

// compute how many va l u a t i on s w i l l f i t
const int space = SHARED SIZE / p r i o r i t y c o u n t − blockDim . x ;

// the f i r s t blockDim . x many va l u a t i on s are used f o r the va l array
const int o f f s e t = blockDim . x ∗ p r i o r i t y c o u n t ;

int currentEnd = 0 ;
int c u r r en t S t a r t = 0 ;

// the edge cu r r en t l y processed
int currentEdge = edge border s [ node ] ;

while ( currentEnd < node count ) {
// copy a bunch o f v a l u a t i on s to shared
c u r r en t S t a r t = currentEnd ;
currentEnd += space ;
i f ( currentEnd > node count ) {

currentEnd = node count ;
}

int pos = c u r r e n t S ta r t ∗ p r i o r i t y c o u n t + threadIdx . x ;
while ( pos < currentEnd ∗ p r i o r i t y c o u n t ) {

sha r ed va l [ o f f s e t + pos − c u r r en t S t a r t ∗ p r i o r i t y c o u n t ] =
va luat i on [ pos ] ;

pos += blockDim . x ;
}
// here happens the f s i gma computation f o r those edges
// t ha t end i n s i d e the curren t va l ua t i on b l o c k
. . .

}

When choosing SHARED SIZE one has to take into account that one multiprocessor
has 48KB of shared memory, but this amount is split up between all blocks currently
residing on this multiprocessor. That means if every block uses 48KB, only one block
can reside on one multiprocessor at a given time. To use the computational power of the
GPU, more than one block is needed per multiprocessor, that means less shared memory
should be used.



CHAPTER 5. IMPLEMENTATION 30

Nodes Edges CPU time GPU time
cycle removal 67799 180146 44.87s 38.33s

cycle break 90450 202949 80.32s 55.4s

Table 5.1: Nodes resulting from different preprocessing algorithms

5.4 Benchmarks

In this section some of our design choices are benchmarked. It is divided into two parts:
In the first part we compare different preprocessing implementations of ourselves against
each other, in the second part a comparison to PGSolver takes place. For PGSolver,
the solver chosen is always the a strategy iteration, either due to Jurdzińsky and Vöge
or due to Schewe. By CPU and GPU we denote our implementations, running on the
corresponding hardware.

5.4.1 Preprocessing

As mentioned earlier, we implemented two different algorithms that guarantee that no
winning 1-cycle exist: Cycle break and cycle removal. The effect of those algorithms on
the running time shall be benchmarked here. There are also two improvements on how
to order the nodes, namely SCC-ordering and BFS-ordering inside SCCs, which are both
evaluated here. The game type used for the Benchmarks of this section was the Jurdziński
game

In Figure 5.2 you can see the effect of SCC- and BFS-ordering when using cycle
removal. SCC ordering has a effect not clearly positive or negative, but when adding the
BFS-ordering inside the SCCs, there is a speedup of about 20%. As you can see in Figure
5.3, the CPU implementation is nearly independent of the vertex ordering because the
CPU suffers a lot less from random access.

In Figure 5.4 again SCC- and BFS-ordering are compared, but this time cycle break
is used instead of cycle removal. The combination of SCC-ordering and BFS-ordering
also achieves a speedup of close to 20%. Note that cycle break generates (for this specific
examples) a game with about 30% more vertices than cycle removal and thus leads to
longer computations. In Table 5.1 you can find exact numbers for the Jurdziński game
with parameters 150, 150 which has 67800 nodes. Times are taken using SCC- and BFS-
order.

Figure 5.6 shows that our preparation has nearly no effect for elevator verification
games. These games consist of one very big SCC and multiple 1-node SCCs for which
ordering has no effect.
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Figure 5.2: Jurdziński games on GPU using cycle removal
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Figure 5.3: Jurdziński games on CPU using cycle removal
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Figure 5.4: Jurdziński games on GPU using cycle break
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Figure 5.5: Jurdziński games on CPU using cycle break
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5.4.2 Performance

Now we turn to the performance of our implementation in comparison to PGSolver using
the strategy iteration due to Jurdzińsky and Vöge and due to Schewe. Unless otherwise
noted, all benchmarks use SCC and BFS-order and the cycle removal algorithm, PGSolver
has its optimizations enabled.

Games used in this comparison are random games, clustered random games and ele-
vator verification games. The results can be seen in Figures 5.7 to 5.13.

Two versions of random games and clustered random games have been used: A very
sparse graph with out-degree of 2 to 5 per node, and a slightly less sparse one with out-
degree 30 to 50. The simple structure of random games combined with 30 to 50 edges
usually leads to cycle removal completely removing player 1 nodes as it is very likely that
he has a winning cycle and that all his nodes form a single SCC. This is not the case for
clustered random games.

