

Today's Perspective

Modeling "Computers"
What are "Computers"?

Today's Perspective

Modeling "Computers"
What are "Computers"?

- Storage Device
- read/write access
- finite size (conceptually arbitrarily large)
- Control Unit
- defines which step to do next
- aka CPUs/Programs

Today's Perspective

Today's Perspective

Treating them as Mathematical Objects!!!

Relevance of TMs:
What is Computable by TMs?
LCMs can do anything that could be described as "rule of thumb" or "purely mechanical".

This is sufficiently well established that it is now agreed amongst logicians that "calculable by means of an LCM" is the correct accurate rendering of such phrases.
(Turing in 1948 on his Logical Computing Machine)

Relevance of TMs: Church-Turing Thesis

LCMs can do anything that could be described

 as "rule of thumb" or "purely mechanical".- Historically: A lot of models are equivalent to TMs (i.e., they describe the same set of algorithms)
- Lambda Calculus
- Partially Recursive Functions
- Practically: All known computer systems are equivalent to TMs.

Relevance of TMs: How efficient are TMs?

All reasonable models of computation are polynomially related to the TM wrt. their time performance.

Relevance of TMs: How efficient are TMs?

All reasonable models of computation are polynomially related to the TM wrt. their time performance.

This is established by simulation arguments...
A Pentium 4 can be simulated by a TM with runtime n^{k} for some fixed k.

Relevance of TMs:

 Extended Church-Turing ThesisAll reasonable models of computation are polynomially related to the TM wrt. their time performance.

This is established by simulation arguments... it's a thesis - not a theorem.

DNA-Computing
Quantum-Computing

This Lecture

- Definition of TMs
- Execution of TMs
- Multi-Tape TMs
- Non-Deterministic TMs

Relevance of TMs: Extended Church-Turing Thesis

TMs can simulate real computers efficiently
TMs have a mathematically simple structure

TMs are the ideal vehicle to build a Theory on Efficient Computability

Formal Turing Machine Definition

$$
M=\langle K, \Sigma, \delta, s\rangle
$$

- finite set of states K
- finite set of symboles Σ (alphabet)
- transition function

$$
\delta: K \times \Sigma \rightarrow(K \cup\{\mathrm{H}, \mathrm{~A}, \mathrm{R}\}) \times \Sigma \times\{\leftarrow, \rightarrow,-\}
$$

- initial state $s \in K$

This Lecture

- Definition of TMs

- Execution of TMs
- Multi-Tape TMs
- Non-Deterministic TMs
- Uniformity Theorem
finite set of states K
-finite set of symboles Σ (alphabet)
transition function
$\delta: K \times \Sigma \rightarrow(K \cup\{\mathrm{H}, \mathrm{A}, \mathrm{R}\}) \times \Sigma \times\{\leftarrow, \rightarrow,-\}$ -initial state $s \in K$

This Lecture

- Definition of TMs
- Execution of TMs
- Multi-Tape TMs
- Non-Deterministic TMs
- Uniformity Theorem

Execution of TMs

The execution of a TM is described formally as a Sequence of Configurations.

A Step of TM is the transition from one Configuration to the next one.

Two special configurations:

- Initial Configuration
- Halting Configuration

Configuration

A Configuration C of $M=\langle K, \Sigma, \delta, s\rangle$ describes the entire state of M during some execution.

Configuration

A Configuration C of $M=\langle K, \Sigma, \delta, s\rangle$ describes the entire state of M during some execution.

Triple $C=\left\langle q, w, u>\right.$ with $q \in K$ and $w, u \in \Sigma^{*}$ w is the string up until the tape head u contains the rest \#s which have not been visited are ignored

Configuration

A Configuration C of $M=\langle K, \Sigma, \delta, s\rangle$ describes the entire state of M during some execution.

