Optimization Problems and Approximation

We are unable to solve NP-complete problems efficiently, i.e., there is no known way to solve them in polynomial time.

Most of them are decision versions of optimization problems...

with a set of feasible solutions for each instance

with an associated quality measure

Why not looking for an approximate solution? Is there a difference in complexity?

Optimization Problems and Approximation Example Knapsack revisited

KNAPSACK = < I, f >

 $I = \{ \langle S, w, W, v \rangle | S = \{1, ..., n\}, w, v : S \to N, W \in N \}$

 $f(i) = \left\{ T \subseteq S \mid \sum w(i) \le W, \quad \sum v(i) \to \max \right\}$

All set $T \subseteq S$: $\sum w(i) \le W$ are feasible solutions.

 $\sum v(i)$ is the quality of the solution *T* wrt. to the instance *i*.

Optimization Problems and Approximation Example Knapsack revisited

All set $T \subseteq S$: $\sum w(i) \le W$ are feasible solutions. $\sum v(i)$ is the quality of the solution *T* wrt. to the instance *i*.

KNAPSACK = < I, sol, m, max >

 $I = \{ < S, w, W, v > | S = \{1, ..., n\}, w, v : S \to N, W \in N, V \in N \}$

 $\operatorname{sol}(i) = \left\{ T \subseteq S : \sum w(i) \le W \right\}$ $\mathbf{m}(i,s) = \sum v(i)$

Optimization Problems and Approximation Definition of Optimization Problems

OPTPROB =< *I*, sol, m, type >

I the instance set

sol(i)	the set of feasible solutions for instance i	
	$(sol(i) nonempty for i \in I)$	
m(i,s)	the measure of solution <i>s</i> wrt. instance <i>i</i>	

(positive integer for $i \in I$ and $s \in sol(i)$)

opt(i) = type m(i, s)

Optimization Problems and Approximation Example Problem: MaxkSat

MaxkSat =< I, sol, m, max >

I = CNF - Formulas with at most k literals per clause $sol(\varphi) = set of assignments to the vars. of \varphi$ $m(\varphi, A)$ = the number of clauses which are satisfied by A

MaxSat has all CNF - Expressions as instances.

There is also a weighted version : Each clause has a weight -the measure is the sum of the weights of the satisfied clauses.

Example Problem: MaxkSat NP-hardness

MaxkSat = < I, sol, m, max >

I = CNF - Formulas with at most k literals per clause $sol(\varphi) = set of assignments to the vars. of \varphi$

 $m(\varphi, A)$ = the number of clauses which are satisfied by A

Max3Sat(D) is certainly NP – complete (thus *Max3Sat* is *NP*-hard): 3SAT is a special case

But also *Max2Sat(D)* is *NP* – *complete*....

Optimization Problems and Approximation		
Performance Ratio		
Approximation algorithms deliver solutions of guaranteed guality – they are not heuristics.		

But how to measure the quality of a solution?

Let O = < I, sol, m, type > be an optimization problem. given $i \in I$ and a $s \in sol(i)$ we define

$$R(i,s) = \max\left\{\frac{\text{opt}(i)}{\text{m}(i,s)}, \frac{\text{m}(i,s)}{\text{opt}(i)}\right\}$$

as the performance ratio.

 $s \in sol(i)$ is a an r – *approximate* solution if $R(i, s) \leq r$.

Optimization Problems and Approximation Performance Ratio

Let $O = \langle I, \text{sol}, m, \text{type} \rangle$ be an optimization problem. given $i \in I$ and a $s \in \text{sol}(i)$ we define

 $R(i,s) = \max\left\{\frac{\text{opt}(i)}{\text{m}(i,s)}, \frac{\text{m}(i,s)}{\text{opt}(i)}\right\}$

as the performance ratio. $s \in sol(i)$ is a an r - approximate solution if $R(i, s) \leq r$.

R(i, s) = 1 implies that s is optimal.

 $R(i,s) \ge 1$ in general, the closer to 1, the better.