For random and clustered random games, PGSolver uses the algorithm of Jurdzińsky
and Vöge. As you can see in Figure 5.9, PGSolver times vary a lot in sparse clustered
random graphs. This effect also occurs in random games, which is why there is no bench-
mark for PGSolver for the sparse version of random games: The times spiked between
seconds and hours.

The performance improvement factor for random games compared to PGSolver varied
between 10 and 20 on average. When disabling PGSolver’s optimizations, it performed
sometimes equal, sometimes considerably worse than it did before, depending on the
games.

Comparing clustered random games with few edges against many edges, one can notice
that games with fewer edges take longer to solve, which is counter-intuitive at first. Our
theory to explain this is the following: More edges close more cycles, thus making the
way to a winning cycle shorter. Therefore Fσ needs to be called less often to obtain a
valuation. Although the individual call of Fσ takes more time, the total running time
decreases.

Elevator verification games can be seen in Figures 5.11, 5.12 and 5.13. These examples
shows the power of PGSolver’s optimizations: When they are enabled, PGSolver can
compete with our GPU implementation, without them its running time is extremely bad.
Only Jurdzińsky and Vöge is depicted in Figure 5.11 because Schewe performed nearly
identical. In Figures 5.12, 5.13 one can see that Jurdzińsky and Vöge is much more
influenced when disabling optimizations. We believe that this is due to the fact that
when no optimizations are applied, for Jurdzińsky and Vöge the graph has to be altered
to contain every color at most once which is a huge impact because of the graph size.
The benchmark graphs look very straight because of the lack of data points: Elevator
verification games grow so quickly that we only tested 6 examples. The two biggest have
about 16000 and 108000 nodes (the next one has about 862000 nodes).

As for random games, we see a speedup from CPU to GPU, but here the factor is
much better: CPU needs about eight times as much time as GPU.
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5.5 Possible Improvements

We now present some further improvements that could be implemented for a possible
speedup.

Shared memory

As mentioned some of our experiments used shared memory but none of them could
deliver a speedup over the current implementation. Yet we believe that used efficiently,
there could be some benefits over global memory.

Texture memory

Since the graph is static, texture memory could be used to improve caching. It is not
clear whether this yields any speedup as the cache structure of texture memory will not
be used to its fullest when no interpolation is needed.

Node ordering

While the BFS-ordering has positive influence on the running time in some cases, there
may be better orderings that optimize coalesced access. As seen on elevator verification
games, there are cases in which this ordering shows only very little effect. Studying these
cases could help finding new ideas on how to order nodes.
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Figure 5.7: Benchmark for random games with out-degree 2-5
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Figure 5.9: Benchmark for clustered random games with out-degree 2-5

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0  50000  100000  150000  200000

Ti
m

e 
(s

ec
)

Nodes

CPU
GPU

PGSolver

Figure 5.10: Benchmark for clustered random games with out-degree 30-50
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Results and future work

As we have seen, the computational power of GPUs can be used to speed up parity game
solving in many cases, sometimes by a large margin. This leads us to the conclusion that
strategy iteration, in particular the variant used in this work, is well-suited for the highly
parallel nature of GPU computing. There are still many improvements to be done, some
of which have already been noted in Chapter 5. Some more will be discussed below:

Multiple very advanced tools have been developed to simplify GPU programming and
often offer better performance, most notably, the THRUST library [9]. This library could
prove as a very valuable resource to speed up many operations, e.g. memory copies, and at
the same time offers a high level interface which improves productivity and programming
speed.

There are some cases in which there is only very little difference when comparing
GPU and CPU implementation. These cases need to be studied in order to improve our
implementation or the algorithm in general. Ideally the GPU implementation should be
faster in all cases except for very small graphs where memory copy and device initialization
are significant factors.

We only implemented a single heuristic for finding the improved strategy: We take all
possible improvements. Other heuristics should be implemented and evaluated to see their
performance in practice. Random choice or best valued switch could be such heuristics.

Our implementation computes valuations using a bellman ford adaptation. Schewe
[14] mentions an adapted Dijkstra algorithm to accomplish the same in case of the all
profitable switches heuristic. Depending on how good this algorithm is parallelizable we
have high hopes that this would yield some speedup. [8] has already done research on the
subject of large graph algorithms including single source shortest paths.

As solving parity games is very interesting in practice, another important topic is
benchmarking this implementation on real-life examples. Studies about the typical struc-
ture of such games including amount and size of SCCs, priority count, average out-degree
etc. could help a lot when optimizing the code.

