WS 2007/2008 Übungsblatt 12 Mittwoch, 23. Januar 2008

Übung zur Vorlesung Automaten, Formale Sprachen und Berechenbarkeit

Lösungshinweise

Aufgabe 1 Gleichungssysteme: Folgerungen aus den Axiomen

1. $\emptyset \cdot \alpha = \emptyset$:

2. $\lambda \cdot \alpha = \alpha$:

(17)

(1)
$$\alpha = \alpha$$
 Axiom 0'
(2) $\alpha = \alpha + \emptyset$ Axiom 0"
(3) $\alpha = \alpha + \emptyset \cdot \alpha$ Teil 1.
(4) $\alpha = \emptyset \cdot \alpha + \alpha$ Axiom 3
(5) $\alpha = \emptyset^* \cdot \alpha$ Gleichungsauflösung
(6) $\alpha = \lambda \cdot \alpha$ Axiom 0

3. (a+b)* = a*(a+b)*

(1)	$(a+b)^*$	=	$(a+b)(a+b)^* + \lambda$	Axiom 8
(2)	a + a	=	a	Axiom $0'''$
(3)	$((a+a)+b)(a+b)^*$	=	$(\underline{a}+b)(a+b)^* + \lambda$	Gl. 2
(4)	$\overline{(\underline{a}+b)}(a+b)^* + \lambda$	=	$((a+a)+b)(a+b)^* + \lambda$	Gl. 3
(5)	(a+a)+b	=	a + (a + b)	Axiom 1
(6)	$((a+a)+b)(a+b)^*$	=	$(a + (a+b))(a+b)^* + \lambda$	Gl. 4,5
(7)	$(\overline{a+(a+b)})(a+b)^*$	=	$a\overline{(a+b)^* + (a+b)(a+b)^*}$	Axiom 5
(8)	$(a + (a+b))(a+b)^* + \lambda$	=	$(a(a+b)^* + (a+b)(a+b)^*) + \lambda$	Axiom $0'''$
(9)	$(a+b)^*$	=	$((a+a)+b)(a+b)^* + \lambda$	Gl. $1 = 4$
(10)	$(a+b)^*$	=	$(a + (a+b))(a+b)^* + \lambda$	Gl. 9,6
(11)	$(a+b)^*$	=	$(a(a+b)^* + (a+b)(a+b)^*) + \lambda$	Gl. 10,8
(12)	$(a(a+b)^* + (a+b)(a+b)^*) + \lambda$	=	$a(a + b)^* + ((a + b)(a + b)^* + \lambda)$	Axiom 1
(13)	$(a+b)^*$	=	$a(a+b)^* + ((a+b)(a+b)^* + \lambda)$	Gl. $11 = 12$
(14)	$(a+b)^*$	=	$a^*((a+b)(a+b)^* + \lambda)$	Gleichungsaufl.
(15)	$a^*(a+b)^*$	=	$a^*((a+b)(a+b)^* + \lambda)$	Gl. 1
(16)	$a^*((a+b)(a+\overline{b})^*+\lambda)$	=	$a^*\overline{(a+b)^*}$	Gl. 15

Gl. 14 = 16

 $(a+b)^* = a^*(a+b)^*$

(a) Das Gleichungssystem für den endlichen Automaten lautet:

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} a & b \\ b & a \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} + \begin{pmatrix} \lambda \\ 0 \end{pmatrix}.$$

Damit ist
$$M = \begin{pmatrix} a & b \\ b & a \end{pmatrix}$$
 und $\vec{\delta} = \begin{pmatrix} \lambda \\ \emptyset \end{pmatrix}$.

(b) Wie man sich leicht klar machen kann, muß der Eintrag an der Stelle (i,j) in der Matrix M^* gerade jener regulären Menge von Wörtern entsprechen um vom Zustand i in den Zustand j zu gelangen. Damit sieht man sofort, daß der Eintrag links oben $\alpha = (a + ba^*b)^*$ lauten muß. Der Eintrag rechts oben ist dann αba^* (man kann mehrmals von Zustand 1 nach 1 gehen und dann durch lesen von ba^* nach Zustand 2 gelangen. Entsprechen geht für die restlichen Einträge vor. Damit erhalten wir

$$M^* = \begin{pmatrix} \alpha & \alpha b a^* \\ \alpha b a^* & \alpha \end{pmatrix}.$$

Als Lösung ergibt sich dann

$$L = M^* \vec{\delta} = \begin{pmatrix} \alpha & \alpha b a^* \\ \alpha b a^* & \alpha \end{pmatrix} \begin{pmatrix} \lambda \\ \emptyset \end{pmatrix} = \begin{pmatrix} \alpha \\ \alpha b a^* \end{pmatrix}.$$

Der Automat akzpetiert daher die Sprache $\alpha = (a + ba^*b)^*$.

(c) Wir überprüfen ob die Lösung korrekt ist. Zu diesem Zweck setzen wir in die Rekursionsgleichung ein. Damit erhalten wir

$$\begin{pmatrix} a & b \\ b & a \end{pmatrix} \begin{pmatrix} \alpha \\ \alpha b a^* \end{pmatrix} + \begin{pmatrix} \lambda \\ \emptyset \end{pmatrix} = \begin{pmatrix} a\alpha + b\alpha b a^* + \lambda \\ b\alpha + a\alpha b a^* \end{pmatrix}.$$

Es bleibt zu zeigen, dass

$$\alpha = a\alpha + b\alpha ba^* + \lambda$$
$$\alpha ba^* = b\alpha + a\alpha ba^*.$$

Wir zeigen nur wie man die erste Gleichung beweist, da die zweite Gleichung mit ähnlichen Argumenten beweisen werden kann. Für die erste Gleichung argumentieren wie wie folgt: Offensichtlich gilt (i) $a\alpha \subseteq \alpha$ und (ii) $\lambda \subseteq \alpha$. (iii) Sei nun $u \in b\alpha ba^*$. damit lässt sich u in Teilwörter $u_0, u_1, \ldots, u_n, u_{n+1}$ zerlegen mit $u = u_0 u_1 \ldots u_n u_{n+1}$ und $u_0 = b, u_i \in a^*ba^*b$ mit $1 \le i \le n$, und $u_{n+1} \in a^*ba^*$. Damit gilt:

$$u = b \cdot a^{i_{11}} b a^{i_{12}} b \cdots a^{i_{n1}} b a^{i_{n2}} b \cdot a^{i_{(n+1)1}} b a^{i_{(n+1)2}}.$$

Damit folgt $b\alpha ba^* \subseteq \alpha$. Die Rückrichtung d.h. $\alpha \subseteq a\alpha + b\alpha ba^* + \alpha$ folgt mit ähnlichen Mitteln.

Daher ist $\begin{pmatrix} \alpha \\ \alpha b a^* \end{pmatrix}$ die gesuchte Lösung mit $\alpha = (a + b a^* b)^*$.

(a) Das Transitionsmonoid enthält die Abbildungen $\lambda_A,\ a_A=a_A^2,\ b_A=ab_A,$ und $ba_A=0.$ Als Verknüpfungstafel erhält man:

$$\begin{array}{c|ccccc} \lambda_A & a_A & b_A & ba_A \\ \hline a_A & a_A & b_A & ba_A \\ b_A & ba_A & ba_A & ba_A \\ ba_A & ba_A & ba_A & ba_A \end{array}$$

(b) Folgender Myhill-Graph akzeptiert L(A):