Example Problem MaxkSat Performance Ratio

MaxkSat =< *I*, sol, m, max >

I = CNF - Formulas with at most k literals per clause sol(φ) = set of assignments to the vars. of φ m(φ , A) = the number of clauses which are satisfied by A

$$\begin{split} R(\phi,A) = \frac{\operatorname{opt}(\phi)}{\operatorname{m}(\phi,A)} & \text{If we have an } A \text{ with } R(\phi,A) \leq \frac{3}{2} \text{ then} \\ & \text{no } A' \text{ can satisfy more than } \frac{3}{2} \operatorname{m}(\phi,A) \text{ clauses.} \end{split}$$

Optimization Problems and Approximation The Class NPO

NPO is the class of optimization problems whose decision versions are in *NP*.

OPTPROB = < I, sol, m, type $> \in NPO$ iff

 $\begin{aligned} \exists \text{polynomial } p : \forall i \in I, s \in \text{sol}(i) : |s| \leq p(|i|) \\ \text{deciding } s \in \text{sol}(i) \text{ is in } P \\ \text{computing } m(s, i) \text{ is in } FP \end{aligned}$

Optimization Problems and Approximation Approximation Problem

Let $O = \langle I, \text{sol}, m, \text{type} \rangle$ be an optimization problem and *r* a function $N \rightarrow [1, \infty)$.

Then the approximation problem < O, r > is to find for all instances $i \in I$ an r(|i|) - *approximate* solution $s \in sol(i)$.

The question is which approximation problems < O, r > are located in *FP*.

And *how to prove* that they are not (under some assumption such as $P \neq NP$)..

Approximation Algorithm Example Problem: MaxSat

approxMaxSat(φ)

1. for i = 1 to n

- 2. val := E(m(φ , $A \cup \{x_i = true\}$)) > E(m(φ , $A \cup \{x_i = false\}$));
- 3. $A := A \cup \{x_i = val\}; \varphi := \varphi[x_i = val];$

4. return A;

$$\mathsf{E}(\varphi, \{\}) = \sum_{C \in \varphi} 1 - 2^{-|C|} \ge \sum_{C \in \varphi} 1 - 2^{-1} = \frac{1}{2} |\varphi|$$

Thus, this algorithm is a 2-approximate algorithm or better.

Approximation Algorithm Example Problem: VertexCover

approxVertexCover(V, E) 1. C := \emptyset ;

- **2.** while $E \neq \emptyset$ do
- 3. pick $a < u, v > \in E$
- 4. $C := C \cup \{u, v\};$

5. remove $\{u, v\}$ from V, E;

6. return C;

C is indeed a valid cover.

Every cover must cover all the edges picked in line 3.

Thus every cover must contain at least |C|/2 vertexes.

 $R(G,C) = \frac{\mathrm{m}(G,C)}{\mathrm{opt}(G)} \le 2$

Approximation Classes APX

We have two approximation problems, which can be solved within a constant performance ratio within polynomial time.

So it's time to define a corresponding class: APX.

Let *O* be an *NPO* problem. $O \in APX$ iff there exists an r – *approximation* algorithm for *O* which run in polynomial time for some constant $r \ge 1$.

Approximation Classes Example Problem: TSP (I)

We will show that $TSP \in APX \Leftrightarrow P = NP$.

We use another *NP* – *complete* problem to reduce from : *HAMILTONIANCYCLE*

HAMILTONIANCYCLE : Given a graph $G = \langle V, E \rangle$, is there a cycle, which visits any node exactly once?

We construct a distance matrix M as follows (for $r \ge 1$):

 $M(u,v) = \begin{cases} 1: \langle u, v \rangle \in E \\ [r | V |]: \text{ otherwise} \end{cases}$

Approximation Classes Example Problem: TSP (II)

We construct a distance matrix M as follows $(r \ge 1)$: $M(u,v) = \begin{cases} 1: < u, v > \in E \\ \lceil r | V | \rceil \end{cases}$ otherwise

If *G* is a positive instance, then opt(M) = |V|. Otherwise $opt(M) \ge \lceil r|V \rceil + |V| - 1$.

