Optimization Problems and
Approximation

We are unable to solve NP-complete problems efficiently,
i.e., there is no known way to solve them in polynomial time.

Most of them are decision versions of optimization problems...

with a set of feasible solutions for each instance

with an associated quality measure

Why not looking for an approximate solution?

Is there a difference in complexity?

Optimization Problems and Approximation

Example Knapsack revisited

AllsetT c S Zw(i)sﬂ' are feasible solutions.

ieT
z v(i) is the quality of the solution 7 wrt. to the instance i.
ieT

KNAPSACK =< I,s0l,m, max >

= {< S,w,W,v>S=1{1.,n :, wyv:S—>N, WeN, VeN}

Optimization Problems and Approximation

Example Problem: MaxkSat

MaxkSat =< I,s0l,m, max >
1 = CNF — Formulas with at most £ literals per clause
sol(¢) = set of assignments to the vars. of ¢
m(e, A) = the number of clauses which are satisfied by 4

MaxSat has all CNF — Expressions as instances.

There is also a weighted version : Each clause has a weight - -
the measure is the sum of the weights of the satisfied clauses.

Optimization Problems and Approximation

Example Knapsack revisited

KNAPSACK =<1, [ >

AllsetT c S: Z w(i) < W are feasible solutions.
el

Zv(i) is the quality of the solution 7" wrt. to the instance i.
ieT

Optimization Problems and Approximation

Definition of Optimization
Problems

OPTPROB =< I,s0l,m, type >
I the instance set
sol(i) the set of feasible solutions for instance i
(sol(z) nonempty for i € I)
m(i,s) the measure of solution s wrt.instance i
(positive integer for i e I and s € sol(7))

opt(i) = type m(i, s)

sesol(i)

Example Problem: MaxkSat

NP-hardness

MaxkSat =< I,s0l,m,max >
I = CNF — Formulas with at most £ literals per clause
sol(¢) = set of assignments to the vars. of ¢
m(¢, A) =the number of clauses which are satisfied by 4

Max3Sat(D) is certainly NP —complete
(thus Max3Sat is NP —hard) :
3SAT is a special case

But also Max2Sat(D) is NP — complete....




Optimization Problems and Approximation

Performance Ratio

Approximation algorithms deliver solutions of
guaranteed quality — they are not heuristics.

But how to measure the quality of a solution?

Let O =< I,s0l,m,type > be an optimization problem.
givenie l andas esol(i) we define

oy _ . [opt(i) m(,s) 1
R(i,s) = maxl m(i,8)" opt() [
as the performance ratio.

s € sol(i) is aan r —approximate solution if R(i,s) < r.

Example Problem MaxkSat
Performance Ratio

MaxkSat =< I,s0l, m, max >
I = CNF — Formulas with at most £ literals per clause
sol(¢) = set of assignments to the vars. of ¢
m(¢, A) = the number of clauses which are satisfied by 4

R(p, A) = opt(¢)

If we have an 4 with R(p, 4) < 3 then
m(p, A) 2

. 8
no A'can satisfy more than > m(gp, A) clauses.

Optimization Problems and Approximation

Approximation Problem

Let O =< 1,s0l,m, type > be an optimization problem
and r a function N — [1, ).

Then the approximation problem < O, r > is to
find for allinstances i € I an (| i |) - approximate
solution s € sol(7).

The question is which approximation problems
<O,r>arelocatedin FP.

And how to prove that they are not (under some
assumption such as P # NP)..

Optimization Problems and Approximation

Performance Ratio

Let O =< I,s0l,m, type > be an optimization problem.
givenie [ andas esol(i) we define
[opt(i) m(i.s) |
[m(i.s) " opt(i) |
as the performance ratio.
s € sol(i) is aan r —approximate solution if R(i,s) < r.

R(i,s) = max

R(i,s) =1implies that s is optimal.

R(i,s) >1in general, the closer to 1, the better.

Optimization Problems and Approximation

The Class NPO

NPO s the class of optimization problems whose
decision versions are in NP.

