Optimization Problems and Approximation

We are unable to solve NP-complete problems efficiently, i.e., there is no known way to solve them in polynomial time.

Most of them are decision versions of optimization problems..
with a set of feasible solutions for each instance with an associated quality measure

Why not looking for an approximate solution?
Is there a difference in complexity?

Optimization Problems and Approximation Example Knapsack revisited

All set $T \subseteq S: \sum_{i \in T} w(i) \leq W$ are feasible solutions.
$\sum_{i \in T} v(i)$ is the quality of the solution T wrt. to the instance i.

$$
\begin{aligned}
& K N A P S A C K=<I, \mathrm{sol}, \mathrm{~m}, \max \rangle \\
& I=\{\langle S, w, W, v>| S=\{1, . . n\}, w, v: S \rightarrow N, W \in N, V \in N\} \\
& \operatorname{sol}(i)=\left\{T \subseteq S: \sum_{i \in T} w(i) \leq W\right\} \\
& \mathrm{m}(i, s)=\sum_{i \in T} v(i)
\end{aligned}
$$

Optimization Problems and Approximation Example Knapsack revisited

$$
\begin{aligned}
& K N A P S A C K=\langle I, f> \\
& \quad I=\{<S, w, W, v>\mid S=\{1, \ldots, n\}, w, v: S \rightarrow N, W \in N\} \\
& f(i)=\left\{T \subseteq S \mid \sum_{i \in T} w(i) \leq W, \sum_{i \in T} v(i) \rightarrow \max \right\}
\end{aligned}
$$

All set $T \subseteq S: \sum_{i \in T} w(i) \leq W$ are feasible solutions. $\sum_{i \in T} v(i)$ is the quality of the solution T wrt. to the instance i.

Optimization Problems and Approximation
Definition of Optimization Problems

```
OPTPROB =<I, sol,m, type >
    I the instance set
    sol(i) the set of feasible solutions for instance i
        (sol(i) nonempty for i\inI)
    m(i,s) the measure of solution s wrt. instance i
        (positive integer for i\inI and s\in\operatorname{sol}(i))
```

```
opt(i)= type m(i,s)
    s\insol(i)
```

 Optimization Problems and Approximation
 Example Problem: MaxkSat
MaxkSat $=<I$, sol, m, max $>$
$I=C N F-$ Formulas with at most k literals per clause
$\operatorname{sol}(\varphi)=$ set of assignments to the vars. of φ
$\mathrm{m}(\varphi, A)=$ the number of clauses which are satisfied by A

MaxSat has all CNF - Expressions as instances

There is also a weighted version: Each clause has a weight -the measure is the sum of the weights of the satisfied clauses.

Example Problem: MaxkSat NP-hardness

MaxkSat $=<I$, sol, m, max $>$

$I=C N F-$ Formulas with at most k literals per clause
$\operatorname{sol}(\varphi)=$ set of assignments to the vars. of φ
$\mathrm{m}(\varphi, A)=$ the number of clauses which are satisfied by A
$\operatorname{Max} 3 \operatorname{Sat}(\mathrm{D})$ is certainly $N P$ - complete
(thus Max3Sat is NP-hard) :
3SAT is a special case
But also $\operatorname{Max} 2 \operatorname{Sat}(D)$ is $N P$ - complete....

Optimization Problems and Approximation
Performance Ratio
Approximation algorithms deliver solutions of guaranteed quality - they are not heuristics.

But how to measure the quality of a solution?

Let $O=<I$, sol, m, type $>$ be an optimization problem.
given $i \in I$ and a $s \in \operatorname{sol}(i)$ we define

$$
R(i, s)=\max \left\{\frac{\operatorname{opt}(\mathrm{i})}{\mathrm{m}(\mathrm{i}, \mathrm{~s})}, \frac{\mathrm{m}(\mathrm{i}, \mathrm{~s})}{\operatorname{opt}(\mathrm{i})}\right\}
$$

as the performance ratio.
$s \in \operatorname{sol}(i)$ is a an r-approximate solution if $R(i, s) \leq r$.

