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Optimization Problems and 
Approximation

We are unable to solve NP-complete problems efficiently,
i.e., there is no known way to solve them in polynomial time.

Most of them are decision versions of optimization problems…

with a set of feasible solutions for each instance

with an associated quality measure

Why not looking for an approximate solution?

Is there a difference in complexity?

Optimization Problems and Approximation

Example Knapsack revisited
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Optimization Problems and Approximation

Example Problem: MaxkSat
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Optimization Problems and Approximation

Performance Ratio
Approximation algorithms deliver solutions of 
guaranteed quality – they are not heuristics.
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The Class NPO
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Approximation Problem
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Example Problem: MaxSat
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Approximation Algorithm 

Example Problem: VertexCover
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Approximation Classes
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Relies on the so-called PCP-Theorem –
an alternative formulation of NP.

problems. ionapproximat to
languages  reduce to allows It completeNP −

...TSP to reduction the Remember

Hardness in Approximation

PCP-Verification
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Hardness in Approximation

PCP-Theorem (I)
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PCP-Theorem (II)
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Example Problem: Max3Sat (IV)
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Hardness in Approximation

Remark: Decoding of PCP-Proofs
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