Resource Bounds Resource Bounds

consist of
i —

e.g. time or space of a Turing Machine

the bound itself in terms of a function
which bounds the resource
depending on the problem size

e.g. f(n)=n

Resource Bounds Resource Bounds
Fundamental Resources Constants do not matter

(formulated as classes)

TIME(f)=TIME(&f +n),&>0
DTIME(f) a DTM decides L within f(n) steps

SPACE(f) = SPACE(&f ), £ >0
DSPACE(f) a DTM decides L using f(n) cells

NTIME(f) a NTM decides L within f(n) steps

Deterministic or Nondeterministic,

it does not matter
NSPACE(T) a NTM decides L using f(n) cells

Constants do not matter Constants do not matter

Linear Speedup (Proof I) Linear Speedup (Proof I1)

TIME(f) =TIME(&f +n), >0 M then simulates M by using the additional

tape as input tape

LetM =<K, Z%,5,s >be a TM which uses t tapes — . . .
M moves to the right, two times left and once right

ThenletM =<K,Z,5,s >be a TM which uses t +1 tapes M knows all symbols M would have read within k steps

3 vk _
il G BBl > 2, 52 =2 M simulates the next k steps of M on the compressed

= . . - representation (2 steps)
M copies the input to its additional tape and

compresses the input M requires 6 steps to simulate k steps of M




Constants do not matter
Linear Compression

SPACE(f) = SPACE(&f ), & > 0

Same simulation as for linear speedup

M requires (1/k) f + 2 cells to simulate M

Proper Complexity Function
Definition
Let f be afunction N — N with
f(n+1)> f(n)
thereisaDTM M which ouputs 1°™ oninput

x (| x|= n) and runs within DTIME(n + f (n)) and
DSPACE( f (n))

then f is a proper complexity function

Proper Complexity Functions

The Gap Theorem

One of the above mentioned anomalies:

Let g be arecursive function N — N with
g(n+1) > g(n). Then there is arecursive function
f:N — N with DTIME( f (n)) = DTIME(g( f (n)).

Original prove in terms of Blum-Complexity,
thus the same holds for DSPACE.

Resource Bounds

Proper Complexity Function

The functions used as bounds have
to satisfy some conditions to avoid
anomalies.

These functions are called
"Proper Complexity Functions"

Proper Complexity Function
Examples

HOE f(n)=n!
f (n) = log(n) HOE
f(n)=n

f(n)+ 9(n)‘

f(n)g(n) ¢f(n)and g(n) proper
f(n)mn) I

Important proper complexity functions

Fundamental Complexity Classes

[Ften] —  [vaee]  —— [Ago]

|

Resource-Bound




Fundamental Complexity Classes
Definitions

L DSPACE(logn)
NL NSPACE (log n)

P (., DTIME(n°)
NP (U, NTIME(n°)
PSPACE (., DSPACE(n°)
NPSPACE = |J.,NSPACE(n%)
EXP (J_, DTIME(2")
NEXP (U, NTIME(2")

Example: Reachability
In which class is Reachability?

Resource-Bound

Class

Example: Reachability

Reachability in NL (Proof)
G,s,t>withG

2.if(current =t) return true;

3.if(steps >|V |) return false;

4. steps = steps +1;

5. current chose from{v eV |< current,v > E}
6.goto 2

steps, current, |V |, are integers <|V |
Thus REACHABILITY e NSPACE (3log(+/n)) = NSPACE (log(n))

Example: Reachability

PN
T % ¢

Is there a path from
stot? 1 ={<G,s,t >s,teV(G)}

Reachability =< I,f >

1:3path(G,s,t)
f(<G,s,t> :J
( ) lO:otherwise

o)
® O °
s Mo t

In which class is Reachability?

Example: Reachability
In which class is Reachability?

What is the complexity of Dijkstra?
REACHABILITY € P

What about NTMs?
REACHABILITY e NL

Relating Complexity Classes

We defined L, NL, P, NP, PSPACE, NPSPACE, EXP, and NEXP.

Which subset-relations hold between these
Complexity Classes?




Relating Complexity Classes

Relationships by Definition

L = PSPACE
Pc NP NL = NPSPACE
PSPACE = NSPACE P < EXP
EXP = NEXP NP < NEXP
Determinism

VS.
Nondeterminism

SEIEL Y
Higher Bound

Hierarchy Theorems

Time Hierarchy: Proof (1)

Let BP™E = {< M, x >| M (x) =1 within DTIME(f (| x|))}
BY™ e DTIME(s[f](n))  (Bounded Simulation)
Set DP™E = {M |< M,M >¢ BP™=}

Let N be an arbitrary Machine in DTIME( f (n))
N(N)=1 < <N,N > BP™E
N(N)=1 < N gDP™E \»

vL(N)iD'DTIME
N(N)=1 < N eL(N) J

D?™F ¢ DTIME(f (n)) D?™E e DTIME(s[ f1(2n +1))

Hierarchy Theorems

Reusing the Proof

D™= ¢ RES(f (n)) Df* e RES(s[f1(2n+1))

The last proof was generic — every bounded simulation
can be substituted.

