WS 2007/2008 Übungsblatt 11 Mittwoch, 16. Januar 2008

Übung zur Vorlesung Automaten, Formale Sprachen und Berechenbarkeit

Lösungshinweise

Aufgabe 1 Reguläre Ausdrücke

Der Zustand 4 kann mit keiner Regel eliminiert werden, da kein Endzustand erreichbar ist. Damit kann er aber auch ignoriert werden. Die Anwendung der Regeln in der Reihenfolge I-S-E-K-E-S-K-E-E führt zum regulären Ausdruck $(a^*a^3 + a^*b)(a^3 + ab)^*$. Mit der Reihenfolge I-E-E-S-K-S-K-E-E-K erhält man den Ausdruck $a^*a^3(a^3+ab)^*+a^*b(a^3+ab)^*$.

Aufgabe 2 Transitionsmonoid

Das Transitionsmonoid enthält die Abbildungen a_A , b_A , ab_A , ba_A , bb_A , aba_A , abb_A ,

Aufgabe 3 Erkennbarkeit

(a) Für ein Wort $w = a_1 \dots a_n$ mit $n \ge 1$ und $a_i \in \{0, 1\}$ gilt:

$$h(w) = h(a_1 \dots a_n) = h(a_1) \circ h(a_2) \circ \dots \circ h(a_n) = h(a_n);$$

ferner gilt $h(\lambda) = e$. Also ist $h(L) = \{a\}$. Es gilt $w \in h^{-1}(a)$ genau dann, wenn $h(w) = h(a_n) = a$ und dies gilt genau dann wenn $a_n = 0$. Somit gilt $L = h^{-1}(h(L))$.

(b) Es gilt uR_Lv falls $u=v=\lambda$ oder $u,v\in\{0,1\}^*0$ oder $u,v\in\{0,1\}^*1$. Daher gibt es drei Äquivalenzklassen, die sich beim Verknüpfen wie e,a und b verhalten. Damit ist M isomorph zu $\{0,1\}^*/R_L$.

Aufgabe 4 Syntaktisches Monoid

Angenommen für ein Σ und ein $L \subseteq \Sigma^*$ ist das syntaktische Monoid von L isomorph zu M, d.h. R_L hat die Äquivalenzklassen $[\lambda], [u_1], [u_2]$ und $[u_3]$ mit $[u_iu_j] = [u_j]$ für $1 \le i, j \le 3$. Da $u_1R_Lu_2$ nicht gilt, gibt es $w, w' \in \Sigma^*$ mit folgender Eigenschaft: Entweder $wu_1w' \in L$ oder $wu_2w' \in L$. Dies kann man einfach herleiten, indem man $\neg (uR_Lv)$ bestimmt.

Wäre $w' \notin [\lambda]$, dann ist $wu_1w'R_Lw'R_Lwu_2w'$. Aus den Eigenschaften von R_L folgt daher $wu_1w' \in L \iff wu_2w' \in L$, was ein Widerspruch zu oben ist. Also ist $w' \in [\lambda]$. Somit ist $wu_1w'R_Lu_1$ und $wu_2w'R_Lu_2$. Demnach gilt ohne Einschränkung der Allgemeinheit $u_1 \in L$ und $u_2 \notin L$.

Analog ergibt sich $u_3 \in L$, da $u_2 \notin L$, aber auch $u_3 \notin L$, da $u_1 \in L$. Daher kann M nicht das syntaktische Monoid einer Sprache L sein.