Resource Bounds

Resource Bounds

consist of

a bounded resource
e.g. time or space of a Turing Machine
the bound itself in terms of a function which bounds the resource depending on the problem size

$$
\text { e.g. } f(n)=n
$$

Resource Bounds
Fundamental Resources
(formulated as classes)

DTIME(f) a DTM decides L within $\mathrm{f}(\mathrm{n})$ steps
DSPACE(f) a DTM decides L using $f(n)$ cells

NTIME(f) a NTM decides L within f(n) steps
NSPACE(f) a NTM decides L using $f(n)$ cells

Constants do not matter Linear Speedup (Proof I)

$$
\operatorname{TIME}(f)=\operatorname{TIME}(\varepsilon f+n), \varepsilon>0
$$

Let $M=<K, \Sigma, \delta, s>$ be a TM which uses t tapes
Then let $\bar{M}=<\bar{K}, \bar{\Sigma}, \bar{\delta}, \bar{s}>$ be a TM which uses $t+1$ tapes and choose k >6, set $\bar{\Sigma}=\Sigma^{k}$
M copies the input to its additional tape and compresses the input

Constants do not matter

Linear Speedup (Proof II)

\bar{M} then simulates M by using the additional tape as input tape
\bar{M} moves to the right, two times left and once right
\bar{M} knows all symbols M would have read within k steps
\bar{M} simulates the next k steps of M on the compressed representation (2 steps)
M requires 6 steps to simulate k steps of M

Constants do not matter

Linear Compression

```
SPACE(f)=SPACE(\varepsilonf), }\varepsilon>
```

Same simulation as for linear speedup
\bar{M} requires $(1 / k) f+2$ cells to simulate M

The functions used as bounds have to satisfy some conditions to avoid anomalies.

These functions are called "Proper Complexity Functions"

Proper Complexity Function
Definition

```
Let f}\mathrm{ be a function N}->N\mathrm{ with
f(n+1)\geqf(n)
there is a DTM M which ouputs 1 }\mp@subsup{}{}{f(n)}\mathrm{ on input
    x(| x|=n) and runs within DTIME(n+f(n)) and
    DSPACE(f(n))
then f}\mathrm{ is a proper complexity function
```

Proper Complexity Functions
The Gap Theorem
One of the above mentioned anomalies:

$$
\begin{aligned}
& \text { Let } g \text { be a recursive function } N \rightarrow N \text { with } \\
& g(n+1)>g(n) \text {. Then there is a recursive function } \\
& f: N \rightarrow N \text { with } \operatorname{DTIME}(f(n))=\operatorname{DIME}(g(f(n)) \text {. }
\end{aligned}
$$

Original prove in terms of Blum-Complexity, thus the same holds for DSPACE.

Fundamental Complexity Classes
Definitions

$$
\begin{array}{ll}
L & =\operatorname{DSPACE}(\log n) \\
N L & =\operatorname{NSPACE}(\log n) \\
P & =\bigcup_{c=1}^{\infty} \operatorname{DTIME}\left(n^{c}\right) \\
N P & =\bigcup_{c=1}^{\infty} \operatorname{NTIME}\left(n^{c}\right) \\
\operatorname{PSPACE} & =\bigcup_{c=1}^{\infty} \operatorname{DSPACE}\left(n^{c}\right) \\
\operatorname{NPSPACE} & =\bigcup_{c=1}^{\infty} \operatorname{NSPACE}\left(n^{c}\right) \\
\operatorname{EXP} & =\bigcup_{c=1}^{\infty} \operatorname{DTIME}\left(2^{n^{c}}\right) \\
\operatorname{NEXP} & =\bigcup_{c=1}^{\infty} \operatorname{NTIME}\left(2^{n^{c}}\right)
\end{array}
$$

Example: Reachability

In which class is Reachability?