BP"°E < DSPACE( (n)log f (n))

DSPACE( f (n)) « DSPACE(f (2n+1)log f (n))

Relating Complexity Classes

Hierarchy Theorems

DTIME(f (n)) = DTIME(f (2n+1)?)
f(n)>n
DSPACE(f (n))  DSPACE(f (2n+1)log f (n))

f proper
The same holds for nondeterministic computation

(the bound can be lowered significantly)

Hierarchy Theorems

Time Hierarchy: Proof (1)

Let BP™E = {< M, x >| M (x) =1 within DTIME(f (| x|))}

BP™* e DTIME(s[f]1(n))  (Bounded Simulation)

D™ ¢ DTIME( f (n)) D™ e DTIME(S[ f](2n +1))
DTIME(f (n)) = DTIME(S[ f](2n+1))

There are several bounded simulation results. It is
important to us that s[ f](n) is bounded by a polynomialin f.
E.g., s[f](n)= f3(n),for f(n)>n

DTIME(f (n)) = DTIME(f*(2n+1))

Hierarchy Theorems

Exponentially Higher Bounds

We do the DTIME-case:

DTIME(f (n)) c DTIME(f (2n+1)?)
f(n)>n
f proper
DTIME(p(n)) = DTIME(2") = DTIME((2*"*)*)  DTIME(2")
P < EXP




Relating Complexity Classes

Relationships

L = PSPACE
Pc NP NL < NPSPACE
PSPACE = NSPACE P c EXP
EXP = NEXP NP < NEXP
Determinism

VS.
Nondeterminism

SEIEL Y
Higher Bound

Relating Complexity Classes

NTIME vs. DSPACE (Proof I)

NTIME( f (n)) ¢ DSPACE(f (n))

Let M be anNTMrunningin time f(n).
In each step, M can make a single nondeterministic decision.

However, M can only chose out of c,, continuations in a step.

Thus, M enumerates all possible choices, taking space ¢y, f(n).

This stringis then used by M as alookup - table
whenever M is taking a nondet. choice.

Relating Complexity Classes

NTIME vs. DSPACE
NTIME(f (n)) = DSPACE(f (n))

NP < PSPACE

Relating Complexity Classes

Further Relationships

NTIME( f (n)) € DSPACE(f (n))

NSPACE( f (n)) = DTIME(c""™ (™)

NSPACE( f (n)) = DSPACE(f *(n))
f(n)>logn

f proper

Relating Complexity Classes

NTIME vs. DSPACE (Proof II)

Thus, M enumerates all possible choices, taking space cy f(n).

This string is then used by M as a lookup - table
whenever M is taking a nondet. choice.

For each enumerated choice - string, M simulates M.

If M aceepts in one of these simulations, M accepts, too.
Otherwise, M rejects.

M requires c,, f (n)+ f (n) space,i.e. M e DSPACE(f(n)). e

Relating Complexity Classes

NSPACE vs. DTIME (Proof I)

NSPACE( f (n)) = DTIME(c"™ (™)

Let M be an NTMrunning in space f (n).
A configuration of M has the following parts :

the state k e K,, of M
the cursor position1<i<n+1lof M
the contents <s,,...,s, > of the tapesof M :s, e '™

Thus, there are| K,, | (n+1) | "™ different configs.
Using C,, we find at most C%9" "™ configs.




Relating Complexity Classes

NSPACE vs. DTIME (Proof II)

e+ f(n

Using C,, we find at most C9" "™ configs.

Now we define G =<V, E > withV ={configs. of M}
and < u,v >¢ E iff there is a direct transition from u to v
oninput x.

Define s €V to be the initial config of M and
t eV to be the accepting config of M (normalization).

<G} ,s,t>isaREACH instance with C"* '™ nodes.
<G" s,t>e REACH iff M (x) =1

Relating Complexity Classes

NSPACE vs. DTIME
A Note on the Proof

<GM,s,t>isaREACH instance with C" "™ nodes.
<G),s,t>e REACH iff M (x) =1

The method of representing a space -bounded
computation by a graph G!" is called the
"Reachability - Method".

Effectively, thisis a generic reduction!
REACH is NL —hard.

