
1

Turing Machines

A Model of Computation

Alan Turing

• Born in 1912

• 1922: Troubles in School

• 1936: Turing Machine

• WWII: Bletchley Park

• 1954: Suicide?!

Original Motivation

Modeling “Human Computers”

What are “Human Computers”?

Remember the 
Turing Test!

Original Motivation

Modeling “Human Computers”

What are “Human Computers”?

Today’s Perspective

Modeling “Computers”

What are “Computers”?

Today’s Perspective

Modeling “Computers”

What are “Computers”?

• Storage Device
- read/write access
- finite size (conceptually arbitrarily large)

• Control Unit
- defines which step to do next
- aka CPUs/Programs 
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Today’s Perspective

Modeling “Computers”

What are “Computers”?

Today’s Perspective

Modeling “Computers”

What are “Computers”?
Modeling…

But what 
for???

Today’s Perspective

Modeling “Computers”

What are “Computers”?
Modeling…

But what 
for???

Reasoning about
- algorithms
- computational problems

Treating them as Mathematical Objects!!!

Algorithms as
Mathematical Objects

• TMs are meant for formulating & proving 
general statements about algorithms:
– What is computable by TMs?
– How much time/space do TMs need to 

solve a given problem?
• TMs are NOT meant for

– programming
– real computations
– browsing the web

So what?!
Turing Machines

and real computers?!

Relevance of TMs:
What is Computable by TMs?

LCMs can do anything that could be described 
as "rule of thumb" or "purely mechanical".

This is sufficiently well established that it is
now agreed amongst logicians that "calculable
by means of an LCM" is the correct accurate 
rendering of such phrases.

(Turing in 1948 on his Logical Computing Machine)

Relevance of TMs:
Church-Turing Thesis

LCMs can do anything that could be described 
as "rule of thumb" or "purely mechanical".

• Historically: A lot of models are equivalent to TMs
(i.e., they describe the same set of algorithms)

- Lambda Calculus
- Partially Recursive Functions
- … 

• Practically: All known computer systems are
equivalent to TMs.
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Relevance of TMs:
How efficient are TMs?

All reasonable models of computation are 
polynomially related to the TM wrt. their time
performance.

Relevance of TMs:
How efficient are TMs?

All reasonable models of computation are 
polynomially related to the TM wrt. their time
performance.

This is established by simulation arguments…

.knk  fixed some for  runtime with
TM aby  simulated be can 4 PentiumA 

Relevance of TMs:
Extended Church-Turing Thesis

All reasonable models of computation are 
polynomially related to the TM wrt. their time
performance.

This is established by simulation arguments…
…. it’s a thesis – not a theorem.

DNA-Computing

Quantum-Computing

Relevance of TMs:
Extended Church-Turing Thesis

TMs can simulate real computers efficiently

TMs have a mathematically simple structure

TMs are the ideal vehicle to build a
Theory on Efficient Computability

This Lecture

• Definition of TMs
• Execution of TMs
• Multi-Tape TMs
• Non-Deterministic TMs

Storage Device of a TM
• Tape

– arbitrarily long but finite strip divided into cells
– each cell contains a single symbol
– finite alphabet of symbols

• Tape Head
– accesses one cell at a time (active cell)
– reads symbol from active cell
– overwrites symbol to active cell
– moves left, right or stays

# # 1 1 0 0 1 # # # # # # ###
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Control Unit of a TM

• Set of States
- finite size

• Transition Function
given a state and an input symbol, the control
decides which