Now assume that there is an r – *approximate* algorithm for *TSP*.

Approximation Classes Example Problem: TSP (III)

If *G* is a positive instance, then opt(M) = |V|. Otherwise $opt(M) \ge \lceil r|V| \rceil + |V| - 1$.

Now assume that there is an r – *approximate* algorithm apporx for *TSP* and let s = approx(M).

If $G \in HAMILTONIANCYCLE$, we find

 $r \ge R(M,s) = \frac{m(M,s)}{opt(M)} = \frac{m(M,s)}{|V|} \text{ and so } |V| r \ge m(M,s).$ But otherwise we have $m(M,s) \ge opt(M) \ge \left\lceil r |V| \right\rceil + |V| - 1 > \left\lceil r |V| \right\rceil$

Approximation Classes Example Problem: TSP (IV)

So we could prove that $TSP \notin APX$ (assuming $P \neq NP$) by giving a reduction from an NP - hard problem, which established a gap between positive and negative instances.

The gap was large enough to distinguish whether we reduced from a positive or a negative instance.

Wanted : A generic reduction from NP - hard problems, to approximation problems which produces gaps.

Approximation Classes Approximation Schemes

An algorithm which can be parametrized with the performance ration to achieve is called *approximation – scheme*.

Let $O = \langle I, \text{sol}, m, \text{type} \rangle$ be an optimization problem. Then an algorithm A is an approximation scheme for O iff for all $i \in I$, r > 1 and s = A(i, r) $s \in \text{sol}(I)$ and $R(i, s) \leq r$.

Approximation Schemes The classes PTAS and FPTAS

 $O \in FPTAS$ if there is an approximation scheme A such that A(i,r) runs in DTIME(poly(|i|,1/(r-1))) for all $i \in I$ and r > 1.

 $O \in PTAS$ if there is an approximation scheme Asuch that A(i,r) runs in DTIME(poly([i]))for all $i \in I$ and any fixed r > 1.

Approximation Schemes Example Problem: KNAPSACK

$$\begin{split} & KNAPSACK = < I, \text{sol}, \text{m}, \text{max} > \\ & I = \{ < S, w, W, v > \mid S = \{1, ..., n\}, w, v : S \rightarrow N, W \in N \} \end{split}$$

 $sol(i) = \left\{ T \subseteq S : \sum_{x \in T} w(x) \le W \right\}$ $m(i, s) = \sum v(x)$

Let W(x, v) be the minimum weight attainable by selecting among the *first x items* such that that their total value is *exactly* v.

Example Problem: KNAPSACK A Pseudo-Polynomial Algorithm

Let W(x, v) be the minimum weight attainable by selecting among the *first x items* such that their total value is *exactly v*. W(0,0) = 0 $W(0,v) = \infty$ v > 0 $W(x+1,v) = \min\{W(x,v), [W(x,v-v(x+1))+w(x+1)]\}$

By building the table of the W(x, v) for $0 \le x \le n$ and $0 \le v \le V = \sum v(x)$ we can solve *KNAPSACK*.

This algorithm runs in *DTIME*(poly(*n*,*V*)) (pseudo - poly.)

Example Problem: KNAPSACK An FPTAS (I)

This algorithm runs in DTIME(poly(n,V)) (pseudo - poly.)Assume $\varepsilon > 0$ fixed.Let $l = \lfloor \log \max_{x \in S} v(x) \rfloor$ Choose k with $\frac{n}{n^k} < \varepsilon$.Set $L = l - k \log n$.

Define *i*' with $v'(x) = \left\lfloor v(x)/2^L \right\rfloor 2^L$ The rest, i.e., $L = l \cdot k \log n$, gets zeroized.

Example Problem: KNAPSACK An FPTAS (II)

This algorithm runs in *DTIME*(poly(*n*,*V*)) (pseudo-poly.)

Assume $\varepsilon > 0$ fixed. Let $l = \lfloor \log \max_{x \in S} v(x) \rfloor$ Choose k with $\frac{n}{x^k} < \varepsilon$.

Set $L = l - k \log n$.