40
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Appendix

Mathematical notion

This section contains mathematical notion that will be used without further explanation.
N = {0, 1, 2, . . . }
For a set S, P(S) is its power set
The parity of a number n ∈ N is its residue when dividing by 2.

CUDA Example

Here is the complete and working CUDA example that was partially covered in section 4.

#include <s t d l i b . h>
#include <cuda runtime . h>
#include <iostream>

// g l o b a l marks t h i s as a k e rne l
g l o b a l void mult ( int∗ vec , int mult ) {

// every thread proce s s e s the element accord ing to h i s ID
vec [ threadIdx . x ] ∗= mult ;

}

void checkError ( ) {
cudaError t e r r o r = cudaGetLastError ( ) ;
i f ( e r r o r != cudaSuccess )
{

// p r i n t the CUDA error message and e x i t
p r i n t f ( ”CUDA e r r o r : %s \n” , cudaGetErrorStr ing ( e r r o r ) ) ;
e x i t (−1);

}
}

int main ( int argc , char∗∗ args ){
int s i z e = 32 ;
int∗ vec = ( int ∗) mal loc ( s i z e ∗ s izeof ( int ) ) ;
for ( int i = 0 ; i < s i z e ; i++) {

41
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vec [ i ] = i ;
}

// dec l a r e the dev i c e po in t e r
int∗ vec D ;
// a l l o c a t e dev i c e g l o b a l memory
cudaMalloc(&vec D , s i z e ∗ s izeof ( int ) ) ;
// copy the array to the dev i c e
cudaMemcpy( vec D , vec , s i z e ∗ s izeof ( int ) ,

cudaMemcpyHostToDevice ) ;

// c a l l the k e rne l wi th 1 b l o c k o f s i z e th reads
mult<<<1, s i z e >>>(vec D , 3 ) ;

// copy the r e s u l t back to the hos t
cudaMemcpy( vec , vec D , s i z e ∗ s izeof ( int ) ,

cudaMemcpyDeviceToHost ) ;
// check i f t h e r e was an error
checkError ( ) ;

for ( int i = 0 ; i < s i z e ; i++) {
std : : cout << vec [ i ] << std : : endl ;

}
std : : c in . get ( ) ;

}
Listing 7.1: ”CUDA example for scalar vector multiplication”

Code structure

Below the code structure of our implementation is listed.

cpu/
cpu kernel.cpp

cuda/
cuda stuff.cu
dev functions.cu
kernel gpu.cu

graph/
boost graph.cpp
graph.cpp

stuff/
filehandling.cpp
stringfunctions.cpp
tools.cpp

parity.cpp

cpu kernel.cpp is the CPU equivalent of the kernel calls for the GPU. It exists for
debugging and benchmarking purposes.
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cuda stuff.cu contains all CUDA preprocessings (e.g. allocating device memory) and
the kernel calls. There are two versions:
cuda stuff.cu is the basic version and can handle all games.
cuda stuff int4.cu can only handle games with at most 4 priorities.

def function.cu contains min/max and compare functions for values.
kernel gpu contains the kernels called by cuda stuff. Again there are two versions, one

for at most 4 priorities, the other one without that limitation.
boost graph.cpp implements one of the two graph representations used. It is based

on the Boost Graph Library [16] which is mainly used for their fast implementation of
Tarjan’s Algorithm as well as the ability to remove and add nodes easily. Some utility
functions like parsing a parity game created by PGSolver are also included here.

graph.cpp implements the second graph representation which uses only basic C datas-
tructures and thus can be passed to the CUDA kernels without further processing.

filehandling.cpp contains utility functions to save computed winning regions as well as
compare them to PGSolver solutions.

stringfunctions.cpp and tools.cpp contain utility functions used for string manipulation
and time measurement.

parity.cpp contains the main function and handles calls to PGSolver as well as to the
CPU and GPU kernels.

Max and update

Below you will find our first version as well as an optimized version of the function max
that computes the maximum of two values. It finally was combined with the function min
to form the function update which is also listed below.