Example Problem MaxkSat
 Performance Ratio

MaxkSat $=<I$, sol, m, max $>$
$I=C N F-F o r m u l a s$ with at most k literals per clause
$\operatorname{sol}(\varphi)=$ set of assignments to the vars. of φ
$\mathrm{m}(\varphi, A)=$ the number of clauses which are satisfied by A
$R(\varphi, A)=\frac{\operatorname{opt}(\varphi)}{\mathrm{m}(\varphi, A)} \quad$ If we have an A with $R(\varphi, A) \leq \frac{3}{2}$ then
no A^{\prime} can satisfy more than $\frac{3}{2} \mathrm{~m}(\varphi, A)$ clauses.

Optimization Problems and Approximation Approximation Problem

```
Let }O=<I\mathrm{ , sol,m, type > be an optimization problem
and}r\mathrm{ a function N}->[1,\infty)
Then the approximation problem \(\langle O, r\rangle\) is to find for all instances \(i \in I\) an \(r(|i|)\)-approximate solution \(s \in \operatorname{sol}(i)\).
```

The question is which approximation problems $<O, r>$ are located in $F P$.

And how to prove that they are not (under some assumption such as $P \neq N P$)..

Optimization Problems and Approximation Performance Ratio

```
Let }O=<I\mathrm{ , sol, m, type > be an optimization problem.
```

 given \(i \in I\) and a \(s \in \operatorname{sol}(i)\) we define
 $$
R(i, s)=\max \left\{\frac{\operatorname{opt}(\mathrm{i})}{\mathrm{m}(\mathrm{i}, \mathrm{~s})}, \frac{\mathrm{m}(\mathrm{i}, \mathrm{~s})}{\operatorname{opt}(\mathrm{i})}\right\}
$$

as the performance ratio.
$s \in \operatorname{sol}(i)$ is a an r-approximate solution if $R(i, s) \leq r$.
$R(i, s)=1$ implies that s is optimal.
$R(i, s) \geq 1$ in general, the closer to 1 , the better.

Optimization Problems and Approximation The Class NPO

NPO is the class of optimization problems whose decision versions are in $N P$.

```
    OPTPROB =<I, sol,m, type >\in NPO iff
```

 \(\exists\) polynomial \(p: \forall i \in I, s \in \operatorname{sol}(\mathrm{i}):|s| \leq p(|i|)\)
 deciding \(s \in \operatorname{sol}(\mathrm{i})\) is in \(P\)
 computing \(\mathrm{m}(s, i)\) is in \(F P\)

Approximation Algorithm Example Problem: MaxSat

```
approxMaxSat(\varphi)
1. for }i=1\mathrm{ to }
2. val:=E (m(\varphi,A\cup{\mp@subsup{x}{i}{}=\operatorname{true}}))>\textrm{E}(\textrm{m}(\varphi,A\cup{\mp@subsup{x}{i}{}=\mathrm{ false }}));
3. A}:=\textrm{A}\cup{\mp@subsup{x}{i}{}=\textrm{val}};\varphi:=\varphi[\mp@subsup{x}{i}{}=\textrm{val}]
4. return A;
```

$E(\varphi,\{ \})=\sum_{C \in \varphi} 1-2^{-|C|} \geq \sum_{C \in \varphi} 1-2^{-1}=\frac{1}{2}|\varphi|$

Thus, this algorithm is a 2-approximate algortithm or better.

Approximation Algorithm Example Problem: VertexCover

```
approxVertexCover(V,E)
1. C := \varnothing;
2. while E # \varnothing do
3. pick a<u,v>\inE
4. C:=C}\cup{u,v}
5. remove {u,v} from V,E;
6.return C;
```

C is indeed a valid cover.
Every cover must cover all the edges picked in line 3.

Thus every cover must contain at least |C|/2 vertexes.

$$
R(G, C)=\frac{\mathrm{m}(G, C)}{\operatorname{opt}(G)} \leq 2
$$

Approximation Classes

APX

We have two approximation problems, which can be solved within a constant performance ratio within polynomial time.