Define *i*' with $v'(x) = \left\lfloor v(x)/2^L \right\rfloor 2^L$

Example Problem: KNAPSACK
An FPTAS (III)

This algorithm runs in *DTIME*(poly(*n*,*V*)) (pseudo - poly.)

Assume $\varepsilon > 0$ fixed. Let $l = \lfloor \log \max_{x \in S} v(x) \rfloor$

Choose k with $\frac{n}{n^k} < \varepsilon$.

Set $L = l - k \log n$.

Define *I*' with $v'(i) = |v(i)/2^L| |2^L|$ $\sum_{x\in T} v'(x) \leq \sum_{x\in T} v(x)$

 $\frac{\operatorname{opt}(i)}{\operatorname{opt}(i')} \leq 1 + \varepsilon$

 $\frac{\operatorname{opt}(i)}{\operatorname{m}(i,\operatorname{optsol}(i'))} \le \frac{\operatorname{opt}(i)}{\operatorname{opt}(i')} \le 1 + \varepsilon$

Solving I' optimally yields an $1 + \varepsilon$ approximate solution for I

Polynomially Bound Problems Permit no FPTAS (I)

If there is an NP - hard problem in NPO - PBwhich admits an *FPTAS*, then P = NP.

Let O be a maximation problem in NPO - PB.

Set $r(i) = 1 + \frac{1}{p(|i|)}$, where *p* is the poly.-bound.

An r(i) – approximate solution s for i is optimal since,

 $\frac{p(|i|)+1}{p(|i|)} = r(i) \ge \frac{\operatorname{opt}(i)}{\operatorname{m}(i,s)} \text{ gives}$

 $m(i,s) \ge opt(i) \frac{p(|i|)}{p(|i|)+1} = opt(i) - \frac{opt(i)}{p(|i|)+1} > opt(i) - 1$

Approximation Classes Problems in PTAS-FPTAS

PLANAR INDEPENDENTSET is in NPO – PB and is NP – hard. PLANAR INDEPENDENTSET \in FPTAS \Rightarrow P = NP.

Unproven : *PLANAR INDEPENDENTSET* \in *PTAS*.

Hardness in Approximation

Wanted : A generic reduction from *NP* – *hard* problems, to approximation problems which produces gaps.

Remember the reduction to TSP ...

Relies on the so-called PCP-Theorem – an alternative formulation of NP.

It allows to reduce *NP* – *complete* languages to approximation problems.

Hardness in Approximation PCP-Theorem (I)

A language *L* is in PCP(r(n), q(n))if there is a polynomial time PCP(r(n), q(n)) - *Verifier V* such that

 $\forall x \in L \; \exists \Pi : \Pr_{\overline{R}} \left[V(x, \Pi, \overline{R}) = \operatorname{accept} \right] = 1$

 $\forall x \notin L \ \forall \Pi : \Pr_{\overline{R}}[V(x, \Pi, \overline{R}) = \operatorname{aceppt}] \leq 1/2$

with $|\overline{R}| = O(r(|x|))$, and V reading O(q(n)) bits non - adaptively from Π .

PCP-Theorem : $NP = PCP(\log n, 1)$

Hardness in Approximation PCP-Theorem (II)

PCP-Theorem : $NP = PCP(\log n, 1)$

How to use?

Reduce the verification process to an approximation problem such that the gap of the PCP-Verifier translates into a gap in the measure of the optimal solution(s).

Hardness in Approximation Example Problem: Max3Sat (I)

Observe that once the O(q(n)) bits have been read from the proof Π , the decision of V is only depending on them.

Thus we can define a set of Boolean Expressions $\varphi[x, \overline{R}](\overline{p})$ where x is the input, \overline{R} is the random string of length $O(\log n)$, \overline{p} are the bits read in Π , $\varphi[x, \overline{R}](\overline{p}) = 1 \Leftrightarrow V(x, \Pi, \overline{R}) = \text{accept.}$

Hardness in Approximation Example Problem: Max3Sat (II)

Each $\varphi[x, \overline{R}](\overline{p})$ can be expressed by *d* clauses, where *d* is constant (since $|\overline{p}|$ is constant).