- symbol to write
- direction the head is moved
- new state to assume

# # 1 1 0 0 1 # # # # # # ###

Control
Unit

Example

T

H

BS

0:0/→
1:1/→

#:#/←

#:1/-

1:0/←

0:1/←
0:0/ ←
1:1/ ←

#:#/ →

Alphabet: {0,1}
Blank Symbol: #

Example

T

H

BS #:#/←

#:1/-

0:0/→
1:1/→

1:0/←

0:1/←
0:0/ ←
1:1/ ←

#:#/ →

# # 1 1 0 0 1 # # # # # # ###

S
Input String

Example

T

H

BS #:#/←

#:1/-

0:0/→
1:1/→

1:0/←

0:1/←
0:0/ ←
1:1/ ←

#:#/ →

# # 1 1 0 0 1 # # # # # # ###

S

Example

T

H

BS #:#/←

#:1/-

0:0/→
1:1/→

1:0/←

0:1/←
0:0/ ←
1:1/ ←

#:#/ →

# # 1 1 0 0 1 # # # # # # ###

S ….

Example

T

H

BS #:#/←

#:1/-

0:0/→
1:1/→

1:0/←

0:1/←
0:0/ ←
1:1/ ←

#:#/ →

# # 1 1 0 0 1 # # # # # # ###

S
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Example

T

H

BS #:#/←

#:1/-

0:0/→
1:1/→

1:0/←

0:1/←
0:0/ ←
1:1/ ←

#:#/ →

# # 1 1 0 0 1 # # # # # # ###

T

Example

T

H

BS #:#/←

#:1/-

0:0/→
1:1/→

1:0/←

0:1/←
0:0/ ←
1:1/ ←

#:#/ →

# # 1 1 0 0 0 # # # # # # ###

T

Example

T

H

BS #:#/←

#:1/-

0:0/→
1:1/→

1:0/←

0:1/←
0:0/ ←
1:1/ ←

#:#/ →

# # 1 1 0 1 0 # # # # # # ###

B….

Example

T

H

BS #:#/←

#:1/-

0:0/→
1:1/→

1:0/←

0:1/←
0:0/ ←
1:1/ ←

#:#/ →

# # 1 1 0 1 0 # # # # # # ###

B

Example

T

H

BS #:#/←

#:1/-

0:0/→
1:1/→

1:0/←

0:1/←
0:0/ ←
1:1/ ←

#:#/ →

# # 1 1 0 1 0 # # # # # # ###

H
Output String

Formal Turing Machine Definition

sKM ,,, δΣ=

Ks∈ state initial -

K states of set finite -

(alphabet)  symboles of set finite - Σ

},,{R})A,{H,(: −→←×Σ×∪→Σ× KKδ  
function transition -
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Example

T

H

BS

0:0/→
1:1/→

#:#/←

#:1/-

1:0/←

0:1/←
0:0/ ←
1:1/ ←

#:#/ →

Alphabet: {0,1}
Blank Symbol: #

sKM ,,, δΣ=

Example

T

H

BS

0:0/→
1:1/→

#:#/←

#:1/-

1:0/←

0:1/←
0:0/ ←
1:1/ ←

#:#/ →

sKM ,,, δΣ={ }#,1,0=Σ

# is always 
included

Example

T

H

BS

0:0/→
1:1/→

#:#/←

#:1/-

1:0/←

0:1/←
0:0/ ←
1:1/ ←

#:#/ →

sKM ,,, δΣ={ }#,1,0=Σ
{ }BT,S,=K

State H is 
never left! Example

T

H

BS

0:0/→
1:1/→

#:#/←

#:1/-

1:0/←

0:1/←
0:0/ ←
1:1/ ←

#:#/ →

sKM ,,, δΣ={ }#,1,0=Σ
{ }BT,S,=K
Ss =

Example

TS

0:0/→
1:1/→

#:#/←

sKM ,,, δΣ={ }#,1,0=Σ
{ }BT,S,=K
Ss =

....
,#,)#,(

,0,)0,(
,1,)1,(

←>=<
→>=<
→>=<

TS
SS
SS

δ
δ
δ

Formal Turing Machine Definition

sKM ,,, δΣ=

Ks∈ state initial -

K states of set finite -

(alphabet)  symboles of set finite - Σ

},,{R})A,{H,(: −→←×Σ×∪→Σ× KKδ  
function transition -

This Lecture

• Definition of TMs
• Execution of TMs
• Multi-Tape TMs
• Non-Deterministic TMs
• Uniformity Theorem
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This Lecture

• Definition of TMs
• Execution of TMs
• Multi-Tape TMs
• Non-Deterministic TMs
• Uniformity Theorem

Execution of TMs

The execution of a TM is described formally as a 
Sequence of Configurations.

A Step of TM is the transition from one 
Configuration to the next one.

Two special configurations:
• Initial Configuration
• Halting Configuration

Configuration

# # 1 1 0 1 0 # # # # # # ###

B

execution. some during  of state entire
 the describes  of  ionConfiguratA 

M
sKMC ,,, δΣ=

• cursor position
• tape contents 
• state

It must contain:

Configuration

# # 1 1 0 1 0 # # # # # # ###

B

execution. some during  of state entire
 the describes  of  ionConfiguratA 

M
sKMC ,,, δΣ=

*,,, Σ∈∈>=< uwKquwqC  and   with Triple

w u

w is the string up until the tape head
u contains the rest
#s which have not been visited are ignored

Configuration

# # 1 1 0 1 0 # # # # # # ###

B

execution. some during  of state entire
 the describes  of  ionConfiguratA 

M
sKMC ,,, δΣ=

*,,, Σ∈∈>=< uwKquwqC  and   with Triple

w

>=< #010,11B,C

u

A Computational Step

n

nn

nn

uuu
uwwwwdir

dirwqwquwqC

...'
'...'

,','),(,,

2

111

=
==→

>=<>=<

−

                      
 then  If

.  and δ

#s are 
padded
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A Computational Step

n

nn

nn

uuu
uwwwwdir

dirwqwquwqC

...'
'...'

,','),(,,

2

111

=
==→

>=<>=<

−

                      
 then  If

.  and δ

The transition from C to C’ is a single step.

y.analogousl  and  For −==→ dirdir

.',','' >=< uwqCC   yieldto said is 

#s are 
padded

Example

T

H

BS #:#/←

#:1/-

0:0/→
1:1/→

1:0/←

0:1/←
0:0/ ←
1:1/ ←

#:#/ →

# # 1 1 0 0 1 # # # # # # ##

S

Example
# # 1 1 0 0 1 # # # # # # ###

S
>=< 1001,1S,C

Example

T

H

BS #:#/←

#:1/-

0:0/→
1:1/→

1:0/←

0:1/←
0:0/ ←
1:1/ ←

#:#/ →

# # 1 1 0 0 1 # # # # # # ##

S

Example
# # 1 1 0 0 1 # # # # # # ###

S
>=< 1001,1S,C
>=< 001,11S,C…

…

Example

T

H

BS #:#/←

#:1/-

0:0/→
1:1/→

1:0/←

0:1/←
0:0/ ←
1:1/ ←

#:#/ →

# # 1 1 0 0 1 # # # # # # ##

S

Example
# # 1 1 0 0 1 # # # # # # ###

S
>=< 1001,1S,C
>=< 001,11S,C

…
>=< ε,#11001S,C

Example

T

H

BS #:#/←

#:1/-

0:0/→
1:1/→

1:0/←

0:1/←
0:0/ ←
1:1/ ←

#:#/ →

# # 1 1 0 0 1 # # # # # # ##

S

Example
# # 1 1 0 0 1 # # # # # # ###

T
>=< 1001,1S,C
>=< 001,11S,C

…
>=< ε,#11001S,C

>=< #,11001T,C

Example

T

H

BS #:#/←

#:1/-

0:0/→
1:1/→

1:0/←

0:1/←
0:0/ ←
1:1/ ←

#:#/ →

# # 1 1 0 0 1 # # # # # # ##

S

Example
# # 1 1 0 0 0 # # # # # # ###

T
>=< 1001,1S,C
>=< 001,11S,C

…
>=< ε,#11001S,C

>=< #,11001T,C
>=< #0,1100T,C
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Example

T

H

BS #:#/←

#:1/-

0:0/→
1:1/→

1:0/←

0:1/←
0:0/ ←
1:1/ ←

#:#/ →

# # 1 1 0 0 1 # # # # # # ##

S

Example
# # 1 1 0 1 0 # # # # # # ###

B
>=< 1001,1S,C
>=< 001,11S,C

…
>=< ε,#11001S,C

>=< #,11001T,C
>=< #0,1100T,C
>=< #10,110B,C

…

…

Example

T

H

BS #:#/←

#:1/-

0:0/→
1:1/→

1:0/←

0:1/←
0:0/ ←
1:1/ ←

#:#/ →

# # 1 1 0 0 1 # # # # # # ##

S

Example
# # 1 1 0 1 0 # # # # # # ###

B
>=< 1001,1S,C
>=< 001,11S,C

…
>=< ε,#11001S,C

>=< #,11001T,C
>=< #0,1100T,C
>=< #10,110B,C

…
>=< #11010,#B,C

Example

T

H

BS #:#/←

#:1/-

0:0/→
1:1/→

1:0/←

0:1/←
0:0/ ←
1:1/ ←

#:#/ →

# # 1 1 0 0 1 # # # # # # ##

S

Example
# # 1 1 0 1 0 # # # # # # ###

H
>=< 1001,1S,C
>=< 001,11S,C

…
>=< ε,#11001S,C

>=< #,11001T,C
>=< #0,1100T,C
>=< #10,110B,C

…
>=< #11010,#B,C
>=< #1010,1#H,C

Initial Configuration
# # 1 1 0 0 1 # # # # # ###

S
Input String

>=< 1001,1,SC
In our example, we started with the configuration

  input and  Given *}){#(,,, −Σ∈Σ= xsKM δ
>=< nxxxsC ...,, 21 is the initial configuration

Halting Configuration

>=< #1010,1#,HC
In our example, we halt with the configuration

# # 1 1 0 1 0 # # # # # ###

H
Output String

},,{
,,
RAHq
uwqC

∈
>=< if ion,configurat halting a is 

Halting Configuration: Functions

# # 1 1 0 1 0 # # # # # ###

H
Output String

If q=H then the M computed a function.

The result is the string between the head and the
first # to the right.

1)( += xxM  :example our In
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Excursus: Decision Problems

• Remember the UNO-Problem.
• Given a set of states, you can ask whether

there is peaceful seating arrangement.
• This a decision problem: The answer is a single bit.
• Their simple structure is helpful within complexity.
• Formal Language: The set of positive instances.
• Functional problems can be “reduced” 
to decision problems.

Halting Configuration: Decision

# # 1 1 0 1 0 # # # # # ###

A

If q=A (q=R) then M accepted (rejected) the input x.

{ }A)()(
,,,

* =Σ∈=

>Σ=<

xMxML
sKM

 : 
:language a decides  an Such δ

Runtime of a TM
.}){#(,,, *−Σ∈Σ= xsKM  and  Let δ

The the number of steps between initial
and halting configuration is the runtime of
M on x.

If M does not reach a halting state (H,A,R), then
M does not terminate (runs forever).

).(}){#(
|)(|

* nfMx
xfM

 time in runs  then 
 all for less or steps   withinhalts  If

−Σ∈

Example
# # 1 1 0 1 0 # # # # # # ###

H
>=< 1001,1S,C
>=< 001,11S,C

…
>=< ε,#11001S,C

>=< #,11001T,C
>=< #0,1100T,C
>=< #10,110B,C

…
>=< #11010,#B,C
>=< #1010,1#H,C

Runtime of M on 110110:
12 steps

Example

T

H

BS #:#/←

#:1/-

0:0/→
1:1/→

1:0/←

0:1/←
0:0/ ←
1:1/ ←

#:#/ →

# # 1 1 0 0 1 # # # # # # ##

S

Example
n steps

n+1 steps

1 step

M runs in 2n+2

Space used by a TM
.}){#(,,, *−Σ∈Σ= xsKM  and  Let δ

The number of symbols in the largest configuration
is the space required by M on input x.

).(}){#(
|)(|

* nfMx
xfM

 space in runs  then 
 all for less or space   withinruns  If

−Σ∈
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Example
# # 1 1 0 1 0 # # # # # # ###

H
>=< 1001,1S,C
>=< 001,11S,C

…
>=< ε,#11001S,C

>=< #,11001T,C
>=< #0,1100T,C
>=< #10,110B,C

…
>=< #11010,#B,C
>=< #1010,1#H,C

Space requirement of M
on input 110110:
7 cells

Maximal configurations

Example
# # 1 1 0 1 0 # # # # # # ###

H

M runs in space n+2

Configuration

# # 1 1 0 1 0 # # # # # # ###

B

execution. some during  of state entire
 the describes  of  ionConfiguratA 

M
sKMC ,,, δΣ=

*,,, Σ∈∈>=< uwKquwqC  and   with Triple

w u

w is the string up until the tape head
u contains the rest
#s which have not been visited are ignored

This Lecture

• Definition of TMs
• Execution of TMs
• Multi-Tape TMs
• Non-Deterministic TMs
• Encoding
• Constants do not matter

This Lecture

• Definition of TMs
• Execution of TMs
• Multi-Tape TMs
• Non-Deterministic TMs
• Uniformity Theorem

Multi-Tape TMs

• Instead of a single tape, we use several tapes

• They are dedicated:
– Input Tape (read only)
– Work Tapes (read/write)
– Output Tape (write only)

Multi-Tape TMs: Definition

:,,, sKM δΣ= definition the adapting

kkk KK },,{R})A,{H,(: −→←×Σ×∪→Σ×δ

rest is the same.

Read and write k symbols,
move on k tapes

If M is a k tape TM, then
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Multi-Tape TMs: Configuration

*
11 ,,,...,, Σ∈∈>=< iikk uwKquwuwqC  and  with

If M is a k tape TM, then

:,,, *Σ∈∈>=< uwKquwqC  and   with adpating

…. just k tapes

Multi-Tape TMs: Space Bound

*
11 ,,,...,, Σ∈∈>=< iikk uwKquwuwqC  and  with

The number of symbols in the largest configuration
is the space required by M on input x.

But only the contents of the work tapes are counted!

I.e., input and output are not considered for
space bounds.

Multi-Tape TMs: Stronger??

)).((
)(')('

))((

2 nfO
xMxMM

nfOkM

 time in runs which
   with TM tape1- a is there Then

 . time in running TM tape a be  Let
=

−

(On the other hand: Palindroms can be decided by a
• 2-tape TM within time O(n)
• 1-tape TM requires O(n2).)

Multi-Tape TMs

• Instead of a single tape, we use several tapes

• They are dedicated:
– Input Tape (read only)
– Work Tapes (read/write)
– Output Tape (write only)

This Lecture

• Definition of TMs
• Execution of TMs
• Multi-Tape TMs
• Non-Deterministic TMs
• Uniformity Theorem

This Lecture

• Definition of TMs
• Execution of TMs
• Multi-Tape TMs
• Non-Deterministic TMs
• Uniformity Theorem

Deterministic TMs

The TMs we saw so far were deterministic.

I.e., the input determined the outcome of 
the computation.

},,{R})A,{H,(: −→←×Σ×∪→Σ× KKδ
I.e., we used a transition function:

That’s the way, our real computers work….
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Non-Deterministic TMs

Non-Deterministic TMs are a formalism to 
express certain algorithms.  

