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Resource Bounds

Model

Resource-Bound

AlgorithmProblem

Resource-Bound

Resource Bounds
consist of 

a bounded resource

the bound itself in terms of a function
which bounds the resource 

depending on the problem size

e.g. time or space of a Turing Machine

e.g. f(n)=n

Resource Bounds

Fundamental Resources

DTIME(f)

DSPACE(f)

a DTM decides L within f(n) steps

a DTM decides L using f(n) cells

NTIME(f)

NSPACE(f)

a NTM decides L within f(n) steps

a NTM decides L using f(n) cells

(formulated as classes)

Resource Bounds

Constants do not matter

Deterministic or Nondeterministic,
it does not matter

0)()( >+= εε  ,nfTIMEfTIME

0)()( >= εε  ,fSPACEfSPACE

Constants do not matter

Linear Speedup (Proof I)
0)()( >+= εε  ,nfTIMEfTIME

tapes  uses  whichTM a be  Let tsKM >Σ=< ,,, δ

k

tsKM

Σ=Σ>

+>Σ=<

 set 6,k choose and      

tapes  uses  whichTM a be let Then 1,,, δ

input the compresses    
and tape additional its to input the copies M

Constants do not matter

Linear Speedup (Proof II)

tape input as tape     
additional the usingby   simulates then MM

right once and left times two right, the to moves M

steps   withinread have  would symbols all knows kMM

steps) (2 tionrepresenta    
 compressed the on  of steps  next the simulates MkM

MkM  of steps  simulate to steps 6 requires •
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Constants do not matter

Linear Compression

Same simulation as for linear speedup

0)()( >= εε  ,fSPACEfSPACE

MfkM  simulate to cells ( requires 2)/1 + •

Resource Bounds

Proper Complexity Function

The functions used as bounds have
to satisfy some conditions to avoid

anomalies.

These functions are called
"Proper Complexity Functions"

Proper Complexity Function

Definition

)()1( nfnf ≥+

))((
))(()||

1 )(

nfDSPACE
nfnDTIMEnxx

M nf

   
 and   withinruns and (    

 input on  ouputs  which DTM a is there
+=

 with function a be  Let NNf →

function complexity proper a is  then f

Proper Complexity Function

Examples

cnf =)(
)log()( nnf =

nnf =)(

proper )( and )(
)(

)()(
)()(

)(

ngnf
nf

ngnf
ngnf

ng ⎪
⎭

⎪
⎬

⎫+

!)( nnf =
nnf =)(

Important proper complexity functions

Proper Complexity Functions

The Gap Theorem
One of the above mentioned anomalies:

Original prove in terms of Blum-Complexity,
thus the same holds for DSPACE. 

)).((())((:
).()1(

nfgDTIMEnfDTIMENNf
ngng

NNg

=→
>+

→

  with
function recursive a is there Then 

 with function recursive a be  Let

Fundamental Complexity Classes

Resource-Bound

Class

Model AlgorithmProblem
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Fundamental Complexity Classes

Definitions
L = )(log nDSPACE
NL = )(log nNSPACE

P = U
∞

=1
)(

c
cnDTIME

NP = U
∞

=1
)(

c
cnNTIME

PSPACE = U
∞

=1
)(

c
cnDSPACE

NPSPACE = U
∞

=1
)(

c
cnNSPACE

EXP = U
∞

=1
)2(

c
nc

DTIME

NEXP = U
∞

=1
)2(

c
nc

NTIME

Example: Reachability

In which class is Reachability?

s t
Is there a path from
s to t?

s t
yes

>=< fI,tyReachabili
)}(,|,,{ GVtstsGI ∈><=

⎩
⎨
⎧ ∃

=><
otherwise

tsGpath
tsGf

:0
),,(:1

),,(

Example: Reachability

In which class is Reachability?

Model

Resource-Bound

Class

Problem
∈

Algorithm
∃

Example: Reachability

In which class is Reachability?