OPTPROB =< [,s0l,m, type >e NPO iff
Jpolynomial p:Viel,sesol(i):|s|< p(li])
deciding s e sol(i) isin P

computing m(s, ) isin FP

Approximation Algorithm

Example Problem: MaxSat

approxMaxSat(¢)
fori=1ton
2. val:=E(m(p, 4 u{x, =true})) >E(m(p, 4 U{
A=Au{x, =val}; ¢:=¢[x, =vall
4.ret

E(p.)=21-2""2

Thus, this algorithm is a 2 - approximate algortithm or better.




Approximation Algorithm

Example Problem: VertexCover

approxVertexCover Cisindeed a valid cover.

1.C=7, Every cover must cover all
2. while E =@ do the edges picked inline 3.
picka<u,v>eE
C=Cu{uv}
remove {u,v} from 7,
6.returnC

Thus every cover must

opt(G)

Approximation Classes

Example Problem: TSP (1)

We will show that TSP € APX <> P = NP.

We use another NP —complete problem to
reduce from: HAMILTONIANCYCLE

HAMILTONL CLE: Givenagraph G =<V E >,
is there a cycle, which visits any node exactly once?

We construct a distance matrix M as follows (for » >1):
[l:<u,v>cE

M (u,v .
(w.v) [V []: otherwise

Approximation Classes

Example Problem: TSP (llI)

If G is a positive instance, then opt(M) =| V |.
Otherwise opt(M) > [V |+ |V |-1.

Now assume that there is an r — approximate
algorithm apporx for 7SP and let s = approx(M).

r>R(M,s) =

But otherwise we have
m(M,s) > opt(M) > [r |V [ |V |-1>[r |V ]

contain at least| C| /2 vertexes.

Approximation Classes

APX

We have two approximation problems, which can be solved
within a constant performance ratio
within polynomial time.

Soit's time to define a corresponding class: APX.

Let O be an NPO problem.
O e APX iff there exists an
r —approximation algorithm for O
which runin polynomial time for
some constant » >1.

Approximation Classes

Example Problem: TSP (ll)

We construct a distance matrix M as follows (» >1):
li<u,v>eE

M (u,v) =
1) \[ |7 []: otherwise

If G is a positive instance, then opt(M) =| V|.
Otherwise opt(M) > [V ||V |-1.

Now assume that there is an r — approximate
algorithm for 7SP.

Approximation Classes

Example Problem: TSP (1V)

So we could prove that TSP ¢ APX (assuming P # NP)
by giving a reduction from an NP — hard problem, which
established a gap between positive and negative instances.

The gap was large enough to distinguish whether
we reduced from a positive or a negative instance.

Wanted : A generic reduction from NP — hard problems,
to approximation problems which produces gaps.




Approximation Classes

Relationships

APX < NPO

TSP € APX < P = NP

APX < NPO < P # NP

Max3Sat and VertexCover arein APX.

Approximation Schemes

The classes PTAS and FPTAS

O € FPTAS if there is an approximation scheme 4
such that A(i,») runsin DTIME(poly(i],1/(r -1)))
forallie 7andr>1.

O € PTAS if there is an approximation scheme 4
such that A4(i, ) runs in DTIME (poly(i[))
for alli e I and any fixed r > 1.

Example Problem: KNAPSACK
A Pseudo-Polynomial Algorithm

Let 7 (x,v) be the minimum weight attainable by selectingamong
the first x items such that their total value is exactly v.
W(0,0)=0
w(0,v)=0 v>0
W (x+1,v) = min{ (x,v), [W(.\', v—v(x+1))+ w(x +1)]:
By building the table of the 7 (x,v) for 0 < x <nand
0<v<V =) v(x) wecansolve KNAPSACK.
=

This algorithm runs in DTIME (poly(n, 7)) (pseudo - poly.)

Approximation Classes

Approximation Schemes

An algorithm which can be parametrized with
the performance ration to achieve is called

approximation — scheme.

Let O =< I,so0l, m, type > be an optimization problem.

Then an algorithm A4 is an approximation scheme for O iff
foralliel, r>1 ands= A(i,r)
sesol@and R(i,s) <r.

Approximation Schemes

Example Problem: KNAPSACK

KNAPSACK =< I,s0l,m,max >

Let W (x,v) be the minimum weight attainable
by selecting among the first x items such that
that their total value is exactly v.

Example Problem: KNAPSACK
An FPTAS (1)

This algorithm runs in DTIME (poly(n,V)) (pseudo - poly.)
Assume ¢ >0 fixed.