…. but you cannot simulate a nondet. TM directly
by a real computer…

We start with an example…

Example: UNO

?  in nodes all includes  whichcircle a there Is
 graph undirected an Given

V
EVG ., >=<

1

2

3
4

Note: We are only looking at the decision problem …

Example: UNO

?  in nodes all includes  whichcircle a there Is
 graph undirected an Given

V
EVG ., >=<

1

2

3
4Sure:

Example: UNO

?  in nodes all includes  whichcircle a there Is
 graph undirected an Given

V
EVG ., >=<

If you try to solve this problem, you will end up
enumerating the possible solutions…

reject 3.
accept  then  in path a is  if    2.
 of  npermutatio each for 1.

G
Vπ

π

reject 3.
accept  then  in path a is  if 2.

 of  npermutatio a guess 1.
G

Vπ
π

Example: UNO

reject 3.
accept  then  in path a is  if    2.
 of  npermutatio each for 1.

G
Vπ

π

Almost equivalently, you can write:

It might make 
a wrong 
guess?!? reject 3.

accept  then  in path a is  if 2.
 of  npermutatio a guess 1.

G
Vπ

π

Example: UNO

… it might make a wrong guess, but

if there exists a solution, at least one guess will find it!

A way to capture such “algorithms”:
Non-deterministic TMs.
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Deterministic TMs

},,{R})A,{H,(: −→←×Σ×∪→Σ× KKδ

We emphasized the fact that det. TMs use a
transition function.

Non-Deterministic and 
Deterministic TMs

},,{R})A,{H,(: −→←×Σ×∪→Σ× KKδ

We emphasized the fact that det. TMs use a
transition function.

},,{R})A,{H,( −→←×Σ×∪×Σ×⊆ KKδ

For a reason. Non-det. TMs use a
transition relation.

Non-Deterministic TMs

},,{R})A,{H,( −→←×Σ×∪×Σ×⊆ KKδ

For a reason. Non-det. TMs use a
transition relation.

*,,, Σ∈∈>=< uwKquwqC  and   with
:same the still are ionsConfigurat

But how does it run??? 

A Deterministic
Computational Step

n

nn

nn

uuu
uwwwwdir

dirwqwquwqC

...'
'...'

,','),(,,

2

111

=
==→

>=<>=<

−

                      
 then  If

.  and δ

The transition from C to C’ is a single step.

y.analogousl  and  For −==→ dirdir

.',','' >=< uwqCC   yieldto said is 

A Nondeterministic 
Computational Step

n

nn

nn

uuu
uwwwwdir
dirwqwquwqC

...'
'...'

,',',,,,

2

111

=
==→

>∈<>=<

−

                      
 then  If

.  and δ

The transition from C to C’ is a single step.

y.analogousl  and  For −==→ dirdir

.',','' >=< uwqCC   yieldto said is 

Example

HS #:#/-
#:0/→
#:1/→

>=< ε,#S,C
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Example

HS #:#/-
#:0/→
#:1/→

>=< ε,#S,C

>=< ε,#1S,C >=< ε,#0S,C>=< ε,#H,C

This Lecture

• Definition of TMs
• Execution of TMs
• Multi-Tape TMs
• Non-Deterministic TMs
• Uniformity Theorem

This Lecture

• Definition of TMs
• Execution of TMs
• Multi-Tape TMs
• Non-Deterministic TMs
• Uniformity Theorem

Uniformity Theorem

For every polynomial time algorithm A, there is 
a family of circuits C1 ,C2 …, such that 

• Ci can be constructed in time polynomial in i
• C|x|(x)=A(x)