What is the complexity of Dijkstra? 
PTYREACHABILI ∈

What about NTMs?

NLTYREACHABILI ∈

Example: Reachability

Reachability in NL (Proof)
given.   with >=<>=< EVGtsGI ,,,

2 goto 6.
 from chose  5.

 4.
false; return )if( 3.
true; return if( 2.

  1.

},|{
;1:

||
)

;:;0:

EvcurrentVvcurrent
stepssteps

Vsteps
tcurrent

scurrentsteps

>∈<∈
+=

>
=

==

||||,, VVcurrentsteps ≤ integers are ,  
))(log())log(3( nNSPACEnNSPACETYREACHABILI =∈ Thus

Relating Complexity Classes

Which subset-relations hold between these 
Complexity Classes?

.,,,,,,, NEXPEXPNPSPACEPSPACENPPNLL  and  defined We
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Relating Complexity Classes

Relationships by Definition

NLL ⊆

NPP ⊆

NSPACEPSPACE ⊆

NEXPEXP ⊆

PSPACEL ⊆

NPSPACENL ⊆

EXPP ⊆

NEXPNP ⊆

Determinism
vs.

Nondeterminism 

Exponentially
Higher Bound

Relating Complexity Classes

Hierarchy Theorems

nnf
nfDTIMEnfDTIME

≥
+⊂

)(
))12(())(( 2

))(log)12(())(( nfnfDSPACEnfDSPACE +⊂

The same holds for nondeterministic computation

(the bound can be lowered significantly)

proper f

Hierarchy Theorems

Time Hierarchy: Proof (I)
{ }|))(|(1)(|, xfDTIMExMxMBDTIME

f   within Let =><=

{ }DTIME
f

DTIME
f BMMMD >∉<= ,| Set

))(( nfDTIMEN  in Machinearbitrary  an be  Let
DTIME
fBNNNN >∈<⇔= ,    1)(

DTIME
fDNNN ∉⇔=     1)(

))(( nfDTIMEDDTIME
f ∉

))]([( nfsDTIMEBDTIME
f ∈ (Bounded Simulation)

))12]([( +∈ nfsDTIMEDDTIME
f

)(    1)( NLNNN ∈⇔=
DTIME
fDNL ≠

⎭
⎬
⎫

)(

Hierarchy Theorems

Time Hierarchy: Proof (II)
{ }|))(|(1)(|, xfDTIMExMxMBDTIME

f   within Let =><=

))]([( nfsDTIMEBDTIME
f ∈ (Bounded Simulation)

))(( nfDTIMEDDTIME
f ∉ ))12]([( +∈ nfsDTIMEDDTIME

f

nnfnfnfs
fnfs

≥= )()()]([
)]([

3  for , E.g.,
. in polynomial aby  bounded is  that us to important

 is It results. simulation bounded several are There

))12]([())(( +⊂ nfsDTIMEnfDTIME

))12(())(( 3 +⊂ nfDTIMEnfDTIME

Hierarchy Theorems

Reusing the Proof

The last proof was generic – every bounded simulation
can be substituted. 

))(( nfRESDRES
f ∉ ))12]([( +∈ nfsRESDRES

f

))(log)(( nfnfDSPACEBDSPACE
f ∈

))(log)12(())(( nfnfDSPACEnfDSPACE +⊂

Hierarchy Theorems

Exponentially Higher Bounds

nnf
nfDTIMEnfDTIME

≥
+⊂

)(
))12(())(( 2

proper f

)2())2(()2())((
2312 nnn DTIMEDTIMEDTIMEnpDTIME ⊆⊂⊆ +

EXPP ⊂

We do the DTIME-case:
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Relating Complexity Classes

Relationships

NLL ⊆

NPP ⊆

NSPACEPSPACE ⊆

NEXPEXP ⊆

PSPACEL ⊆

NPSPACENL ⊆

EXPP ⊆

NEXPNP ⊆

Determinism
vs.

Nondeterminism 

Exponentially
Higher Bound

PSPACEL ⊂

NPSPACENL ⊂

EXPP ⊂

NEXPNP ⊂

Relating Complexity Classes

Further Relationships

))(())(( nfDSPACEnfNTIME ⊆

)())(( )(log nfncDTIMEnfNSPACE +⊆

nnf
nfDSPACEnfNSPACE

log)(
))(())(( 2

≥
⊆

proper f

Relating Complexity Classes

NTIME vs. DSPACE (Proof I)

))(())(( nfDSPACEnfNTIME ⊆

).(nfM  time in running NTM an be  Let

decision.nistic nondetermi single a make can  step, each In M

step. a in onscontinuati  of out choseonly  can  However, McM

).(nfcM M space taking choices, possible all enumerates  Thus,

choice. nondet. a taking is  er    whenev
table-lookup a as by  used then is string This

M
M

Relating Complexity Classes

NTIME vs. DSPACE (Proof II)

rejects.  Otherwise,

too. accepts,  s,simulation these of one in aceepts  If

 simulates  string,-choice enumerated each For

M

MM

MM .

. i.e. space,  requires ))(()()( nfDSPACEMnfnfcM M ∈+ •

).(nfcM M space taking choices, possible all enumerates  Thus,

choice. nondet. a taking is  er    whenev
table-lookup a as by  used then is string This

M
M

Relating Complexity Classes

NTIME vs. DSPACE

))(())(( nfDSPACEnfNTIME ⊆

PSPACENP ⊆

Relating Complexity Classes

NSPACE vs. DTIME (Proof I)

)())(( )(log nfncDTIMEnfNSPACE +⊆

).(nfM  space in running NTM an be  Let
:parts following the has  of ionconfiguratA M

MKk M  of  state the ∈
Mni  of  position cursor the 11 +≤≤

)(
1

nf
il sMss Σ∈><  : of tapes the of,..., contents the

configs. different  are there Thus, )(||)1(|| nlf
M nK Σ+

configs.  most at find  we Using )(log nfn
MM CC +
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Relating Complexity Classes

NSPACE vs. DTIME (Proof II)
configs.  most at find  we Using )(log nfn

MM CC +

.
,

}{,

 xinput on
 to  from transition direct a is there iff  and

 of configs.  with define Now we
vuEvu

MVEVGM
x

>∈<
=>=<

.tion)(normaliza  of config accepting  thebe  to      
and  of config initial  thebe  to Define

MVt
MVs

∈
∈

1)(,,

,, )(log

=>∈<

>< +

xMREACHtsG

CREACHtsG
M
x

nfn
M

M
x

 iff 
 nodes.   withinstance  a is 

Relating Complexity Classes

NSPACE vs. DTIME (Proof III)

1)(,,

,, )(log

=>∈<

>< +

xMREACHtsG

CREACHtsG
M
x

nfn
M

M
x

 iff 
 nodes.   withinstance  a is 

 . constant some for  in
 decide can  weThus 

k))((CDTIME

REACHt,sGPREACH
kf(n)n

M

M
x

+

>∈<∈
log

,.

)( )(loglog nfnkf(n)n
M cDTIME))((CDTIME ++ = •

Relating Complexity Classes

NSPACE vs. DTIME 
A Note on the Proof

1)(,,

,, )(log

=>∈<

>< +

xMREACHtsG

CREACHtsG
M
x

nfn
M

M
x

 iff 
 nodes.   withinstance  a is 

 Method".-tyReachabili"
 the called is  graph aby  ncomputatio

 bounded-space a ngrepresenti of method The
M
xG

  is 
 reduction!generic  a is this y,Effectivel

.hardNLREACH −

Relating Complexity Classes

NSPACE vs. DTIME

)())(( )(log nfncDTIMEnfNSPACE +⊆

PNL ⊆

EXPNPSPACE ⊆

Relating Complexity Classes

NSPACE vs. DSPACE (Proof I)

nnf
nfDSPACEnfNSPACE

log)(
))(())(( 2

≥
⊆

1)(,,

,, )(log

=>∈<

>< +

xMREACHtsG

CREACHtsG
M
x

nfn
M

M
x

 iff 
 nodes.   withinstance  a is 

1)(,,

,, )(

=>∈<

><

xMREACHtsG

CREACHtsG
M
x

nfM
x

 iff 

 nodes.   withinstance  a is 

nnf log)( ≥ since

Relating Complexity Classes

NSPACE vs. DSPACE (Proof II)

1)(,,

,, )(

=>∈<

><

xMREACHtsG

CREACHtsG
M
x

nfM
x

 iff 

 nodes.   withinstance  a is 

We cannot compute the graph – it is exponential!
So how to access it?

.ts  and  ionsconfiguart the compute can We

. string input  with on  simulatingby 
 check  we, and  nodes two Having

xuM
Evuvu >∈< ,
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Relating Complexity Classes

NSPACE vs. DSPACE (Proof III)

false;return       
e;return tru              

 then )1,,,( and )1,,,( if          
)|;|;1for(       

false;return  then 0 if       
e;return tru then , if       

),,,(

−−
++≤=

=
>∈<

djzGPATHdziGPATH
zVzz

d
Eji

djiGPATH

djidjiGPATH 2),,,( ≤∃  length of  to  from path a  iff true is 

⎡ ⎤ REACHtsGVtsGPATH >∈< ,,)||log,,,(  iff 

Relating Complexity Classes

NSPACE vs. DSPACE (Proof IV)

false; return      
true; return              

 then  and  if          
for(       

false; return then  if       
true; return then  if       

)1,,,()1,,,(
)|;|;1

0
,

),,,(

−−
++<=

=
>∈<

djzGPATHdziGPATH
zVzz

d
Eji

djiGPATH

d most at of depth Recursive
||log3 V size has frame"-stack" Each

⎡ ⎤ space  requires ) ||log3||log,,,( 2 VVtsGPATH

Relating Complexity Classes

NSPACE vs. DSPACE (Proof V)

⎡ ⎤ space  requires ) ||log3||log,,,( 2 VVtsGPATH

⎡ ⎤ REACHtsGVtsGPATH >∈< ,,)||log,,,(  iff 

1)(,,

,, )(

=>∈<

><

xMREACHtsG

CREACHtsG
M
x

nf
M

M
x

 iff 
 nodes.   withinstance  a is 

))(())(log3(
)(

2)(2 nfDSPACECDSPACE
xM

nf
M

=

=  in decided be can 1  :together Taken

•

Relating Complexity Classes

NSPACE vs. DSPACE

nnf
nfDSPACEnfNSPACE

log)(
))(())(( 2

≥
⊆

PSPACENPSPACE =

Relating Complexity Classes

Relationships

NLL ⊆

NPP ⊆

NSPACEPSPACE ⊆

NEXPEXP ⊆

PSPACEL ⊂

NPSPACENL ⊂

EXPP ⊂

NEXPNP ⊂

Determinism
vs.

Nondeterminism 

Exponentially
Higher Bound

PNL ⊆

PSPACENP ⊆

PSPACENPSPACE ⊆

EXPNPSPACE ⊆

Relating Complexity Classes

Relationships

NLL ⊆

NPP ⊆

NSPACEPSPACE ⊆

NEXPEXP ⊆

PNL ⊆

PSPACENP ⊆

PSPACENPSPACE ⊆

EXPNPSPACE ⊆

NEXPEXPPSPACENPPNLL ⊆⊆⊆⊆⊆⊆
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Relating Complexity Classes

Further Relationships

NEXPEXPPSPACENPPNLL ⊆⊆⊆⊆⊆⊆

PSPACEL ⊂

NPSPACENL ⊂
PSPACENL ⊂ EXPP ⊂ NEXPNP ⊂

Thus there must be proper set inclusions –
however, the question which ones are proper

is an open question.

