
1 Problem description:

Let n be a natural number and denote by B the set {0, 1}. For u, v ∈ Bn let
∆(u, v) be the set of positions in which u and v differ, e.g.,

∆(001, 010) = {2, 3}.

Let s = s1s2 . . . sl be a finite sequence of vectors of Bn. We say that s is a
PI-sequence if the following property holds:

∀1 ≤ i < j ≤ l : ∆(si, si+1) ∩∆(si, sj) 6⊆ ∆(sj , sj+1).

Finally, denote by L(n) the maximal length of any PI-sequence on Bn.

The question we are interested in is if L(n) is bounded from above by the
Fibonacci numbers, i.e., if

L(n) ≤ F (n + 1) where F (0) = 1, F (1) = 1, and F (n + 2) = F (n + 1) + F (n).

Example : For n = 3, resp. n = 4 a longest PI-sequence is

0 −− 1 −− 0 −− 1 1
0 −− 1 −− 0 0 0
0 −− 1 1 1 −− 0

resp.

0 −− 1 −− 0 −− 1 −− 0 −− 1 1 1
0 −− 1 −− 0 −− 1 1 1 −− 0 0
0 −− 1 −− 0 0 0 0 0 −− 1
0 −− 1 1 1 −− 1 0 0 0

Remark : We may consider any PI-sequence as a matrix. Then permutating
the rows of a PI-sequence yields obviously a PI-sequence again. Further, as we
are intereseted only in the difference vectors ∆(si, sj) of two columns, flipping
all bits of a row preserves the PI-sequence property. From the definition of PI-
sequence it also follows that if a PI-sequence s1s2 . . . sl does not start by flipping
all bits, then s̄1s1s2 . . . sl is a also a PI-sequence (with s̄1 the vector we obtain
from s1 by flipping all bits.) We therefore can always assume that a longest
PI-sequence starts with the vector consisting only of zeros and that in the first
step of a longest PI-sequence are bits are being flipped.

2 Why is this interesting?

Intuition: The behaviour of systems that react to their enviroment, e.g., the
inputs by some user, can often be described by means of a game (like parity

1

games, mean payoff games, Markov decision processes). In order to (roughly)
describe the underlying intuition, imagine we are given a software system and
two classes of persons interacting with it: the users and the system operators.
While the users behave quite selfish and do not really care about stability of the
system as long as they get their job done, the system operators have to ensure
that the system stays stable and operable. Depending on the current state of
the system either the users or the system operators can issue a command to
the system. The system then reacts to this command and changes its state
accordingly. The question then is if for a given software system and some given
specification, the system operators have a strategy to control the system in such
a way that no matter what the users do the system behaves as specified. In many
cases it can be shown that it suffices that this strategy is a simple function which
tells the system operators for every state controlled by them a single command
to be issued always in the state.

For simplicity, assume in every state where the system operators can issue a
command, they can only choose from exactly two possible action (we can always
enforce such a normal form). Further assume that the system has only finitely
many states (although a restriction, many interesting problems still have this
property) and that n is the number of states controlled by the system operators.
Then any element of Bn represents such a strategy. The goal is then to find
the best strategy x∗ ∈ Bn. For this, one extracts from the system description
an injective ranking (function) r : Bn → N wich ranks the strategies s.t. x∗

is the strategy with the maximal rank. In general, calculating r for a given
strategy x ∈ Bn takes time polynomial in the description of the system. Still,
a brute force approach for finding x∗ would mean a exponential time algorithm
in the worst case. Therefore, many heuristics have been proposed for iteratively
improving a given strategy until the optimal strategy is obtained. One of the
most commonly proposed heuristic is sometimes called “all profitable switches
algorithm” (APSA):

Given a strategy x ∈ Bn, for i = 1, 2, . . . , n, change x at exactly position i. If
the resulting strategy has higher rank than x, include i in the set I. The next
strategy is then obtain by inverting x at exactly the position included in I.

Abstraction: It is an open problem to obtain a sharp upper bound on the
number of iterations done by the APSA. In order to study this question, one
usually forgets about the original game and only focuses on the problem of
determining the argument x∗ maximizing a given injective ranking r : Bn → N.
It is conjectured that every sequence of strategies obtained by the APSA is
a PI-sequence if the ranking function is completely unimodal. (For now, note
that the rankings obtained from the mentioned games like parity games, mean
payoff games or Markov decision processes have this property. A definition of
“completely unimodal” is given below.)

It therefore follows that the function L(n) (defined in the previous section) is an

2

upper bound on the number of iterations done by the APSA when considering
strategies of dimension n. Currently, it is only known that the APSA takes at
most O(2n

n) iterations for n-dimensional strategies. So, showing that L(n) ∈
O(F (n)) would be an improvement as F (n) ∈ O(1.62n).

Visualization via hypercubes: We can visualize a ranking r : Bn → N by
means of an oriented n-dimensional hypercube. The strategies Bn become the
nodes of the hypercube and edges are assumed to point from the strategy/node
of lesser rank to the one of greater rank. For an example, consider the following
picture where nodes are labeled by both the associated strategy (as binary words
of length 3) and its rank (in red):

000;3 100;5

010;2 110;1

001;0 101;10

011;7 111;4

000;0 100;5

010;7 110;6

001;1 101;4

011;2 111;3

We then say that an injective ranking r is completely unimodal if for any face,
i.e., sub-hypercube, of the hypercube there is a unique sink. (A sink is a node
which only has incoming edges.)

In above examples, only the ranking function depicted on the right is completely
unimodal; the one depicted on the left has two sinks for the face defined by the
nodes 000, 001, 011, 010.

For the right ranking function, we obtain the following APSA-sequence when
starting in 000:

000, 111, 100, 110, 010.

3 Goals of the Bachelor thesis:

Up to now, no upper bound on the length PI-sequences is known except for
the O(2n

n)-bound. Previous experiments using computers to enumerate all pos-
sible PI-sequences for a fixed n have only be tractable for n ≤ 7. For n = 7
enumerating all PI-sequences took more than three months using a parallel im-
plementation running on 12 cpus.

The main goal of this Bachelor thesis is to valuate, improve and extend the cur-
rent parallelization used in the software tool for enumerating the PI-sequences
by allowing to only choose some subset of PI-sequences at random. This new

3

tool should then be used to gain some experimental data for n > 7. The Bach-
elor thesis should give also a thorough survey on the theoretical background of
the considered problem.

4 References:

• The original source for PI-sequences introduced by Hunter.

• A comparison of different heuristics for maximizing completely unimodal
functions by Björklund, Sandberg, Vorobyov.

• Deduction of the O(2n/n)-upper bound by Mansour, Singh.

• The definition of the Fibonacci Seesaw heuristic mentioned in the slides
by Hunter.

4

http://www.comlab.ox.ac.uk/people/Paul.Hunter/papers/humboldt.pdf
http://www8.cs.umu.se/~henrikb/papers/pseudo-boolean.pdf
http://www8.cs.umu.se/~henrikb/papers/pseudo-boolean.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.22.4677&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.25.2115&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.25.2115&rep=rep1&type=pdf

	Problem description:
	Why is this interesting?
	Goals of the Bachelor thesis:
	References:

