

Resource Bounds Fundamental Resources

(formulated as classes)

DTIME(f)	a DTM decides L within f(n) steps
DSPACE(f)	a DTM decides L using f(n) cells
NTIME(f)	a NTM decides L within f(n) steps
NSPACE(f)	a NTM decides L using f(n) cells

Resource Bounds **Constants do not matter** $IIME(f) = TIME(ef + n), \varepsilon > 0$ $SPACE(f) = SPACE(ef), \varepsilon > 0$ Deterministic or Nondeterministic, it does not matter

Constants do not matter Linear Speedup (Proof I)

 $TIME(f) = TIME(\varepsilon f + n), \varepsilon > 0$

Let $M = \langle K, \Sigma, \delta, s \rangle$ be a TM which uses *t* tapes

Then let $\overline{M} = \langle \overline{K}, \overline{\Sigma}, \overline{\delta}, \overline{s} \rangle$ be a TM which uses t + 1 tapes and choose k > 6, set $\overline{\Sigma} = \Sigma^k$

 \overline{M} copies the input to its additional tape and compresses the input

Constants do not matter Linear Speedup (Proof II)

 \overline{M} then simulates *M* by using the additional tape as input tape

 \overline{M} moves to the right, two times left and once right

- \overline{M} knows all symbols M would have read within k steps
- \overline{M} simulates the next k steps of M on the compressed representation (2 steps)
- \overline{M} requires 6 steps to simulate k steps of M

•

Resource Bounds Proper Complexity Function

The functions used as bounds have to satisfy some conditions to avoid anomalies.

These functions are called "Proper Complexity Functions"

Proper Complexity Function **Definition**

Let f be a function $N \rightarrow N$ with

 $f(n+1) \ge f(n)$

there is a DTM *M* which ouputs $1^{f(n)}$ on input x(|x|=n) and runs within DTIME(n+f(n)) and DSPACE(f(n))

then f is a proper complexity function

Proper Complexity Function **Examples** $f(n) = c \qquad f(n) = n!$ $f(n) = \log(n) \qquad f(n) = \sqrt{n}$ f(n) = n f(n) + g(n) f(n)g(n) f(n) = n f(n) = n

Important proper complexity functions

Proper Complexity Functions The Gap Theorem

One of the above mentioned anomalies:

Let g be a recursive function $N \to N$ with g(n+1) > g(n). Then there is a recursive function $f: N \to N$ with DTIME(f(n)) = DTIME(g(f(n))).

Original prove in terms of Blum-Complexity, thus the same holds for DSPACE.

Fundamental Complexity Classes

Fundamental Complexity Classes Definitions				
L		$DSPACE(\log n)$		
NL		$NSPACE(\log n)$		
Р		$\bigcup_{c=1}^{\infty} DTIME(n^c)$		
NP		$\bigcup_{c=1}^{\infty} NTIME(n^c)$		
PSPACE		$\bigcup_{c=1}^{\infty} DSPACE(n^{c})$		
NPSPACE		$\bigcup_{c=1}^{\infty} NSPACE(n^{c})$		
EXP		$\bigcup_{c=1}^{\infty} DTIME(2^{n^c})$		
NEXP	=	$\bigcup_{c=1}^{\infty} NTIME(2^{n^c})$		

Example: Reachability In which class is Reachability?

What is the complexity of Dijkstra? $REACHABILITY \in P$

> What about NTMs? $REACHABILITY \in NL$

Example: Reachability Reachability in NL (Proof)

 $I = \langle G, s, t \rangle$ with $G = \langle V, E \rangle$ given.

1. *steps* := 0; *current* := *s*;

2. if (current = t) return true;

3. if(*steps* >| V |) return false;

4. steps := steps + 1;

5. *current* chose from { $v \in V | < current, v \ge E$ }

6. goto 2

steps, current, |V|, are integers $\leq |V|$ Thus REACHABILITY $\in NSPACE(3\log(\sqrt{n})) = NSPACE(\log(n))$

Relating Complexity Classes

We defined *L*, *NL*, *P*, *NP*, *PSPACE*, *NPSPACE*, *EXP*, and *NEXP*.