Complement Problems

 language. a be  Let L

language. complement
 associated the is   Then }|{ * LxxL ∉Σ∈=

e.satisfiablnot  are which circuits ofset 
 theas  defines oneoften  However,

 .  toup add  and formally  Thus, *

CircuitSAT

LL Σ

circuits. encode which strings ofset   theis
 econsequencIn CircuitSATCircuitSAT ∪

Complement Classes

 .| Then

problems. decision of class a be  Let

}{ CLLcoC

C

∈=

.,, coEXPEXPcoPSPACEPSPACEcoPPcoLL ====    ,  
:ationcomplement under closed are classestic Determinis

Complement Classes

Nondeterministic Co-Classes

How can we handle complement problems in 
the context of nondeterminism?

path. ONE LEAST  ATof end the at
instance positiveevery  accepts  whichtime,-poly in

 running NTM an is there iff  in say, is, problem A NP

path. EACH of end the at instance positive
every  accepts  whichtime,-poly in running NTM

 an is there iff  in is problem aly Consequent coNP

Complement Classes

Example: CIRSAT

.1)(:
.
=∃ ACAM
CAM

CAM
MNPCIRSAT

 evaluates  Thus
 satisfies  iff accepts      

 circuit input the for  assignemt an guesses      
: algorithm- an  withsolved be can 

0)(:
.

)(

=∀ ACAM
CAM

CAM
McoNP

COMPLEMENTCIRSAT

 evaluates  Thus
satisfy  not does  iff accepts      

 circuit input the for  assignemt an guesses      
: algorithm- a

  withsolved be can 

Complement Classes

Nondeterministic Co-Classes

proper ,log)(
))(())((

nnf
nfcoNSPACEnfNSPACE

≥
=

unknown. is  or 
  whetheri.e., open, is case The

coNEXPNEXPcoNPNP
NTIME

==
−

,

more? there Is  since
, :knowalready  We

.NPSPACEPSPACE
coNPSAPCENPSPACE

=
=

Immerman-Szelepscenyi Theorem
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NSPACE vs. coNSPACE

Reachability Method Again
Again, we will use the reachability method:

1)(,,

,, )()(log

=>∈<

>< +

xMREACHtsG

CREACHtsG
M
x

nfnf
M

M
x

 iff 
 nodes.   withinstance  a is 

. graph ionconfigurat
 the define we string input an and  bound

 space the respecting  NTM an given is, That

M
xG

xf
M

,

NSPACE vs. coNSPACE

Reusing: REACH is in NL

2 goto 6.
 from chose  5.

 4.
false; return )if( 3.

true; return if( 2.
  1.

)guesspath( bool

},|{
;1:

)
;:;1:

EucurrentVucurrent
stepssteps

ksteps
vcurrent

scurrentsteps
G;v,k

>∈<∈
+=

>
=

==

⎩
⎨
⎧ ≤∃

=
choices  wrongor exists, path such no : false

 length of  in    true
guesspath

kGvspath
kvG

),(:
),;(

space  takes guesspath( |)|(log),; VOkvG

NSPACE vs. coNSPACE

Counting the Number of Reachable 
Nodes

}.{)0(
.

)(

sS
ks

VkS

=
≤

⊆
 length of path aby   from reached be

can  whichnodes of set the be  Let

 compute can we
 but  compute cannot  we Within

.|)(|
)(|,|log

kS
kSV

.|)(||)1(| kSkS  on based  compute  willWe
:dcomplicate bit a still is This           

+

NSPACE vs. coNSPACE

Functions & Nondeterminism
We say that we can compute a function with a non-
deterministic machine, iff all accepting paths lead to the
same result. 

- we must prove that each accepting path 
leads to the correct result

- we have to prove that there is at least one 
accepting path

NSPACE vs. coNSPACE

CheckPath

;
:,

;1:

||1:
:;0:

resultlastcount
resultEvuvu

countcount

Vu
resultcount

 return else   reject; then  if 6.
true; then  or  if         5.