So it's time to define a corresponding class: $A P X$.

```
Let \(O\) be an NPO problem.
```

$O \in A P X$ iff there exists an
r-approximation algorithm for O which run in polynomial time for some constant $r \geq 1$.

Approximation Classes Example Problem: TSP (I)

We will show that $T S P \in A P X \Leftrightarrow P=N P$.
We use another $N P$-complete problem to reduce from: HAMILTONIANCYCLE

HAMILTONIANCYCLE : Given a graph $G=\langle V, E\rangle$, is there a cycle, which visits any node exactly once? We construct a distance matrix M as follows (for $r \geq 1$):
$M(u, v)=\left\{\begin{array}{l}1:\langle u, v\rangle \in E \\ |r| V| |: \text { otherwise }\end{array}\right.$

Approximation Classes

Example Problem: TSP (III)

If G is a positive instance, then $\operatorname{opt}(M)=|\mathrm{V}|$.
Otherwise $\operatorname{opt}(M) \geq\lceil r|V|\rceil+|V|-1$.
Now assume that there is an r-approximate algorithm apporx for TSP and let $s=\operatorname{approx}(M)$.

If $G \in$ HAMILTONIANCYCLE, we find
$r \geq R(M, s)=\frac{\mathrm{m}(M, s)}{\operatorname{opt}(\mathrm{M})}=\frac{\mathrm{m}(M, s)}{|V|}$ and so $|V| r \geq \mathrm{m}(M, s)$.
But otherwise we have
$\mathrm{m}(M, s) \geq \mathrm{opt}(\mathrm{M}) \geq\lceil r|V|\rceil| | V \mid-1>\lceil r|V|\rceil$

Approximation Classes Example Problem: TSP (II)

We construct a distance matrix M as follows ($r \geq 1$):
$M(u, v)=\left\{\begin{array}{l}1:<u, v>\in E \\ |r| V| |: \text { otherwise }\end{array}\right.$
If G is a positive instance, then $\operatorname{opt}(M)=|\mathrm{V}|$.
Otherwise opt $(M) \geq\lceil r|V|\rceil+|V|-1$.
Now assume that there is an r-approximate algorithm for TSP.

Approximation Classes Example Problem: TSP (IV)

So we could prove that $T S P \notin A P X$ (assuming $P \neq N P$) by giving a reduction from an $N P$ - hard problem, which established a gap between positive and negative instances.

The gap was large enough to distinguish whether we reduced from a positive or a negative instance.

Wanted : A generic reduction from NP - hard problems,
to approximation problems which produces gaps.

Approximation Classes Relationships
$A P X \subseteq N P O$
$T S P \in A P X \Leftrightarrow P=N P$
$A P X \subset N P O \Leftrightarrow P \neq N P$

Approximation Schemes

The classes PTAS and FPTAS

```
O\inFPTAS if there is an approximation scheme A
such that A(i,r) runs in DTIME(poly(|i|,1/(r-1)))
for all i\inI and r>1.
```

$O \in P T A S$ if there is an approximation scheme A such that $A(i, r)$ runs in $\operatorname{DTIME}(\operatorname{poly}(i \mid))$ for all $i \in I$ and any fixed $r>1$.

Approximation Classes Approximation Schemes

An algorithm which can be parametrized with the performance ration to achieve is called approximation-scheme.

Let $O=<I$, sol, m, type $>$ be an optimization problem.

Then an algorithm A is an approximation scheme for O iff for all $i \in I, r>1$ and $s=A(i, r)$
$s \in \operatorname{sol}(I)$ and $R(i, s) \leq r$.

Approximation Schemes

 Example Problem: KNAPSACK$$
\begin{aligned}
& \text { KNAPSACK }=<I, \text { sol,m,max }> \\
& I=\{<S, w, W, v>\mid S=\{1, . ., n\}, w, v: S \rightarrow N, W \in N\} \\
& \operatorname{sol}(i)=\left\{T \subseteq S: \sum_{x \in T} w(x) \leq W\right\} \\
& \mathrm{m}(i, s)=\sum_{x \in T} v(x)
\end{aligned}
$$

Let $W(x, v)$ be the minimum weight attainable by selecting among the first x items such that that their total value is exactly v.