Let/=|logmax,_s v(x) }

Choose k with L <e. We keep the most

L significant & log n bits.
Set L=1[1-klogn.

Define i with Therest,i.e., L =I-klogn,
V(x)= b,(\‘) /2t J21. gets zeroized.




Example Problem: KNAPSACK
An FPTAS ()

This algorithm runs in DTIME (poly(n, 7)) (pseudo -poly.)

Assume ¢ > 0 fixed. ) ()| T 2"
' (x)+

Let/=|logmax g v(x) } 2 VA

xeT

Choose k with '—I/ 3
n

opt(i) < opt(i") +n2"
Set L=1-klogn. g L

9 Opt(i) <14 n2 :
Define i' with opt(i") opt(:")

V() =|v) 12t bt <1+

Example Problem: KNAPSACK
An FPTAS (1V)

This algorithm runs in DTIME (poly(n, 7)) (pseudo - poly.)
Assume ¢ > 0 fixed.
Let/=|logmax, g v(x) }

We cansolve I'in
q n
Choose k with ”T <ég. DT]»"\'/E([)OW(IZ, y 2L ))

Set L=1—klogn. = DTIME (poly(n, n2*'*"))

Define /' with = DTIME (poly(n,1/ £))
v(x) =) 124 bt

ximate solution for /

€ FPTAS.

Polynomially Bound Problems

Permit no FPTAS (1)

If there is an NP — hard problem in NPO — PB
which admits an FPTAS, then P = NP.

LetObea maximation problem in NPO — PB.

Set r(i) =1+ ———, where p s the poly.-bound.

(| D’
Anr(i)— apprOX|mate solution s for 7 is optimal since,
p(iD+1_
p(il)

g p(i I) — ont(iy 0Pt e
m(i,s) > opt(i) ————— 2D+l =opt(i ]}(‘i|)+l>opt() 1

Example Problem: KNAPSACK
An FPTAS (lll)

This algorithm runs in DTIME (poly(n, 7)) (pseudo -poly.)
Assume ¢ > 0 fixed. opt(i)
Let/=|logmax,_s v(x) } opt(7) <l+e

Choose k witl '—IA <e

nt D V() < ()

Set L =1/—klogn. el vel

Define I" with opt(})  _ opt() _
V@) =12 B m(i, optsol(i")) ~ opt(i’)

Solving ' optimally yields an 1+ ¢ approximate solution for 7

Approximation Schemes
Polynomially Bound Problems

Let O =< I,s0l,m, type > be a problem in NPO.

If there is polynomial p such that
Viel,sesol@i): m(i,s)< p(i])

then O is polynomially bound, i.e.,
O e NPO-PB

If there is an NP — hard problem in NPO — PB
which admits an FPTAS, then P = NP.

Polynomially Bound Problems

Permit no FPTAS (ll)

Set r(i) =1+ 1 , where pis the poly.-bound.
r(i))
An (i) —approximate solution s for i is optimal since,
plih+1_ ()>opt<z)
r(il) m(i.s)
. . opt(i
m(i, s) > opt(i) il(‘l)lil—opt |)—p(|rj \§)+1

gives
> opt(i) -1

If O would be in FPTAS then we can solve O optimally
in DTIME (poly(|i|1/(r(|i])—1)) = DTIME(poly(i ).




Approximation Classes

Relationships

FPTAS c PTAS ¢ APX

TSP e APX < P

Max3Sat € FPTAS < P

Two questions : Are there problems in PTAS-FPTAS ?
Are there problems in APX — PTAS ?
(as usual, based on P # NP)

Approximation Classes

Relationships

FPTAS c PTAS < APX < NPO

Max3Sat € FPTAS < P = NP

One question : Are there problems in APX — PTAS ?
(asusual,based on P # NP)

Hardness in Approximation

PCP-Verification

Approximation Classes

Problems in PTAS-FPTAS

PLANAR INDEPENDENTSET isin NPO — PB andis NP — hard.

PLANAR INDEPENDENTSET € FPTAS = P = NP.

Unproven: PLANAR INDEPENDENTSET € PTAS.

Hardness in Approximation

Wanted : A generic reduction from NP — hard problems,
to approximation problems which produces gaps.

Remember the reduction to 7.