Example: Reachability

Reachability in NL (Proof)

```
I=<G,s,t> with G=<V,E> given.
1. steps:= 0; current := s;
2. if(current = t) return true;
3. if(steps >}>|V|)\mathrm{ return false;
4. steps:= steps +1;
5. current chose from {v\inV <<current,v>\inE}
6. goto 2
```

steps, current, $|V|$, are integers $\leq|V|$
Thus REACHABILITY $\in \operatorname{NSPACE}(3 \log (\sqrt{n}))=\operatorname{NSPACE}(\log (n))$

Relating Complexity Classes

We defined $L, N L, P, N P$, PSPACE, NPSPACE, EXP, and NEXP.

Which subset-relations hold between these
Complexity Classes?

Relating Complexity Classes
 Relationships by Definition

$L \subseteq N L$	$L \subseteq P S P A C E$
$P \subseteq N P$	$N L \subseteq N P S P A C E$
$P S P A C E \subseteq N S P A C E$	$P \subseteq E X P$
$E X P \subseteq N E X P$	$N P \subseteq N E X P$
Determinism	
vS.	Exponentially
Nondeterminism	Higher Bound

Hierarchy Theorems
Time Hierarchy: Proof (I)
Let $B_{f}^{\text {DTME }}=\{<M, x\rangle \mid M(x)=1$ within $\left.\operatorname{DTIME}(f(|x|))\right\}$
$B_{f}^{\text {DTME }} \in \operatorname{DTIME}(s[f](n)) \quad$ (Bounded Simulation)
Set $D_{f}^{\text {DTIME }}=\left\{M \mid<M, M>\notin B_{f}^{\text {DTIME }}\right\}$
Let N be an arbitrary Machine in $\operatorname{DTIME}(f(n))$
$N(N)=1 \Leftrightarrow<N, N>\in B_{f}^{\text {DTIME }}$
$N(N)=1 \Leftrightarrow N \notin D_{f}^{\text {DTMME }}$
$N(N)=1 \Leftrightarrow N \in L(N)$
$\} L(N) \neq D_{f}^{\text {DTME }}$
$D_{f}^{\text {DTIME }} \notin \operatorname{DTIME}(f(n))$
$D_{f}^{\text {DTME }} \in \operatorname{DTIME}(s[f](2 n+1))$

Relating Complexity Classes Hierarchy Theorems

```
DTIME (f(n))\subsetDTIME (f(2n+1)}\mp@subsup{)}{}{2}
```

$f(n) \geq n$

```
DSPACE( }f(n))\subset\operatorname{DSPACE}(f(2n+1)\operatorname{log}f(n)
```

 \(f\) proper
 The same holds for nondeterministic computation (the bound can be lowered significantly)

Hierarchy Theorems
Time Hierarchy: Proof (II)
Let $B_{f}^{\text {DTME }}=\{<M, x\rangle \mid M(x)=1$ within $\left.\operatorname{DTIME}(f(|x|))\right\}$
$B_{f}^{\text {DTMME }} \in \operatorname{DTIME}(s[f](n)) \quad$ (Bounded Simulation)
$D_{f}^{\text {DTIME }} \notin \operatorname{DTIME}(f(n)) \quad D_{f}^{\text {DTIME }} \in \operatorname{DTIME}(s[f](2 n+1))$

$$
\operatorname{DTIME}(f(n)) \subset D T I M E(s[f](2 n+1))
$$

There are several bounded simulation results. It is important to us that $s[f](n)$ is bounded by a polynomial in f. E.g., $s[f](n)=f^{3}(n)$, for $f(n) \geq n$

```
DTIME (f(n))\subsetDTIME (f}\mp@subsup{}{}{3}(2n+1)
```


Hierarchy Theorems
 Exponentially Higher Bounds

$$
\begin{gathered}
\text { We do the DTIME-case: } \\
\begin{array}{l}
\operatorname{DTIME}(f(n)) \subset \operatorname{DTIME}\left(f(2 n+1)^{2}\right) \\
f(n) \geq n
\end{array} \\
f \text { proper } \\
\operatorname{DTIME}(p(n)) \subseteq \operatorname{DTIME}\left(2^{n}\right) \subset \operatorname{DTIME}\left(\left(2^{2 n+1}\right)^{3}\right) \subseteq \operatorname{DTIME}\left(2^{n^{2}}\right) \\
P \subset E X P
\end{gathered}
$$

Relating Complexity Classes
 NTIME vs. DSPACE (Proof I)

```
NTIME (f(n))\subseteqDSPACE(f(n))
```

Let M be an NTM running in time $f(n)$.
In each step, M can make a single nondeterministic decision. However, M can only chose out of c_{M} continuations in a step. Thus, \bar{M} enumerates all possible choices, taking space $c_{M} f(n)$. This string is then used by \bar{M} as a lookup-table whenever M is taking a nondet. choice.