Which subset-relations hold between these Complexity Classes?

Relating Complexity Classes Relationships by Definition		
$L \subseteq NL$	$L \subseteq PSPACE$	
$P \subseteq NP$	$NL \subseteq NPSPACE$	
$PSPACE \subseteq NSPACE$	$P \subseteq EXP$	
$EXP \subseteq NEXP$	$NP \subseteq NEXP$	
Determinism vs. Nondeterminism	Exponentially Higher Bound	

Let N be an arbitrary Machine in DTIME(f(n)) $N(N) = 1 \iff \langle N, N \rangle \in B_f^{DTIME}$

$$\begin{split} N(N) = 1 \iff N \notin D_{f}^{DTIME} \\ N(N) = 1 \iff N \in L(N) \end{split}$$

 $D_f^{DTIME} \notin DTIME(f(n))$

 $D_{f}^{DTIME} \in DTIME(s[f](2n+1))$

 $L(N) \neq D_f^{DTIME}$

Hierarchy Theorems Reusing the Proof

 $D_f^{RES} \notin RES(f(n))$

 $D_f^{RES} \in RES(s[f](2n+1))$

The last proof was generic – every bounded simulation can be substituted.

 $B_f^{DSPACE} \in DSPACE(f(n)\log f(n))$

 $DSPACE(f(n)) \subset DSPACE(f(2n+1)\log f(n))$

 $P \subset EXP$

Relating Complexity Classes Relationships

 $L \subseteq NL$ $P \subseteq NP$ $PSPACE \subseteq NSPACE$

Determinism vs. Nondeterminism

 $EXP \subseteq NEXP$

 $NL \subset NPSPACE$ $P \subset EXP$ $NP \subset NEXP$ Exponentially Higher Bound

 $L \subset PSPACE$

Relating Complexity Classes Further Relationships

 $NTIME(f(n)) \subseteq DSPACE(f(n))$

 $NSPACE(f(n)) \subseteq DTIME(c^{\log n + f(n)})$

 $NSPACE(f(n)) \subseteq DSPACE(f^2(n))$ $f(n) \ge \log n$

f proper

Relating Complexity Classes NTIME vs. DSPACE (Proof I)

 $NTIME(f(n)) \subseteq DSPACE(f(n))$

Let *M* be an NTM running in time f(n). In each step, *M* can make a single nondeterministic decision. However, *M* can only chose out of c_M continuations in a step. Thus, \overline{M} enumerates all possible choices, taking space $c_M f(n)$. This string is then used by \overline{M} as a lookup - table whenever *M* is taking a nondet. choice.

Relating Complexity Classes NTIME vs. DSPACE (Proof II)

Thus, \overline{M} enumerates all possible choices, taking space $c_M f(n)$. This string is then used by \overline{M} as a lookup - table whenever M is taking a nondet. choice.

For each enumerated choice - string, \overline{M} simulates M. If M accepts in one of these simulations, \overline{M} accepts, too. Otherwise, \overline{M} rejects.

 \overline{M} requires $c_M f(n) + f(n)$ space, i.e. $\overline{M} \in DSPACE(f(n))$.

Relating Complexity Classes NTIME vs. DSPACE

 $NTIME(f(n)) \subseteq DSPACE(f(n))$

 $NP \subseteq PSPACE$

Relating Complexity Classes NSPACE vs. DTIME (Proof I)

 $NSPACE(f(n)) \subseteq DTIME(c^{\log n + f(n)})$

Let *M* be an NTM running in space f(n). A configuration of *M* has the following parts : the state $k \in K_M$ of *M* the cursor position $1 \le i \le n+1$ of *M* the contents $< s_1, ..., s_l > 0$ f the tapes of *M* : $s_i \in \Sigma^{f(n)}$

Thus, there are $|K_M|(n+1)|\Sigma|^{|f(n)|}$ different configs. Using C_M we find at most $C_M^{\log n+f(n)}$ configs.