Example Problem: KNAPSACK
 An FPTAS (I)

This algorithm runs in $\operatorname{DTIME}(\operatorname{poly}(n, V))$ (pseudo - poly.)
Assume $\varepsilon>0$ fixed.
Let $l=\left\lfloor\log \max _{x \in S} v(x)\right\rfloor$.
Choose k with $\frac{n}{n^{k}}<\varepsilon$.
Set $L=l-k \log n$.
Define i^{\prime} with The rest, i.e., $L=l-k \log n$,
$v^{\prime}(x)=\left\lfloor v(x) / 2^{L}\right]^{L} \quad$ gets zeroized.

Example Problem: KNAPSACK
An FPTAS (II)
This algorithm runs in $\operatorname{DTIME}(\operatorname{poly}(n, V))$ (pseudo - poly.)
Assume $\varepsilon>0$ fixed.
Let $l=\left\lfloor\log \max _{x \in S} v(x)\right\rfloor$.
$\sum_{x \in T} v(x) \leq \sum_{x \in T} v^{\prime}(x)+|T| 2^{L}$
Choose k with $\frac{n}{n^{k}}<\varepsilon$.
$\operatorname{opt}(i) \leq \operatorname{opt}\left(i^{\prime}\right)+n 2^{L}$
Set $L=l-k \log n$.
Define i^{\prime} with

$$
\frac{\operatorname{opt}(i)}{\operatorname{opt}\left(i^{\prime}\right)} \leq 1+\frac{n 2^{L}}{\operatorname{opt}\left(i^{\prime}\right)}
$$

$v^{\prime}(x)=\left\lfloor v(x) / 2^{L} \mathfrak{l}^{L}\right.$

$$
\begin{aligned}
& \leq 1+\frac{n 2^{L}}{\max _{x \in S} v^{\prime}(x)} \\
& \leq 1+\frac{n 2^{L}}{2^{l}} \leq 1+\varepsilon
\end{aligned}
$$

Example Problem: KNAPSACK An FPTAS (IV)

This algorithm runs in $\operatorname{DTIME}(\operatorname{poly}(n, V))$ (pseudo - poly.)
Assume $\varepsilon>0$ fixed.
Let $l=\left\lfloor\log \max _{x \in S} v(x)\right\rfloor$.
Choose k with $\frac{n}{n^{k}}<\varepsilon$.
We can solve I^{\prime} in

Set $L=l-k \log n$. DTIME (poly $\left(n, V^{\prime} / 2^{L}\right)$)
= DTIME(poly(n,n2 $)$
Define I^{\prime} with
$=\operatorname{DTIME}(\operatorname{poly}(n, 1 / \varepsilon))$
$v^{\prime}(x)=\left\lfloor v(x) / 2^{L} \mathfrak{2}^{L}\right.$
Solving I^{\prime} optimally yields an $1+\varepsilon$ approximate solution for I within $\operatorname{DTIME}(\operatorname{poly}(I \mid, 1 / \varepsilon)) . K N A P S A C K \in F P T A S$.

Polynomially Bound Problems
 Permit no FPTAS (l)

Polynomially Bound Problems Permit no FPTAS (II)

$$
\text { Set } r(i)=1+\frac{1}{p(|i|)} \text {, where } p \text { is the poly. - bound. }
$$

An $r(i)$-approximate solution s for i is optimal since,
$\frac{p(|i|)+1}{p(|i|)}=r(i) \geq \frac{\operatorname{opt}(i)}{\mathrm{m}(i, s)}$ gives
$\mathrm{m}(i, s) \geq \operatorname{opt}(i) \frac{p(|i|)}{p(|i|)+1}=\operatorname{opt}(\mathrm{i})-\frac{\operatorname{opt}(\mathrm{i})}{p(|i|)+1}>\operatorname{opt}(i)-1$

If O would be in FPTAS then we can solve O optimally in DTIME $(\operatorname{poly}(|i|, 1 /(r(|i|)-1))=\operatorname{DTIME}(\operatorname{poly}(|i|)$.