Relating Complexity Classes Further Relationships

```
NTIME (f(n))\subseteqDSPACE(f(n))
```

```
NSPACE (f(n))\subseteqDTIME (c)
```

$\operatorname{NSPACE}(f(n)) \subseteq \operatorname{DSPACE}\left(f^{2}(n)\right)$
$f(n) \geq \log n$

Relating Complexity Classes

NTIME vs. DSPACE (Proof II)

Thus, \bar{M} enumerates all possible choices, taking space $c_{M} f(n)$. This string is then used by \bar{M} as a lookup - table whenever M is taking a nondet. choice.

For each enumerated choice-string, \bar{M} simulates M.
If M aceepts in one of these simulations, \bar{M} accepts, too.
Otherwise, \bar{M} rejects.
\bar{M} requires $c_{M} f(n)+f(n)$ space, i.e. $\bar{M} \in \operatorname{DSPACE}(f(n))$.
\bullet

Relating Complexity Classes
NTIME vs. DSPACE

$$
\operatorname{NTIME}(f(n)) \subseteq \operatorname{DSPACE}(f(n))
$$

$N P \subseteq P S P A C E$

Relating Complexity Classes
NSPACE vs. DTIME (Proof I)

```
NSPACE (f(n))\subseteqDTIME (cog}\mp@subsup{}{}{\operatorname{log}n+f(n)}
```

Let M be an NTM running in space $f(n)$.
A configuration of M has the following parts :
the state $k \in K_{M}$ of M
the cursor position $1 \leq i \leq n+1$ of M
the contents $<s_{1}, \ldots, s_{l}>$ of the tapes of $M: s_{i} \in \Sigma^{f(n)}$
Thus, there are $\left|K_{M}\right|(n+1)|\Sigma|^{l^{(n)}}$ different configs.
Using C_{M} we find at most $C_{M}^{\log n+f(n)}$ configs.

Relating Complexity Classes
 NSPACE vs. DTIME (Proof II)

Using C_{M} we find at most $C_{M}^{\log n+f(n)}$ configs.
Now we define $G_{x}^{M}=<V, E>$ with $V=\{$ configs. of M \} and $\langle u, v\rangle \in E$ iff there is a direct transition from u to v on input X .

Define $s \in V$ to be the initial config of M and
$t \in V$ to be the accepting config of M (normalization).
$<G_{x}^{M}, s, t>$ is a REACH instance with $C_{M}^{\log n+f(n)}$ nodes.
$<G_{x}^{M}, s, t>\in$ REACH iff $M(x)=1$

Relating Complexity Classes

NSPACE vs. DTIME (Proof III)

$<G_{x}^{M}, s, t>$ is a REACH instance with $C_{M}^{\log n+f(n)}$ nodes. $<G_{x}^{M}, s, t>\in$ REACH iff $M(x)=1$

REACH $\in P$. Thus we can decide $\left\langle G_{x}^{M}, s, t>\in R E A C H\right.$ in $\operatorname{DTIME}\left(\left(C_{M}^{\log n+f(n)}\right)^{k}\right)$ for some constant k.

```
DTIME ((C)
```

Relating Complexity Classes NSPACE vs. DTIME A Note on the Proof
$<G_{x}^{M}, s, t>$ is a REACH instance with $C_{M}^{\log n+f(n)}$ nodes. $<G_{x}^{M}, s, t>\in$ REACH iff $M(x)=1$

The method of representing a space-bounded computation by a graph G_{x}^{M} is called the "Reachability-Method".

Effectively, this is a generic reduction! REACH is NL - hard.