Let φ be the conjunction of the expressions $\varphi[x, \overline{R}](\overline{p})$ for all \overline{R} ($|\overline{R}| = c \log n$).

 $x \in L \Rightarrow \exists \Pi : \Pr_{\overline{R}} \left| V(x, \Pi, \overline{R}) = \operatorname{accept} \right| = 1$ $\Rightarrow \operatorname{all} \varphi[x, \overline{R}] \text{ can be satisified satisfied simultaneously}$

 $\Rightarrow \varphi$ satisfiable.

Hardness in Approximation Example Problem: Max3Sat (III)

Each $\varphi[x, \overline{R}](\overline{p})$ can be expressed by *d* clauses, where *d* is constant (since $|\overline{p}|$ is constant).

Let φ be the conjunction of the expressions $\varphi[x, \overline{R}](\overline{p})$ for all \overline{R} ($|\overline{R}| = c \log n$).

 $\begin{aligned} x \notin L \Rightarrow \forall \Pi : \Pr_{\overline{R}} \left[V(x, \Pi, \overline{R}) = \operatorname{accept} \right] &\leq 1/2 \\ \Rightarrow \text{ each assignment must leave } 1/2 \\ \text{ of the expressions } \varphi[x, \overline{R}] \text{ unsatisified.} \\ \Rightarrow \frac{\operatorname{opt}(\varphi)}{|\varphi|} &\leq f = \frac{1}{2} + \frac{1}{2} \frac{d-1}{d} < 1 \end{aligned}$

Hardness in Approximation Example Problem: Max3Sat (IV)

$x \in L$	$\Rightarrow \frac{\operatorname{opt}(\varphi)}{ \varphi } = 1$		
$x \notin L$	$\Rightarrow \frac{\operatorname{opt}(\varphi)}{ \varphi } \le f = \frac{1}{2} + \frac{1}{2} \frac{d-1}{d} < 1$		
Let <i>A</i> be an $1 < r < \frac{1}{f}$ approximate solution for φ .			
$\frac{\mathrm{m}(\varphi, A)}{2} \ge \frac{1}{2} > f$	$x \in L \Longrightarrow m(\varphi, A) > f \operatorname{opt}(\varphi) = f \varphi $		
$opt(\varphi) = r^{-1}$	$x \notin L \Rightarrow m(\varphi, A) \le opt(\varphi) \le f \varphi $ (for all A)		
r – approximating <i>Max3Sat</i> is <i>NP</i> – <i>hard</i> (constant $r > 1$).			

Hardness in Approximation Remark: Decoding of PCP-Proofs

 $\forall x \in L \ \exists \Pi : \Pr_{\overline{R}} \left[V(x, \Pi, \overline{R}) = \operatorname{accept} \right] = 1$ $\forall x \notin L \ \forall \Pi : \Pr_{\overline{R}} \left[V(x, \Pi, \overline{R}) = \operatorname{accept} \right] \le 1/2$

Given a proof Π with $\Pr_{\overline{R}} \left[V(x, \Pi, \overline{R}) = \operatorname{accept} \right] > 1/2$ a proof Π' with $\Pr_{\overline{R}} \left[V(x, \Pi', \overline{R}) = \operatorname{accept} \right] = 1$ can be reconstructed efficiently (in FP).

IT is basically encoded for error - correction - thus it possible to find the corresponding "usually encoded" proof efficiently.

Approximation Classes Relationships

 $FPTAS \subseteq PTAS \subseteq APX \subseteq NPO$

 $FPTAS \subset PTAS \subset APX \subset NPO \iff P \neq NP$

Approximation Classes More Classes

Let *O* be an *NPO* problem. $O \in F - APX$ iff there exists an r - approximation algorithm for *O* which run in polynomial time for some function $f \in F$.

 $FPTAS \subseteq PTAS \subseteq APX \subseteq \log - APX \subseteq \operatorname{poly} - APX \subseteq \exp - APX \subseteq NPO$