Relating Complexity Classes

NSPACE vs. DSPACE (Proof I)

NSPACE(f (n)) = DSPACE( f *(n))
f(n)=logn

<G, s,t>isa REACH instance with C;"* "™ nodes.
<GM 5.t >c REACH iff M (x) =1

since f(n)>logn

<G, s,t>isa REACH instance with C "™ nodes.
<G",s,t > REACH iff M (x) =1

Relating Complexity Classes

NSPACE vs. DTIME (Proof I11)

<G),s,t>isaREACH instance with C\*"™ '™ nodes.
<GM,s,t>e REACH iff M (x) =1

REACH e P. Thus we can decide <G s,t > REACH
in DTIME((C,9*™ ™)*) for some constant k.

DTI ME((c:;lng () )I-: )y=DTI ME(Cmgm Hn))

Relating Complexity Classes

NSPACE vs. DTIME

NSPACE(f (n)) = DTIME(c"™" ™)

NLc P
NPSPACE c EXP

Relating Complexity Classes

NSPACE vs. DSPACE (Proof I1)

<GM,s,t >isa REACH instance with C ™ nodes.
<G),s,t >e REACH iff M (x) =1

We cannot compute the graph — it is exponential!
So how to access it?

We can compute the configuartions s and t.

Having two nodes u and v, we check <u,v>e E
by simulating M on u with input string x.




Relating Complexity Classes

NSPACE vs. DSPACE (Proof 1)

PATH(G,i, j,d)
if <i, j > E then return true;
if d =0 then return false;
for(z=Lz<V |++2)
if PATH (G,i,z,d —1) and PATH (G, z, j,d —1) then
return true;
return false;

PATH (G,i, j,d)is true iff 3a path fromi to j of length < 2°

PATH (G,s,t,[log|V [ iff <G,s,t > REACH

Relating Complexity Classes

NSPACE vs. DSPACE (Proof V)

<GM,s,t>isa REACH instance with C™ nodes.
<G),s,t >e REACH iff M (x) =1

PATH (G,s,t,[log|V [ iff <G,s,t >e REACH
PATH (G,s,t,[log|V []) requires 3log? |V | space

Taken together : M (x) =1can be decidedin
DSPACE (3log?(C/(™)) = DSPACE(f?(n))

Relating Complexity Classes
Relationships

Lc NL NLc P
P < NP NP < PSPACE
PSPACE < NSPACE NPSPACE < PSPACE
EXP = NEXP NPSPACE < EXP
Determinism

VS,
Nondeterminism

Relating Complexity Classes

NSPACE vs. DSPACE (Proof 1V)

PATH (G,i, j,d)
if <i, j >e E thenreturn true;
if d =0 thenreturn false;
for(z=Lz<V |[++2)
if PATH (G,i,z,d —1) and PATH (G, z, j,d —1) then
return true;
return false;

Recursive depth of at most d
Each "stack - frame" has size 3log |V |

PATH (G,s,t,[log|V []) requires 3log? |V | space

Relating Complexity Classes
NSPACE vs. DSPACE
NSPACE(f (n)) = DSPACE(f*(n))

f(n)>logn

NPSPACE = PSPACE

Relating Complexity Classes
Relationships

NLc P
NP c PSPACE
PSPACE c NSPACE NPSPACE c PSPACE

EXP < NEXP NPSPACE c EXP

L < NL c P = NP c PSPACE c EXP c NEXP




Relating Complexity Classes

Further Relationships

L < NL ¢ P < NP c PSPACE ¢ EXP < NEXP

NL < PSPACE P c EXP NP < NEXP

Thus there must be proper set inclusions —
however, the question which ones are proper
is an open question.

Complement Classes

Let C be a class of decision problems.
ThencoC ={L|LC}.

Deterministic classes are closed under complementation:

L =coL, P =coP, PSPACE =coPSPACE, EXP =coEXP.

Complement Classes
Example: CIRSAT

CIRSAT can be solved with an NP - algorithm M :
M guesses an assignemt A for the input circuit C
M accepts iff Asatisfies C.

Thus M evaluates JA: C(A) =1.

CIRSAT (COMPLEMENT) can be solved with

a coNP -algorithm M :
M guesses an assignemt A for the input circuit C
M accepts iff Adoes not satisfy C.

Thus M evaluates VA:C(A)=0

Complement Problems

Let L be alanguage.

Then L ={x X" | x ¢ L}is the associated
complement language.

Thus, formally Land L add up to ="

However, often one defines CircuitSAT as the
set of circuits which are not satisfiable.

In consequence CircuitSAT U CircuitSAT
is the set of strings which encode circuits.

Complement Classes
Nondeterministic Co-Classes

How can we handle complement problems in
the context of nondeterminism?

A problemis, say, in NP iff there isan NTM running
in poly - time, which accepts every positive instance
at the end of AT LEAST ONE path.

Consequently a problemis in coNP iff there is an
NTM running in poly - time, which accepts every
positive instance at the end of EACH path.

Complement Classes

Nondeterministic Co-Classes

The NTIME —case is open, i.e., whether
NP = coNP, or NEXP = coNEXP is unknown.