Approximation Classes Relationships

```
FPTAS\subseteqPTAS\subseteqAPX\subseteqNPO
```

$$
T S P \in A P X \Leftrightarrow P=N P
$$

$$
\text { Max3Sat } \in F P T A S \Leftrightarrow P=N P
$$

Two questions : Are there problems in PTAS-FPTAS ? Are there problems in $A P X-P T A S ?$ (as usual, based on $P \neq N P$)

Approximation Classes Problems in PTAS-FPTAS

PLANAR INDEPENDENTSET is in NPO - PB and is NP - hard. PLANAR INDEPENDENTSET \in FPTAS $\Rightarrow P=N P$

Unproven : PLANAR INDEPENDENTSET \in PTAS.

Approximation Classes Relationships

$$
F P T A S \subseteq P T A S \subseteq A P X \subseteq N P O
$$

PLANAR INDEPSET \in FPTAS
$T S P \in A P X \Leftrightarrow P=N P$
$\Leftrightarrow P=N P$
Max3Sat \in FPTAS $\Leftrightarrow P=N P$

One question : Are there problems in $A P X-P T A S$?
(as usual, based on $P \neq N P$)

Hardness in Approximation

Wanted : A generic reduction from $N P$ - hard problems, to approximation problems which produces gaps.

Remember the reduction to TSP..

Relies on the so-called PCP-Theorem an alternative formulation of NP.

It allows to reduce $N P$ - complete languages to approximation problems.

Hardness in Approximation
PCP-Verification

Hardness in Approximation PCP-Theorem (l)

A language L is in $P C P(r(n), q(n))$

if there is a polynomial time $P C P(r(n), q(n))$-Verifier V
such that

$$
\begin{aligned}
& \forall x \in L \exists \Pi: \operatorname{Pr}_{\bar{R}}[V(x, \Pi, \bar{R})=\text { accept }]=1 \\
& \forall x \notin L \forall \Pi: \operatorname{Pr}_{\bar{R}}[V(x, \Pi, \bar{R})=\text { aceppt }] \leq 1 / 2
\end{aligned}
$$

with $|\bar{R}|=O(r(|x|))$, and V reading $O(q(n))$ bits non-adaptively from Π.
Easy : $N P \supseteq P C P(\log n, 1) \quad$ Hard $: N P \subseteq P C P(\log n, 1)$

Hardness in Approximation PCP-Theorem (I)

A language L is in $P C P(r(n), q(n))$

if there is a polynomial time $\operatorname{PCP}(r(n), q(n))$-Verifier V such that

$$
\begin{aligned}
& \forall x \in L \quad \exists \Pi: \operatorname{Pr}_{\bar{R}}[V(x, \Pi, \bar{R})=\text { accept }]=1 \\
& \forall x \notin L \forall \Pi: \operatorname{Pr}_{\bar{R}}[V(x, \Pi, \bar{R})=\text { aceppt }] \leq 1 / 2
\end{aligned}
$$

with $|\bar{R}|=O(r(|x|))$, and V reading $O(q(n))$ bits non-adaptively from I.

Hardness in Approximation PCP-Theorem (II)

How to use?
Reduce the verification process to an approximation problem such that the gap of the PCP-Verifier translates into a gap in the measure of the optimal solution(s).

PCP - Theorem : $N P=P C P(\log n, 1)$

Hardness in Approximation Example Problem: Max3Sat (I)

Observe that once the $O(q(n))$ bits have been read from the proof Π, the decision of V is only depending on them.