Relating Complexity Classes
 NSPACE vs. DTIME

$$
\operatorname{NSPACE}(f(n)) \subseteq D T I M E\left(c^{\log n+f(n)}\right)
$$

$N L \subseteq P$
$N P S P A C E \subseteq E X P$

Relating Complexity Classes

NSPACE vs. DSPACE (Proof II)

$$
\begin{aligned}
& <G_{x}^{M}, s, t>\text { is a REACH instance with } C^{f(n)} \text { nodes. } \\
& <G_{x}^{M}, s, t>\in R E A C H \text { iff } M(x)=1
\end{aligned}
$$

We cannot compute the graph - it is exponential! So how to access it?

We can compute the configuartions s and t.
Having two nodes u and v, we check $\langle u, v\rangle \in E$
by simulating M on u with input string x.

Relating Complexity Classes
 NSPACE vs. DSPACE (Proof III)

```
PATH(G,i,j,d)
    if <i,j>\inE then return true;
    if d=0 then return false;
    for(z=1; z \ V V ;+++z)
        if PATH (G,i,z,d -1) and PATH (G, z,j,d -1) then
        return true;
    return false;
```

$\operatorname{PATH}(G, i, j, d)$ is true iff \exists a path from i to j of length $\leq 2^{d}$ $\operatorname{PATH}(G, s, t,\lceil\log |V| \mid)$ iff $<G, s, t>\in R E A C H$

Relating Complexity Classes
NSPACE vs. DSPACE (Proof IV)

```
PATH(G,i,j,d)
```

 if \(\langle i, j\rangle \in E\) then return true;
 if \(d=0\) then return false;
 for \((z=1 ; z<|V| ;++z)\)
 if \(\operatorname{PATH}(G, i, z, d-1)\) and \(\operatorname{PATH}(G, z, j, d-1)\) then
 return true;
 return false;
 Recursive depth of at most d
Each "stack - frame" has size $3 \log |V|$
$\operatorname{PATH}\left(G, s, t,\lceil\log |V|]\right.$ requires $3 \log ^{2}|V|$ space

Relating Complexity Classes
NSPACE vs. DSPACE (Proof V)

$$
<G_{x}^{M}, s, t>\text { is a REACH instance with } C_{M}^{f(n)} \text { nodes. }
$$ $<G_{x}^{M}, s, t>\in$ REACH iff $M(x)=1$ $\operatorname{PATH}(G, s, t,\lceil\log |V| \mid)$ iff $\langle G, s, t>\in R E A C H$ $\operatorname{PATH}(G, s, t,[\log |V|])$ requires $3 \log ^{2}|V|$ space

Taken together : $M(x)=1$ can be decided in $\operatorname{DSPACE}\left(3 \log ^{2}\left(C_{m}^{f(n)}\right)\right)=\operatorname{DSPACE}\left(f^{2}(n)\right)$

Relating Complexity Classes
NSPACE vs. DSPACE

$$
\begin{aligned}
& \operatorname{NSPACE}(f(n)) \subseteq \operatorname{DSACE}\left(f^{2}(n)\right) \\
& f(n) \geq \log n
\end{aligned}
$$

NPSPACE = PSPACE

Relating Complexity Classes
Relationships

$$
\begin{array}{ll}
L \subseteq N L & N L \subseteq P \\
P \subseteq N P & N P \subseteq P S P A C E
\end{array}
$$

$P S P A C E \subseteq N S P A C E$
NPSPACE $\subseteq P S P A C E$

$$
E X P \subseteq N E X P
$$

$$
N P S P A C E \subseteq E X P
$$

Determinism

VS.
Nondeterminism

Relating Complexity Classes

Relationships

$$
\begin{array}{ll}
L \subseteq N L & N L \subseteq P \\
P \subseteq N P & N P \subseteq P S P A C E
\end{array}
$$

$P S P A C E \subseteq N S P A C E$
NPSPACE $\subseteq P S P A C E$
$E X P \subseteq N E X P$
NPSPACE $\subseteq E X P$

$$
L \subseteq N L \subseteq P \subseteq N P \subseteq P S P A C E \subseteq E X P \subseteq N E X P
$$

Relating Complexity Classes
 Further Relationships

$$
L \subseteq N L \subseteq P \subseteq N P \subseteq P S P A C E \subseteq E X P \subseteq N E X P
$$

$$
N L \subset P S P A C E \quad P \subset E X P \quad N P \subset N E X P
$$

Thus there must be proper set inclusions however, the question which ones are proper is an open question.

