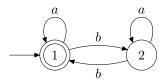
Übung zur Vorlesung Automaten, Formale Sprachen und Berechenbarkeit


Aufgabe 1 Gleichungssysteme: Folgerungen aus den Axiomen

Zeigen Sie mit Hilfe der aus der Vorlesung bekannten Axiome, dass die folgenden Gleichungen korrekt sind.

- 1. $\emptyset \cdot \alpha = \emptyset$
- 2. $\lambda \cdot \alpha = \alpha$
- 3. (a+b)* = a*(a+b)*

Aufgabe 2 Gleichungssysteme und endliche Automaten

Betrachten Sie folgenden deterministischen endlichen Automaten:

- (a) Bestimmen Sie das Gleichungssystem zu obigem Automaten und schreiben Sie es in der Form $\vec{y} = M \cdot \vec{y} + \vec{\delta}$.
- (b) Bestimmen Sie die Lösung $\vec{L}=M^*\cdot\vec{\delta}$. Überlegen Sie sich hierzu welche Einträge die Matrix M^* haben muss.
- (c) Überprüfen Sie durch Einsetzen in die Rekursionsgleichung ob die von Ihnen gefunde Lösung richtig ist.

Aufgabe 3 Transitionsmonoid

Gegeben sei der deterministische endliche Automat $A = (Q, \Sigma, \delta, 1, F)$ mit $Q = \{1, 2, 3\}$, $\Sigma = \{a, b\}$, $F = \{2\}$, und die Überführungsfunktion δ entnehmen Sie bitte Abbildung 1.

- (a) Bestimmen Sie in systematischer Weise das Transitionsmonoid T(A) des endlichen Automaten A und geben Sie die Verknüpfungstafel für T(A) vollständig an.
- (b) Zeigen Sie, dass die Sprache L(A) lokal ist indem Sie den Myhill-Graphen angeben.

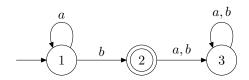


Abbildung 1: Endlicher Automat A.