Thus we can define a set of Boolean Expressions $\varphi[x, \bar{R}](\bar{p})$ where
x is the input,
\bar{R} is the random string of length $O(\log n)$, \bar{p} are the bits read in Π,

$$
\varphi[x, \bar{R}](\bar{p})=1 \Leftrightarrow V(x, \Pi, \bar{R})=\text { accept. }
$$

Hardness in Approximation Example Problem: Max3Sat (II)

```
Each }\varphi[x,\overline{R}](\overline{p})\mathrm{ can be expressed by d clauses,
where d is constant (since |}
Let \varphi be the conjunction of the expressions
\varphi[x,\overline{R}](\overline{p})\mathrm{ for all }\overline{R}(|\overline{R}|=c\operatorname{log}n).
x\inL=>\exists\Pi: 㐮
\(\Rightarrow\) all \(\varphi[x, \bar{R}]\) can be satisified satisfied simultansously
\(\Rightarrow \varphi\) satisfiable.
```


Hardness in Approximation Example Problem: Max3Sat (III)

Each $\varphi[x, \bar{R}](\bar{p})$ can be expressed by d clauses, where d is constant (since $|\overline{\mathrm{p}}|$ is constant).

Let φ be the conjunction of the expressions $\varphi[x, \bar{R}](\bar{p})$ for all $\bar{R}(|\bar{R}|=c \log n)$.
$x \notin L \Rightarrow \forall \Pi: \operatorname{Pr}_{\bar{R}} \mid V(x, \Pi, \bar{R})=$ accept $\rfloor \leq 1 / 2$
\Rightarrow each assignment must leave $1 / 2$
of the expressions $\varphi[x, \bar{R}]$ unsatisified.
$\Rightarrow \frac{\operatorname{opt}(\varphi)}{|\varphi|} \leq f=\frac{1}{2}+\frac{1}{2} \frac{d-1}{d}<1$

Hardness in Approximation

Example Problem: Max3Sat (IV)

$$
\begin{aligned}
& x \in L \Rightarrow \frac{\operatorname{opt}(\varphi)}{|\varphi|}=1 \\
& x \notin L \Rightarrow \frac{\operatorname{opt}(\varphi)}{|\varphi|} \leq f=\frac{1}{2}+\frac{1}{2} \frac{d-1}{d}<1
\end{aligned}
$$

Let A be an $1<r<\frac{1}{f}$ approximate solution for φ.
$\frac{\mathrm{m}(\varphi, A)}{} \geq \frac{1}{r}>f \quad x \in L \Rightarrow \mathrm{~m}(\varphi, A)>f \operatorname{opt}(\varphi)=f|\varphi|$
$\operatorname{opt}(\varphi){ }_{r} \quad x \notin L \Rightarrow \mathrm{~m}(\varphi, A) \leq \operatorname{opt}(\varphi) \leq f|\varphi|$ (for all A)

$$
r \text {-approximating Max3Sat is NP - hard (constant } r>1 \text {). }
$$

Hardness in Approximation

Remark: Decoding of PCP-Proofs

$$
\begin{aligned}
& \forall x \in L \quad \exists \Pi: \operatorname{Pr}_{\bar{R}}[V(x, \Pi, \bar{R})=\text { accept }]=1 \\
& \forall x \notin L \forall \Pi: \operatorname{Pr}_{\bar{R}}[V(x, \Pi, \bar{R})=\text { aceppt }] \leq 1 / 2
\end{aligned}
$$

Given a proof Π with $\operatorname{Pr}_{\bar{R}}[V(x, \Pi, \bar{R})=$ accept $]>1 / 2$
a proof Π^{\prime} with $\operatorname{Pr}_{\bar{R}}\left[V\left(x, \Pi^{\prime}, \bar{R}\right)=\right.$ accept $]=1$ can be
reconstructed efficiently (inFP).
Π is basically encoded for error - correction --
thus it possible to find the corresponding
"usually encoded" proof efficiently.

Approximation Classes Relationships

```
FPTAS\subseteqPTAS\subseteqAPX\subseteqNPO
```

$F P T A S \subset P T A S \subset A P X \subset N P O \Leftrightarrow P \neq N P$

Approximation Classes More Classes

$$
\begin{aligned}
& \text { Let } O \text { be an } N P O \text { problem. } \\
& O \in F-A P X \text { iff there exists an } \\
& r \text {-approximation algorithm for } O \\
& \text { which run in polynomial time for } \\
& \text { some function } f \in F \text {. }
\end{aligned}
$$