Relating Complexity Classes NSPACE vs. DTIME (Proof II)

Using C_M we find at most $C_M^{\log n+f(n)}$ configs.

Now we define $G_x^M = \langle V, E \rangle$ with $V = \{$ configs. of $M \}$ and $\langle u, v \rangle \in E$ iff there is a direct transition from u to von input x.

Define $s \in V$ to be the initial config of M and $t \in V$ to be the accepting config of M (normalization).

 $< G_x^M, s, t >$ is a *REACH* instance with $C_M^{\log n + f(n)}$ nodes. $< G_x^M, s, t > \in REACH$ iff M(x) = 1

Relating Complexity Classes NSPACE vs. DTIME (Proof III)

 $< G_x^M, s, t >$ is a *REACH* instance with $C_M^{\log n+f(n)}$ nodes. $< G_x^M, s, t > \in REACH$ iff M(x) = 1

REACH \in *P*. Thus we can decide $< G_x^M$, $s, t > \in REACH$ in $DTIME((C_M^{\log n+f(n)})^k)$ for some constant *k*.

•

 $DTIME((C_M^{\log n+f(n)})^k) = DTIME(c^{\log n+f(n)})$

Relating Complexity Classes NSPACE vs. DTIME A Note on the Proof

 $< G_x^M, s, t >$ is a *REACH* instance with $C_M^{\log n+f(n)}$ nodes. $< G_x^M, s, t > \in REACH$ iff M(x) = 1

The method of representing a space -bounded computation by a graph G_x^M is called the "Reachability - Method".

Effectively, this is a generic reduction! *REACH* is *NL*-*hard*.

Relating Complexity Classes NSPACE vs. DTIME

 $NSPACE(f(n)) \subseteq DTIME(c^{\log n + f(n)})$

 $NL \subseteq P$ $NPSPACE \subseteq EXP$

Relating Complexity Classes NSPACE vs. DSPACE (Proof I)

 $NSPACE(f(n)) \subseteq DSPACE(f^2(n))$ $f(n) \ge \log n$

 $< G_x^M, s, t >$ is a *REACH* instance with $C_M^{\log n+f(n)}$ nodes. $< G_x^M, s, t > \in REACH$ iff M(x) = 1

since $f(n) \ge \log n$

 $< G_x^M, s, t >$ is a *REACH* instance with $C^{f(n)}$ nodes. $< G_x^M, s, t > \in REACH$ iff M(x) = 1

Relating Complexity Classes NSPACE vs. DSPACE (Proof II)

 $< G_x^M, s, t >$ is a *REACH* instance with $C^{f(x)}$ nodes. $< G_x^M, s, t > \in REACH$ iff M(x) = 1

We cannot compute the graph – it is exponential! So how to access it?

We can compute the configurations s and t.

Having two nodes u and v, we check $\langle u, v \rangle \in E$ by simulating M on u with input string x.

Relating Complexity Classes NSPACE vs. DSPACE (Proof III)

PATH(G, i, j, d)

- if $\langle i, j \rangle \in E$ then return true;
- if d = 0 then return false; $for(z = 1; z \le |V|; + + z)$
- if PATH(G, i, z, d-1) and PATH(G, z, j, d-1) then
- return true;

return false;

PATH(G, i, j, d) is true iff \exists a path from *i* to *j* of length $\leq 2^{d}$ $PATH(G, s, t, \lceil \log |V| \rceil)$ iff $\langle G, s, t \rangle \in REACH$

Relating Complexity Classes NSPACE vs. DSPACE (Proof IV)