We begin with the first version:

// s t o r e s the max o f va l 1 and va l2 in va l 1
d e v i c e void max old ( int∗ val1 , int∗ val2 , int s i z e ) {

i f ( va l1 [ 0 ] == INFINITY) {
return ;

}
i f ( va l2 [ 0 ] == INFINITY) {

for ( int i = 0 ; i < s i z e ; i++) {
va l1 [ i ] = val2 [ i ] ;

}
return ;

}
// w i l l be t rue i f any d i f f e r e n c e i s found
bool d i f f f o u n d = fa l se ;
// w i l l be t rue i f va l 2 i s found to be g r ea t e r than va l1
bool g r e a t e r = fa l se ;

for ( int i = s i z e − 1 ; i >= 0 ; i−−) {
g r e a t e r = g r e a t e r | | ( ! d i f f f o u n d && ( i%2==0)

&& ( ( va l1 [ i ]−va l2 [ i ])>>( s izeof ( int )∗8−1)) !=0);
g r e a t e r = g r e a t e r | | ( ! d i f f f o u n d && ( i %2!=0)
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&& ( ( va l2 [ i ]−va l1 [ i ])>>( s izeof ( int )∗8−1)) !=0);
d i f f f o u n d = d i f f f o u n d | | ! ( va l1 [ i ] == val2 [ i ] ) ;
va l1 [ i ] += ( d i f f f o u n d )∗ ( g r e a t e r )∗ ( va l2 [ i ]−va l1 [ i ] ) ;

}
}

Listing 7.2: ”First version of max”

This is how the function looks after some optimizations:

// s t o r e s the max o f va l 1 and va l2 in va l 1
d e v i c e void max new( int∗ val1 , int∗ val2 , const int s i z e ) {

i f ( va l1 [ 0 ] == INFINITY) {
return ;

}
i f ( va l2 [ 0 ] == INFINITY) {

for ( int i = 0 ; i < s i z e ; i++) {
va l1 [ i ] = val2 [ i ] ;

}
return ;

}

// w i l l be t rue i f va l 2 i s g r ea t e r
bool g r e a t e r = fa l se ;
bool a lways t rue = true ;

for ( int i = 0 ; i < s i z e ; i++) {
// 1 i f p r i o r i t y i s even , −1 i f odd
int p = 1−2∗(( s i z e−1− i )&1) ;
int v1 = val1 [ i ] ;
int v2 = val2 [ i ] ;
int d = v2 − v1 ;

i f ( ! g r e a t e r && d ∗ p < 0) {
return ;

}

g r e a t e r = g r e a t e r | | ( a lways t rue && ( ( d ∗ p) > 0 ) ) ;
v1 += g r e a t e r ∗ d ;
va l1 [ i ] = v1 ;

}
}

Listing 7.3: ”Optimized version of max”

Here is the combined min/max function:

d e v i c e void update ( int∗ val1 , int∗ val2 , const int s i z e ,
const int player , const int opponent ) {

int v1 = val1 [ 0 ] ;
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int v2 = val2 [ 0 ] ;

// p l aye r | v1 == INF | v2 == INF | case
// 0 | 0 | 0 | 0
// 0 | 0 | 1 | 1
// 0 | 1 | 0 | 2
// 0 | 1 | 1 | 3
// 1 | 0 | 0 | 0
// 1 | 0 | 1 | 2
// 1 | 1 | 0 | 1
// 1 | 1 | 1 | 3
int cs = ( ( v1 == INFINITY) << opponent )

| ( ( v2 == INFINITY) << p layer ) ;

i f ( cs > 1 ){
return ;

}

i f ( cs == 1 ) {
i f ( p laye r == 0 ) {

va l1 [ 0 ] = INFINITY ;
} else {

for ( int i = 0 ; i < s i z e ; i++)
{

va l1 [ i ] = val2 [ i ] ;
}

}
return ;

}
bool a lways t rue = true ;
bool r e p l a c e = fa l se ;

for ( int i = 0 ; i < s i z e ; i++) {
v1 = val1 [ i ] ;
v2 = val2 [ i ] ;
int d = v2 − v1 ;
// 1 i f p r i o r i t y i s even , −1 i f odd
int p = 1−2∗(( s i z e−1− i )&1) ;

// p l aye r | pa r i t y | d | re turn ? | formula
// 0 | even | <0 | yes | 1 ∗ 1 ∗ d < 0
// 0 | even | >0 | no | 1 ∗ 1 ∗ d > 0
// 0 | odd | <0 | no | 1 ∗ −1 ∗ d > 0
// 0 | odd | >0 | yes | 1 ∗ −1 ∗ d < 0
// 1 | even | <0 | no | −1 ∗ 1 ∗ d > 0
// 1 | even | >0 | yes | −1 ∗ 1 ∗ d < 0
// 1 | odd | <0 | yes | −1 ∗ −1 ∗ d < 0
// 1 | odd | >0 | no | −1 ∗ −1 ∗ d > 0
i f ( ! r e p l a c e && ( opponent − p layer ) ∗ p ∗ d < 0) {
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return ;
}
r e p l a c e = r e p l a c e | | ( a lways t rue

&& ( ( ( opponent − p layer ) ∗ p ∗ d) > 0 ) ) ;
va l1 [ i ] = v2 ;

}
}

Listing 7.4: ”Update function”
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