         4.
then 1)-ku,G;guesspath( if     3.

do  to  for 2.
false;    1.
last)k,v,G;checkpath( bool

<
=>∈<=

+=

=
==

0)(1 >∈⇔ kkSv)|)-G;v,k,|S(k     checkpath(

space  takes checkpath( |)|(log|))1(|,,; VOkSkvG −
|))|(log, VOucount only  require  and  ,(guesspath

NSPACE vs. coNSPACE

CheckPath (Correctness I)

;
:,

;1:

||1:
:;0:

resultlastcount
resultEvuvu

countcount

Vu
resultcount

 return else   reject; then  if 6.
true; then  or  if         5.

         4.
then 1)-ku,G;guesspath( if     3.

do  to  for 2.
false;    1.
last)k,v,G;checkpath( bool

<
=>∈<=

+=

=
==

ksucountcount <⇒+=  length of pathby   from reachable is   : 1

rejects 6 line otherwise
found, been have  in nodes all )1(|)1(| −⇒−== kSkSlastcount
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NSPACE vs. coNSPACE

CheckPath (Correctness II)

;
:,

;1:

||1:
:;0:

resultlastcount
resultEvuvu

countcount

Vu
resultcount

 return else   reject; then  if 6.
true; then  or  if         5.

         4.
then 1)-ku,G;guesspath( if     3.

do  to  for 2.
false;    1.
last)k,v,G;checkpath( bool

<
=>∈<=

+=

=
==

rejects. 6 line otherwise
found, been have  in nodes all )1(|)1(| −⇒−== kSkSlastcount

)(kSv∈  whetherdeterminescorrectly  5 line then but •

NSPACE vs. coNSPACE

Unreachable

);,1||,;
;:

;1:),,
1:

0:
2||1:

;1:

lastVtG
currentlast

currentcurrentlastkG;v
|V|v

current
Vk

last
G

−
=

+=
=
=

−=
=

checkpath( not return 7.
    6.

 then checkpath( if         5.
do  to  for    4.

;    3.
do  to  for 2.

 1.
)e(unreachabl bool

),,() tsGpathG ¬∃⇔e(unreachabl

space  takes e(unreachabl |)|(log) VOG
space)  take    ,(checkpath |)|(log,, VOvklast

NSPACE vs. coNSPACE

Unreachable (Correctness)

);,1||,;
;:

;1:),,
1:

0:
2||1:

;1:

lastVtG
currentlast

currentcurrentlastkG;v
|V|v

current
Vk

last
G

−
=

+=
=
=

−=
=

checkpath( not return 7.
    6.

 then checkpath( if         5.
do  to  for    4.

;    3.
do  to  for 2.

 1.
)e(unreachabl bool

6 line in  using and ,  withstarting
induction,by  proved be can  5,-2 lines for
|)(|1|)0(|

|)1(|
kScurrentS

kSlast
==

−=

),, tsGpath(correctly  the returns 7 line therefore ¬∃ •

Relating Complexity Classes

Co-Classes
coNLNL =

holds. 
or 

  whetherquestion open central a is It

coNEXPNEXP
coNPNP
=

=

PSPACEcoNPP ⊆⊆

breakable. isRSA   yes,If
hold?  Does :unknown Also PcoNPNP =∩

Relating Complexity Classes

Summary

coNLNL = PSPACEcoNPP ⊆⊆

NEXPEXPPSPACENPPNLL ⊆⊆⊆⊆⊆⊆

PSPACENL ⊂ EXPP ⊂ NEXPNP ⊂

Relating Complexity Classes

Techniques

Diagonalization

Reachability Method

)log()(
)()( 3

ffDSPACEfDSPACE
fDTIMEfDTIME

⊂
⊂

Counting

nffDSPACEfNSPACE
cDTIMEfNSPACE ff

log),()(
)()(

2

log

≥⊆

⊆ +

  

nffcoNSPACEfNSPACE log)()( ≥=   ,

nffcoNSPACEfNSPACE log)()( ≥=   ,

proper f


