PSPACE Complete Problems

QSAT

QSAT = Set of Quantified CNF Expressions which evaluate to true

$$\exists x_1 \forall x_2 \exists Q_n x_n \varphi(x_1, x_2,, x_n) \Leftrightarrow$$
true?

Is it true, that we can chose a truth - value for x_1 such that for all truth - values for x_2 , we can choose a

such that $\varphi(x_1, x_2, x_n)$ evaluates to true?

QSAT is PSPACE-complete **Membership (I)**

 $\exists x_1 \forall x_2 \exists Q_n x_n \varphi(x_1, x_2,, x_n) \Leftrightarrow$ true?

The idea is to implicitly traverse the tree of all possible truth assignments to $x_1, x_2...x_n$.

However, this tree has linear depth and exponential size. Therefore, we can only store our position in the tree -- similar to the idea of Savich's Theorem.

QSAT is PSPACE-complete Membership (II)

 $\exists x_1 \forall x_2 \exists Q_n x_n \varphi(x_1, x_2,, x_n) \Leftrightarrow \overline{\mathsf{true?}}$

eval $(x_1, x_2,...x_m, Q_{m+1}x_{m+1},....Q_nx_n\varphi)$

1. if $Q_{m+1} = \exists$ then

2. return eval($x_1, x_2, ..., x_m$, true, $Q_{m+2}x_{m+2}, ..., Q_nx_n\varphi$)

3. or eval($x_1, x_2,...x_m$, false, $Q_{m+2}x_{m+2},....Q_nx_n\varphi$);

4. else

5. return eval($x_1, x_2, ... x_m$, true, $Q_{m+2} x_{m+2}, ... Q_n x_n \varphi$);

and eval($(x_1, x_2, ..., x_m)$, false, $(Q_{m+2}, x_{m+2}, ..., Q_n, x_n, \varphi)$;

7. endif

QSAT is PSPACE-complete Hardness (I)

We use the Reachability Method:

 $< G_x^M, s, t >$ is a *REACH* instance with $C_M^{\log n + f(n)}$ nodes. $< G_x^M, s, t > \in REACH$ iff M(x) = 1

 $f(n) = n^k$ give us:

 $< G_x^M, s, t >$ is a *REACH* instance with $C_M^{n^k}$ nodes. $< G_x^M, s, t >$ \in *REACH* iff M(x) = 1

QSAT is PSPACE-complete Hardness (II)

 $< G_x^M, s, t >$ is a *REACH* instance with $C_M^{n^k}$ nodes. $< G_x^M, s, t >$ \in *REACH* iff M(x) = 1

 $PATH[i](U,V) \Leftrightarrow \text{there is a path in } G_v^M \text{ from } u \text{ to } v \text{ of length } \leq 2^i$

 $PATH[0](U,V) \Leftrightarrow (U=V) \lor (< U,V > \in G_x^M)$

 $PATH[i+1](U,V) \Leftrightarrow \exists Z(PATH[i](U,Z) \land PATH[i](Z,V))$

 $PATH[n^k](S,T) \Leftrightarrow G_x^M \in REACH$

QSAT is PSPACE-complete Hardness (III)

 $PATH[0](U,V) \Leftrightarrow (U=V) \lor (< U,V> \in G_x^M)$

We can express *PATH*[0] as circuit of polynomial size (we will get rid of the circuit later)

 $PATH[i+1](U,V) \Leftrightarrow \exists Z(PATH[i](U,Z) \land PATH[i](Z,V))$

PATH[i+1](U,V) would become exponentially large -- we have to reuse PATH[i]...

QSAT is PSPACE-complete Hardness (III)

 $PATH[0](U,V) \Leftrightarrow (U=V) \lor (< U,V > \in G_x^M)$

We can express *PATH*[0] as circuit of polynomial size (we will get rid of the circuit later)

 $PATH[i+1](U,V) \Leftrightarrow \exists Z(PATH[i](U,Z) \land PATH[i](Z,V))$

 $\begin{aligned} PATH[i+1](U,V) &\Leftrightarrow \\ \exists Z \forall X \forall Y [((X=U \land Y=Z) \\ &\lor (X=Z \land Y=V)) \Rightarrow PATH[i](X,Y)] \end{aligned}$

QSAT is PSPACE-complete Hardness (IV)

 $PATH[i+1](U,V) \Leftrightarrow$

 $\exists Z \forall X \forall Y [((X = U \land Y = Z))]$

 $\vee (X = Z \wedge Y = V)) \Rightarrow PATH[i](X,Y)]$

We can bring the quantifiers to the front (used only locally)

 $PATH[n^k](U,V) \Leftrightarrow QX_1QX_2...QX_m C(U,V,X_1,X_2,...X_m)$

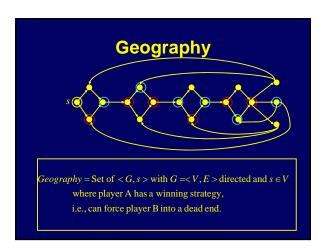
We have to represent the above expression as a polynomially sized quantified CNF - expression.

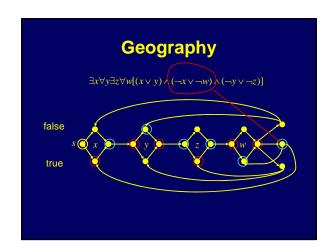
 $PATH[n^k](U,V) \Leftrightarrow QX_1QX_2...QX_m \exists H \ \varphi(U,V,X_1,X_2,...X_m,H)$

QSAT is PSPACE-complete Hardness (V)

 $PATH[n^k](U,V)$ is expressible as polynomially sized quantified CNF-expression in prenex form.

Thus, QSAT is PSPACE - hard, using $PATH[n^k](S,T)$ as result of the reduction.





Proving Hardness & Completeness Summary		
REACH	NL-complete	Reachability Method
CIREVAL	P-complete "Inherently Sequent	Time-Table Method
CIRSAT	NP-complete "Guess and Check	Time-Table Method Optimization"
QSAT	PSPACE-complete "Games – Optimal S	Reachability Method Strategies"