
Higher-Order Model-Checking and

Underapproximate Models of Concurrent

Recursive Programs

Pushdown automata (PDA) are a good model of recursive programs which
also have good algorithmic properties. For example “reachability” for PDA is
decidable, allowing one to automatically check whether a program modelled by
the PDA is “safe”—i.e. that it cannot “reach an error state”.

But what happens if one wants to model a recursive program featuring more
than one thread of execution? A nave idea would be to generalise pushdown
automata by allowing them multiple stacks—one for each thread. Unfortunately,
as is well known, PDAs with more than one stack are as powerful as Turing
machines; this precludes the possibility of them having any interesting decidable
properties.

One possible approach to this problem is to impose constraints on the ways
in which multi-stack PDA can use their stacks. On the plus side these con-
straints should produce a model for which reachability is decidable. On the
down side, the constrained model will in general only be able to “underap-
proximate” the behaviour of concurrent recursive programs—the program may
exhibit behaviours that a constrained multi-stack PDA is unable to replicate.
Whilst the resulting techniques may not be able to provide “formal guarantees”
about program safety, the idea is that they still “explore a sufficient amount of
behaviour” to “stand a good chance” of discovering any bugs that may exist.

An example of such a model is “context-bounded multi-stack PDA” [7].
The PDA performs a “context switch” when it pops from a stack different to
that from which it last popped. A “context-bounded multi-stack PDA” is only
allowed to perform up to n context switches for some fixed constant n. Several
other constraints have also been considered (e.g. [1, 5, 6]).

Let us now switch our attention to a different line of research. “Higher-order
model-checking” concerns itself with checking safety properties of “higher-order
recursion schemes” (HORS), which are essentially terms in the simply-typed
lambda calculus with recursion. In recent years much effort has been invested
in developing higher-order model-checkers that perform well in practice. Most
of the algorithms are formulated within the framework proposed by Kobayashi
[3] in which so-called “intersection types” are used to reason about safety. One
advantage of this approach is that if the algorithm determines that a HORS is
safe, then it can also output “intersection types” that certify safety. Since such a

1



certificate can be checked by a trivial algorithm, this provides a way of checking
that the implementation of the model-checker really has given a correct answer
(and has not erred due to some bug).

Whilst most applications of higher-order model-checking concern the ver-
ification of programs that employ higher-order functions, HORS constitute a
highly expressive model which one would expect to have much broader applica-
bility. This thesis will investigate using higher-order model-checking to model-
check various flavours of (constrained) multi-stack PDA. The following would
be a possible line of attack:

1. Order-1 recursion schemes have the same expressive power as (single-
stack) PDA. The thesis will define various kinds of “order-1 concurrent”
recursion schemes that have the same expressive power as the various
kinds of multi-stack PDA.

2. An “intersection type system” should be developed for these concurrent
recursion schemes that allows one to reason about their safety in a manner
analogous to that for standard order-1 HORS.

3. The model-checking (of safety properties) of order-1 concurrent recur-
sion schemes (in their various flavours) should be shown to be reducible
to model-checking HORS (of higher-orders). Moreover a method should
be developed for deducing intersection types for a safe order-1 concur-
rent recursion scheme from the intersection types inferred by a HORS
model-checker. This would allow existing higher-order model-checkers to
be employed in the verification of multi-stack PDA models.

(Kobayashi includes a reduction from model-checking a kind of ‘bounded
context-switching’ concurrent HORS to model-checking standard HORS
as an example in the appendix of [4].)

4. If time permits, the thesis could investigate generalising “order-1 concur-
rent recursion schemes” to higher-orders. This could possibly but not
necessarily take inspiration from [2] (which proposes a way of doing some-
thing analogous for a generalisation of PDA equi-expressive with HORS
called “collapsible pushdown automata”).

5. Another possible enhancement would be to investigate performing so-
called “partial-order reductions” on concurrent recursion schemes and re-
flecting this in the intersection type system. (Partial-order reduction is a
technique for reducing the search space when model-checking concurrent
systems without impairing the accuracy of the result).

References

[1] Mohamed Faouzi Atig, Benedikt Bollig, and Peter Habermehl. “Emptiness
of multi-pushdown automata is 2ETIME-complete”. In: Developments in
Language Theory. Springer. 2008, pp. 121–133.

2



[2] Matthew Hague. “Saturation of concurrent collapsible pushdown systems”.
In: arXiv preprint arXiv:1310.2631 (2013).

[3] Naoki Kobayashi. “Types and higher-order recursion schemes for verifica-
tion of higher-order programs”. In: ACM SIGPLAN Notices. Vol. 44. 1.
ACM. 2009, pp. 416–428.

[4] Naoki Kobayashi and Atsushi Igarashi. “Model-checking higher-order pro-
grams with recursive types”. In: Programming Languages and Systems.
Springer, 2013, pp. 431–450.

[5] Salvatore La Torre, Parthasarathy Madhusudan, and Gennaro Parlato. “A
robust class of context-sensitive languages”. In: Logic in Computer Science,
2007. LICS 2007. 22nd Annual IEEE Symposium on. IEEE. 2007, pp. 161–
170.

[6] Salvatore La Torre and Margherita Napoli. “Reachability of multistack
pushdown systems with scope-bounded matching relations”. In: CONCUR
2011–Concurrency Theory. Springer, 2011, pp. 203–218.

[7] Shaz Qadeer and Jakob Rehof. “Context-bounded model checking of con-
current software”. In: Tools and Algorithms for the Construction and Anal-
ysis of Systems. Springer, 2005, pp. 93–107.

3