Example

T

H

BS #:#/←

#:1/-

0:0/→
1:1/→

1:0/←

0:1/←
0:0/ ←
1:1/ ←

#:#/ →

# # 1 1 0 0 1 # # # # # # ##

S

Example

# # 1 1 0 0/T 0 # # # # # # ### Example

T

H

BS #:#/←

#:1/-

0:0/→
1:1/→

1:0/←

0:1/←
0:0/ ←
1:1/ ←

#:#/ →

# # 1 1 0 0 1 # # # # # # ##

S

Example

# # 1 1 0/B 1 0 # # # # # # ###
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Example

T

H

BS #:#/←

#:1/-

0:0/→
1:1/→

1:0/←

0:1/←
0:0/ ←
1:1/ ←

#:#/ →

# # 1 1 0 0 1 # # # # # # ##

S

Example

# # 1 1 0/B 1 0 # # # # # # ###

# # 1 1 0 0/T 0 # # # # # # ###

C

Uniformity Theorem

# # 1 1 0/B 1 0 # # # # # # ###

# # 1 1 0 0/T 0 # # # # # # ###

C

Uniformity Theorem

# # 1 1 0/B 1 0 # # # # # # ###

# # 1 1 0 0/T 0 # # # # # # ###

CC

Uniformity Theorem

# # 1 1 0/B 1 0 # # # # # # ###

# # 1 1 0 0/T 0 # # # # # # ###

C CC

Uniformity Theorem

# x1/S x2 x3 … xn # # # # # # # # # # # # # # # # # # # # # # #

f(n)
configs

f(n) cells

Uniformity Theorem

# x1/S x2 x3 … xn # # # # # # # # # # # # # # # # # # # # # # #

x1 x2 x3 … xn

Checks for accepting config true/false
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Uniformity Theorem

# x1/S x2 x3 … xn # # # # # # # # # # # # # # # # # # # # # # #

x1 x2 x3 … xn

Checks for accepting config true/false

Cn(x1, x2,…,xn)

Uniformity Theorem for 
Nondeterministic Algorithms

For every nondeterministic polynomial time 
algorithm A, there is a family of circuits C1,  
C2…, such that 

• Ci can be constructed in time polynomial in i
Note: Inputs of Ci are of size polynomial in i

• There exists a y with C|x|(x,y)=true iff
there is a computation of A(x)=true

Example
>=< ε,#S,C

>=< ε,#1S,C >=< ε,#0S,C>=< ε,#H,C

HS #:#/-
#:0/→
#:1/→

Example

HS #:#/-
#:0/→
#:1/→

>=< ε,#1S,C
>=< ε,#0S,C

>=< ε,#H,C

>=< ε,#S,C# # #/S # # # # # # # # # # ###

>=< ε,#S,C# # #/H # # # # # # # # # # ###

CC

00

Example

HS #:#/-
#:0/→
#:1/→

>=< ε,#1S,C
>=< ε,#0S,C

>=< ε,#H,C

>=< ε,#S,C# # #/S # # # # # # # # # # ###

>=< ε,#S,C# # 1 #/S # # # # # # # # # ###

CC

01

Example

HS #:#/-
#:0/→
#:1/→

>=< ε,#1S,C
>=< ε,#0S,C

>=< ε,#H,C

>=< ε,#S,C# # #/S # # # # # # # # # # ###

>=< ε,#S,C# # 0 #/S # # # # # # # # # ###

CC

10
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Uniformity Theorem

# x1/S x2 x3 … xn # # # # # # # # # # # # # # # # # # # #

f(n)
configs

f(n) cells

Uniformity Theorem

# x1/S x2 x3 … xn # # # # # # # # # # # # # # # # # # # #

x1 x2 x3 … xn

Checks for accepting config true/false

y1 y2 … yf(n)

Uniformity Theorem

# x1/S x2 x3 … xn # # # # # # # # # # # # # # # # # # # #

x1 x2 x3 … xn

Checks for accepting config true/false

y1 y2 … yf(n)

Cn(x1, x2,…,xn,y1,y2,…,yf(n))

This Lecture

• Definition of TMs
• Execution of TMs
• Multi-Tape TMs
• Non-Deterministic TMs
• Uniformity Theorem