Relies on the so-called PCP-Theorem —
an alternative formulation of NP.

It allows to reduce NP —complete languages
to approximation problems.

Hardness in Approximation

PCP-Theorem (I)

Alanguage Lisin PCP(r(n),q(n))
if there is a polynomial time PCP(r(n), q(n)) - Verifier V
such that
VxelL AM: "(x,11,R) :accept]:l
Vxe L VI1:P x,T1, R) = aceppt] <1/2
with \72] =O0(r(| x|)), and ¥ reading O(g(n)) bits non - adaptively
from 71.

Easy: NP o PCP(logn,1) Hard: NP ¢ PCP(logn,1)




Hardness in Approximation

PCP-Theorem (1)

A language Lisin PCP(r(n),q(n))
if there is a polynomial time PCP(r(n), q(n)) - Verifier V
such that
VxeL 3:Pr, [V(.\—, I1,R) = accept] =1
Vx ¢ L VIT: Pr[V (x,I1, R) = aceppt] <1/2
with |R = O(r(| x|)), and V" reading O(q(n)) bits non - adaptively
from I1.

PCP-Theorem = PCP(logn,1)

Hardness in Approximation
Example Problem: Max3Sat (I)
Observe that once the O(g(n)) bits have

been read from the proof 77, the decision
of V is only depending on them.

Thus we can define a set of Boolean Expressions
olx, R](p) where
xis theinput,
Ris the random string of length O(log n),
pare the bitsreadin I,
o[x, R1(p) =1< V(x,I1,R) = accept.

Hardness in Approximation

Example Problem: Max3Sat (lll)

Each ¢[x, R](p) can be expressed by d clauses,
where d is constant (since | p|is constant).

Let ¢ be the conjunction of the expressions
olx,Rl(p) for all R (| R |= clog n).

xe¢ L= VII: Prﬁll’(.\-, I1,R) = acceth£ 1/2
= each assignment must leave 1/2

of the expressions ¢[x, R] unsatisified.
opt(p) < ._1+1d—l

<f= <1
lpl ° 2 2 d

=

Hardness in Approximation

PCP-Theorem (Il)
CP(logn,1)

How to use?

Reduce the verification process to

an approximation problem such that
the gap of the PCP-Verifier translates
into a gap in the measure of the optimal
solution(s).

Hardness in Approximation

Example Problem: Max3Sat (II)

Each (p[.\‘,E](;) can be expressed by d clauses,

where d is constant (since | p |is constant).

Let ¢ be the conjunction of the expressions
olx, R](p) for all R (| R |= clog n).

xe L= 3IT:Pr. |V (x, 1, R) = accept|=1
= all p[x, R] can be satisified satisfied
simultansously
= ¢ satisfiable.

Hardness in Approximation

Example Problem: Max3Sat (IV)

opt(p) _,

[l

opt( )< ':1+1d_1<1
lol ~7 2 2 d

el=>
x¢lL=

Let 4beanl<r< i approximate solution for ¢.
mg.4) 1, xel=mlp.4)>foptp)=1ll
opt(p) 1 xeL=m(p,A) <opt@) < f|o| (forall 4)

r —approximating Y — hard (constant r >1).




Hardness in Approximation

Remark: Decoding of PCP-Proofs

VxeL 3M:Pr|V(x,ILR) = acceth:l
Vx & L VIL: Pr[V (x,IL, R) = aceppt] <1/2

Given a proof IT with Pr_|V'(x,I1, R) = accept]> 1/2
a proof IT" with Prﬁ[ (x,IT",R) = accept]:lcan be
reconstructed efficiently (in FP).

[Tis basically encoded for error - correction - -
thus it possible to find the corresponding
"usually encoded" proof efficiently.

Approximation Classes

Relationships

FPTAS c PTAS ¢ APX € NPO

FPTAS c PTAS €« APX c NPO < P#NP

Approximation Classes

Relationships

FPTAS < PTAS ¢ APX < NPO

PLANAR INDEPSET € FPTAS TSP € APX & P

< P=NP Max3Sat € PTAS <> P = NP

Approximation Classes

More Classes

Let O be an NPO problem.
O € F — APX iff there exists an
r —approximation algorithm for O
which runin polynomial time for
some functionf € F.

PX c log— APX < poly— APX < exp— APX < NPO