PATH(G, i, j, d)

if $\langle i, j \rangle \in E$ then return true; if d = 0 then return false; for (z = 1; z < |V|; + + z)if PATH(G, i, z, d-1) and PATH(G, z, j, d-1) then return true: return false;

Recursive depth of at most *d* Each "stack - frame" has size $3\log|V|$ $PATH(G, s, t, \lceil \log |V| \rceil)$ requires $3\log^2 |V|$ space

Relating Complexity Classes NSPACE vs. DSPACE (Proof V)

- $\langle G_x^M, s, t \rangle$ is a *REACH* instance with $C_M^{f(n)}$ nodes. $\langle G_{x}^{M}, s, t \rangle \in REACH$ iff M(x) = 1
- $PATH(G, s, t, \lceil \log |V| \rceil)$ iff $\langle G, s, t \rangle \in REACH$
- $PATH(G, s, t, \lceil \log |V| \rceil)$ requires $3\log^2 |V|$ space
- Taken together : M(x) = 1 can be decided in $DSPACE(3\log^2(C_u^{f(n)})) = DSPACE(f^2(n))$

Relating Complexity Classes **NSPACE vs. DSPACE**

 $NSPACE(f(n)) \subseteq DSPACE(f^2(n))$ $f(n) \ge \log n$

NPSPACE = PSPACE

Relating Complexity Classes **Relationships**

$L \subseteq NL$	$NL \subseteq P$
$P \subseteq NP$	$NP \subseteq P$
$PSPACE \subseteq NSPACE$	$NPSPACE \subseteq P$.
$EXP \subseteq NEXP$	$NPSPACE \subseteq E.$

Determinism vs. Nondeterminism $NP \subseteq PSPACE$ $CE \subseteq PSPACE$ $CE \subseteq EXP$

Ö

Relating Complexity Classes **Relationships**

 $P \subseteq NP$ $PSPACE \subseteq NSPACE$ $EXP \subseteq NEXP$

 $NL \subseteq P$ $NP \subseteq PSPACE$ $NPSPACE \subseteq PSPACE$ $NPSPACE \subseteq EXP$

 $L \subseteq NL \subseteq P \subseteq NP \subseteq PSPACE \subseteq EXP \subseteq NEXP$

Complement Problems

Let L be a language.

Then $\overline{L} = \{x \in \Sigma^* \mid x \notin L\}$ is the associated complement language.

Thus, formally *L* and \overline{L} add up to Σ^* . However, often one defines $\overline{CircuitSAT}$ as the set of circuits which are not satisfiable.

In consequence $CircuitSAT \cup \overline{CircuitSAT}$ is the set of strings which encode circuits.

Complement Classes

Let C be a class of decision problems. Then $coC = \{\overline{L} \mid L \in C\}$.

Deterministic classes are closed under complementation: L = coL, P = coP, PSPACE = coPSPACE, EXP = coEXP.

Complement Classes Nondeterministic Co-Classes

How can we handle complement problems in the context of nondeterminism?

A problem is, say, in *NP* iff there is an NTM running in poly - time, which accepts every positive instance at the end of AT LEAST ONE path.

Consequently a problem is in *coNP* iff there is an NTM running in poly - time, which accepts every positive instance at the end of EACH path.

Complement Classes Example: CIRSAT

CIRSAT can be solved with an *NP*-algorithm *M* : *M* guesses an assignemt *A* for the input circuit *C M* accepts iff *A* satisfies *C*. Thus *M* evaluates $\exists A : C(A) = 1$.

CIRSAT(COMPLEMENT) can be solved with a coNP-algorithm M: M guesses an assignemt A for the input circuit CM accepts iff A does not satisfy C. Thus M evaluates $\forall A : C(A) = 0$

Complement Classes Nondeterministic Co-Classes

The *NTIME* – case is open, i.e., whether NP = coNP, or NEXP = coNEXP is unknown.

We already know : *NPSPACE* = *coNPSAPCE*, since *PSPACE* = *NPSPACE*. Is there more?