We already know : NPSPACE = coNPSAPCE,
since PSPACE = NPSPACE. s there more?

NSPACE( f (n)) = coNSPACE( f (n))
f(n)>logn, proper

Immerman-Szelepscenyi Theorem




NSPACE vs. coNSPACE

Reachability Method Again

Again, we will use the reachability method:

That is, given an NTM M respecting the space
bound f and aninput string x, we define the
configuration graph G)".

<GM,s,t>isa REACH instance with C2' ™™ podes.
<G),s,t >e REACH iff M (x) =1

NSPACE vs. coNSPACE
Counting the Number of Reachable
Nodes

Let S(k) <V be the set of nodes which can
be reached from s by a path of length <k.

$(0) ={s}-

Within log |V |, we cannot compute S(k) but
we can compute | S(k)|.

This is still a bit complicated:
We will compute | S(k +1) |based on|S(k)]|.

NSPACE vs. coNSPACE

CheckPath

ool checkpath(G;v,k,last)
.count:=0; result:=false;
.foru:=1to|V |do
if guesspath(G;u,k -1) then
count :=count+1;
if u=vor<u,v>eE then result :=tru
.if count < last then reje else return result;

checkpath(G;v,k,|S(k-1)[) < veS(k) k>0

checkpath(G;v,k,| S(k —1) |) takes O(log |V |) space
(guesspath, count, and u require only O(log |V |))

IESSE(CRAIES

NSPACE vs. coNSPACE

Reusing: REACH is in NL

bool guesspath(G;v,k)
1.steps:=1 current:=s;
2.if(current =v) return true;
3.if(steps > k) return false;

4. steps = steps +1; i
5. current chose from{u €V |< current,u > E} i

6.goto 2

Jtrue Jpath(s,v) in G of length <k
[false :no such path exists, or wrong choices

guesspath(G;v, k) takes O(log |V |) space

NSPACE vs. coNSPACE
Functions & Nondeterminism

We say that we can compute a function with a non-
deterministic machine, iff all accepting paths lead to the
same result.

- we must prove that each accepting path
leads to the correct result

- we have to prove that there is at least one
accepting path

NSPACE vs. coNSPACE

CheckPath (Correctness 1)

bool checkpath(G;v,k, last)

1.count:=0; result = false;

2.foru:=1to|V |do

3. if guesspath(G;u,k-1) then

4 count :=count +1;

5. if u=vor<u,v>eE then result := true
6.if count < last then reject; else return result;

count := count +1= u is reachable from s by path of length < k
count = last =| S(k —1) |=> allnodes in S (k —1) have been found,
otherwise line 6 rejects




NSPACE vs. coNSPACE NSPACE vs. coNSPACE
CheckPath (Correctness Il) Unreachable

bool unreachable(G)
1.last =1;
2.fork:=1to|V|-2do
o =0;
for v:i=1to|V|do
if checkpath(G;v,k, last) then current :=
last == current;
7.return not checkpath(G;t,|V | -1,las

ool checkpath(G;v,k,last)
.count:=0; result:=false;
.foru:=1to|V |do
if guesspath(G;u,k -1) then
count :=count +1;
if u=vor<u,v>eE then result :=tru
.if count < last thenreject; else return result;

S(k —1) |= allnodes in S(k —1) have been found,
otherwise line 6 rejects.

unreachable(G) < —3Jpath(G, s,t)

unreachable(G) takes O(log |V |) space
but then line 5 correctly determines whether v e S(k) (checkpath, last, k, v take O(log |V |) space)

NSPACE vs. coNSPACE Relating Complexity Classes
Unreachable (Correctness) Co-Classes

bool unreachable(G)
1.last:=1; NL=coNL P < coNP < PSPACE
2.fork:=1to|V |-2do
current :=0;
forv:=1to|V|do
if checkpath(G;v,k, last) then current := current +1;
last == current;
7.return not checkpath(G;t,|V | -1, last);

Itis a central open question whether
NP = coNP or
NEXP =coNEXP holds.

forlines 2-5, last | S(k —1) | can be proved by induction, Also unknown : Does NP ncoNP = P hold?
starting with | S(0) |=1, and using current = S(k) |inline 6 If yes, RSA is breakable.

therefore line 7 returns the correctly —3path(G, s,t)

Relating Complexity Classes Relating Complexity Classes

Summary Techniques

Diagonalization DTIME(f) < DTIME(f?)

NP c PSPACE c EXP < NEXP DSPACE(f) = DSPACE(f log f)

Reachability Method NSPACE(f)< DTIME(c'"*")
NL < PSPACE Pc EXP NP < NEXP NSPACE(f) < DSPACE(f2), f >logn

NSPACE( f) =coNSPACE(f), f >logn

P < coNP  PSPACE Counting NSPACE (f) = coNSPACE(f), f >logn

f proper