Complement Classes

```
Let C be a class of decision problems.
Then coC = {价 | L\inC}.
```

Deterministic classes are closed under complementation: $L=c o L, P=c o P, P S P A C E=c o P S P A C E, E X P=c o E X P$.

Complement Problems

Let L be a language.
Then $\bar{L}=\left\{x \in \Sigma^{*} \mid x \notin L\right\}$ is the associated complement language.

Thus, formally L and \bar{L} add up to Σ^{*}.
However, often one defines $\overline{\text { CircuitSAT }}$ as the set of circuits which are not satisfiable.

In consequence CircuitSAT $\cup \overline{\text { CircuitSAT }}$
is the set of strings which encode circuits.

Complement Classes
 Nondeterministic Co-Classes

How can we handle complement problems in the context of nondeterminism?

A problem is, say, in NP iff there is an NTM running in poly - time, which accepts every positive instance at the end of AT LEAST ONE path.

Consequently a problem is in coNP iff there is an NTM running in poly - time, which accepts every positive instance at the end of EACH path.

Complement Classes

Example: CIRSAT
CIRSAT can be solved with an $N P$ - algorithm M : M guesses an assignemt A for the input circuit C M accepts iff A satisfies C.
Thus M evaluates $\exists A: C(A)=1$.

CIRSAT(COMPLEMENT) can be solved with
a coNP - algorithm M :
M guesses an assignemt A for the input circuit C
M accepts iff A does not satisfy C.
Thus M evaluates $\forall A: C(A)=0$

Complement Classes

Nondeterministic Co-Classes
The NTIME - case is open, i.e., whether $N P=c o N P$, or NEXP $=$ coNEXP is unknown.

We already know : NPSPACE = coNPSAPCE, since $\operatorname{PSPACE}=$ NPSPACE. Is there more?

$$
\begin{aligned}
& \operatorname{NSPACE}(f(n))=\operatorname{coNSPACE}(f(n)) \\
& f(n) \geq \log n \text {, proper } \\
& \text { Immerman-Szelepscenyi Theorem }
\end{aligned}
$$

NSPACE vs. coNSPACE Reachability Method Again

Again, we will use the reachability method:
That is, given an NTM M respecting the space bound f and an input string x, we define the configuration graph G_{x}^{M}.
$<G_{x}^{M}, s, t>$ is a REACH instance with $C_{M}^{\log f(n)+f(n)}$ nodes. $<G_{x}^{M}, s, t>\in$ REACH iff $M(x)=1$

NSPACE vs. coNSPACE

Counting the Number of Reachable Nodes

Let $S(k) \subseteq V$ be the set of nodes which can be reached from s by a path of length $\leq k$. $S(0)=\{s\}$.

Within $\log |V|$, we cannot compute $S(k)$ but we can compute $|S(k)|$.

This is still a bit complicated:
We will compute $|S(k+1)|$ based on $|S(k)|$.

NSPACE vs. coNSPACE
 Functions \& Nondeterminism

We say that we can compute a function with a nondeterministic machine, iff all accepting paths lead to the same result.

- we must prove that each accepting path leads to the correct result
- we have to prove that there is at least one accepting path

Reusing: REACH is in NL

bool guesspath($G ; v, k$)
bool guesspath($G ; v, k$)

1. steps $:=1$; current $:=s$;
2. steps $:=1$; current $:=s$;
3. if(current $=v$) return true;
4. if(current $=v$) return true;
5. if(steps $>k$) return false;
6. if(steps $>k$) return false;
7. steps $:=$ steps +1 ;
8. steps $:=$ steps +1 ;
9. current chose from $\{u \in V \mid<$ current, $u>\in E\}$
10. current chose from $\{u \in V \mid<$ current, $u>\in E\}$
11. goto 2
12. goto 2
$\operatorname{guesspath}(G ; v, k)=\left\{\begin{array}{l}\operatorname{true}: \exists \operatorname{path}(s, v) \text { in } G \text { of length } \leq k \\ \text { false : no such path exists, or wron }\end{array}\right.$
guesspath $(G ; v, k)$ takes $O(\log |V|)$ space