NSPACE(f(n)) = coNSPACE(f(n)) $f(n) \ge \log n, \text{ proper}$

Immerman-Szelepscenyi Theorem

NSPACE vs. coNSPACE Reachability Method Again

Again, we will use the reachability method:

- That is, given an NTM *M* respecting the space bound *f* and an input string *x*, we define the configuration graph G_{x}^{M} .
- $< G_x^M$, s, t > is a *REACH* instance with $C_M^{\log f(n)+f(n)}$ nodes. $< G_x^M$, $s, t > \in REACH$ iff M(x) = 1

- bool guesspath(G;v,k)
- 1. *steps* := 1; *current* := *s*;
- 2. if(*current* = *v*) return true;
- 3. if(*steps* > k) return false;
- 4. steps := steps + 1;
- 5. *current* chose from $\{u \in V | < current, u > \in E\}$ 6. goto 2

guesspath(G; v, k) = $\begin{cases}
\text{true} : \exists path(s, v) \text{ in } G \text{ of length} \leq k \\
\text{false : no such path exists, or wrong choices} \\
\text{guesspath}(G; v, k) \text{ takes } O(\log |V|) \text{ space}
\end{cases}$

NSPACE vs. coNSPACE Counting the Number of Reachable Nodes

Let $S(k) \subseteq V$ be the set of nodes which can be reached from *s* by a path of length $\leq k$. $S(0) = \{s\}$.

Within $\log |V|$, we cannot compute S(k) but we can compute |S(k)|.

This is still a bit complicated: We will compute |S(k+1)| based on |S(k)|.

NSPACE vs. coNSPACE Functions & Nondeterminism

We say that we can compute a function with a nondeterministic machine, iff all accepting paths lead to the same result.

- we must prove that each accepting path leads to the correct result

- we have to prove that there is at least one accepting path

NSPACE vs. coNSPACE CheckPath

bool checkpath(G;v,k,last) 1. count := 0; result := false; 2. for u := 1 to |V| do

- 3. if guesspath(G;u,k-1) then
- 4. count := count + 1;
- 5. if u = v or $\langle u, v \rangle \in E$ then *result* := true; 6. if *count* $\langle last$ then reject; else return *result*;

checkpath(G;v,k, $/S(k-1)/) \Leftrightarrow v \in S(k)$ k > 0

checkpath(G; v, k, |S(k-1)|) takes $O(\log |V|)$ space (guesspath, *count*, and u require only $O(\log |V|)$)

NSPACE vs. coNSPACE CheckPath (Correctness I)

bool checkpath(G;v,k,last)1. count := 0;result := false;2. for u := 1 to |V| do3. if guesspath(G;u,k-1) then4. count := count + 1;5. if u = v or $< u, v > \in E$ then result := true;6. if count < last then reject;</td>else return result;

count := *count* +1 \Rightarrow *u* is reachable from *s* by path of length < *k count* = *last* =| *S*(*k*-1) | \Rightarrow all nodes in *S*(*k*-1) have been found, otherwise line 6 rejects

Relating Complexity Classes Co-Classes

NL = coNL $P \subseteq coNP \subseteq PSPACE$

It is a central open question whether NP = coNP or NEXP = coNEXP holds.

Also unknown : Does $NP \cap coNP = P$ hold? If yes, RSA is breakable.

Relating Complexity Classes Techniques		
Diagonalization	$DTIME(f) \subset DTIME(f^3)$	
	$DSPACE(f) \subset DSPACE(f \log f)$	
Reachability Method	$NSPACE(f) \subseteq DTIME(c^{\log f+f})$	
	$NSPACE(f) \subseteq DSPACE(f^2), f \ge \log n$	
	$NSPACE(f) = coNSPACE(f), f \ge \log n$	
Counting	$NSPACE(f) = coNSPACE(f), f \ge \log n$	
	f proper	