NSPACE vs. coNSPACE
 CheckPath

bool checkpath(G;v,k, last)
bool checkpath(G;v,k, last)

1. count $:=0$; result $:=$ false;
2. count $:=0$; result $:=$ false;
3. for $u:=1$ to $|V|$ do
4. for $u:=1$ to $|V|$ do
5. if guesspath($\mathrm{G} ; \mathrm{u}, \mathrm{k}-1$) then
6. if guesspath($\mathrm{G} ; \mathrm{u}, \mathrm{k}-1$) then
7. count $:=$ count +1 ;
8. count $:=$ count +1 ;
9. if $u=v$ or $\langle u, v\rangle \in E$ then result := true;
10. if $u=v$ or $\langle u, v\rangle \in E$ then result := true;
11. if count < last then reject; else return result;
12. if count < last then reject; else return result;
checkpath $(G ; v, k,|S(k-1)|) \Leftrightarrow v \in S(k) \quad k>0$
checkpath $(G ; v, k,|S(k-1)|) \Leftrightarrow v \in S(k) \quad k>0$
checkpath $(G ; v, k,|S(k-1)|)$ takes $O(\log |V|)$ space
checkpath $(G ; v, k,|S(k-1)|)$ takes $O(\log |V|)$ space
(guesspath, count, and u require only $O(\log |V|)$)
(guesspath, count, and u require only $O(\log |V|)$)

NSPACE vs. coNSPACE
 CheckPath (Correctness I)

```
bool checkpath(G;v,k,last)
1.count:= 0; result:= false;
2. for }u:=1\mathrm{ to }|V|\mathrm{ do
3. if guesspath(G;u,k-1) then
4. count:= count +1;
5. if u=v or <u,v>\inE then result := true;
6. if count < last then reject; else return result;
```

count := count $+1 \Rightarrow u$ is reachable from s by path of length $<k$ count $=$ last $=|S(k-1)| \Rightarrow$ all nodes in $S(k-1)$ have been found, otherwise line 6 rejects

NSPACE vs. coNSPACE

CheckPath (Correctness II)

count $=$ last $=|S(k-1)| \Rightarrow$ all nodes in $S(k-1)$ have been found, otherwise line 6 rejects.
but then line 5 correctly determines whether $v \in S(k)$

NSPACE vs. coNSPACE

Unreachable (Correctness)

```
bool unreachable(G)
1. last:=1;
2. for }k:=1\mathrm{ to |V |-2 do
3. current:= 0;
4. for v:=1 to |V| do
5. if checkpath(G;v,k,last) then current := current +1;
6. last := current;
7. return not checkpath(G;t,|V|-1, last);
```

for lines 2-5, last $=|S(k-1)|$ can be proved by induction, starting with $|S(0)|=1$, and using current $=|S(k)|$ in line 6 therefore line 7 returns the correctly $\neg \exists$ path (G, s, t)

Relating Complexity Classes
Summary

```
L \subseteq N L \subseteq P \subseteq N P \subseteq P S P A C E \subseteq E X P \subseteq N E X P
```

$$
N L \subset P S P A C E \quad P \subset E X P \quad N P \subset N E X P
$$

NSPACE vs. coNSPACE
 Unreachable

```
bool unreachable( \(G\) )
    1. last :=1;
    2. for \(k:=1\) to \(|V|-2\) do
    3. current \(:=0\);
    4. for \(v:=1\) to \(|V|\) do
        if checkpath \((G ; v, k\), last \()\) then current \(:=\) current +1 ;
    6. last \(:=\) current;
    7. return not checkpath( \(G ; t,|V|-1\), last);
```

 unreachable \((G) \Leftrightarrow \neg \exists \operatorname{path}(G, \mathrm{~s}, t)\)
 unreachable \((G)\) takes \(O(\log |V|)\) space
 (checkpath, last, \(k, v\) take \(O(\log |V|)\) space)