Triple $C=\left\langle q, w, u>\right.$ with $q \in K$ and $w, u \in \Sigma^{*}$ $C=<\mathrm{B}, 11,010 \#>$

A Computational Step

$$
\begin{aligned}
& C=<q, w, u>\text { and } \delta\left(q, w_{n}\right)=<q^{\prime}, w_{n}{ }^{\prime}, \text { dir }>. \\
& \text { If } \operatorname{dir}=\rightarrow \text { then } w^{\prime}=w_{1} \ldots w_{n-1} w_{n}^{\prime} u_{1} \text { \#S are } \\
& u^{\prime}=u_{2} \ldots u_{n^{\circ}}{ }^{\circ}
\end{aligned}
$$

A Computational Step

$C=\langle q, w, u\rangle$ and $\delta\left(q, w_{n}\right)=\left\langle q^{\prime}, w_{n}{ }^{\prime}, d i r>\right.$.
If $d i r=\rightarrow$ then $w^{\prime}=w_{1} \ldots w_{n-1} w_{n}{ }^{\prime} u_{1}$ \#s are

$$
u^{\prime}=u_{2} \ldots u_{n} \circ \text { (padded }
$$

For $\operatorname{dir}=\rightarrow$ and dir $=-$ analogously.
C is said to yield $C^{\prime \prime}=\left\langle q^{\prime}, w^{\prime}, u^{\prime}\right\rangle$.
The transition from C to C^{\prime} is a single step.

Excursus: Decision Problems

- Remember the UNO-Problem.
- Given a set of states, you can ask whether there is peaceful seating arrangement.
- This a decision problem: The answer is a single bit.
- Their simple structure is helpful within complexity.
- Formal Language: The set of positive instances.
- Functional problems can be "reduced" to decision problems.

Halting Configuration: Decision

\section*{\# | | $\#$ | $\#$ | 1 | 1 | 0 | 1 | 0 | $\#$ | $\#$ | $\#$ | $\#$ | $\#$ | $\#$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

If $q=A(q=R)$ then M accepted (rejected) the input x.
Such an $M=<K, \Sigma, \delta, s>$ decides a language :
$L(M)=\left\{x \in \Sigma^{*}: M(x)=\mathrm{A}\right\}$

Runtime of a TM

Let $M=\langle K, \Sigma, \delta, s\rangle$ and $x \in(\Sigma-\{\#\})^{*}$.
The the number of steps between initial and halting configuration is the runtime of M on x .
If M halts within $f(|x|)$ steps or less for all $x \in(\Sigma-\{\#\})^{*}$ then M runs in time $f(n)$.

If M does not reach a halting state (H, A, R), then M does not terminate (runs forever).

Space used by a TM

Let $M=\langle K, \Sigma, \delta, s\rangle$ and $x \in(\Sigma-\{\#\})^{*}$.
The number of symbols in the largest configuration is the space required by M on input x .

> | If M runs within $f(\|x\|)$ space or less for all |
| :--- |
| $x \in(\Sigma-\{\#\})^{*}$ then M runs in space $f(n)$. |

This Lecture

- Definition of TMs
- Execution of TMs
- Multi-Tape TMs
- Non-Deterministic TMs
- Uniformity Theorem

Multi-Tape TMs

- Instead of a single tape, we use several tapes
- They are dedicated:
$\begin{array}{ll}\text { - Input Tape } & \text { (read only) } \\ \text { - Work Tapes } & \text { (read/write) } \\ \text { - Output Tape } & \text { (write only) }\end{array}$

Multi-Tape TMs: Definition
adapting the definition $M=\langle K, \Sigma, \delta, s\rangle$:
If M is a k tape $T M$, then
$\delta: K \times \mathbb{L}^{k} \rightarrow(K \cup\{\mathrm{H}, \mathrm{A}, \mathrm{R}\}) \times \Sigma^{k} \times\left\{\leftarrow, \rightarrow,--^{k}\right\}$
Read and write k symbols, move on k tapes
rest is the same.

Multi-Tape TMs: Configuration

adpating $C=<q, w, u>$ with $q \in K$ and $w, u \in \Sigma^{*}$:
If M is a k tape $T M$, then

.... just k tapes

Multi-Tape TMs: Space Bound

$C=<q, w_{1}, u_{1}, \ldots w_{k}, u_{k}>$ with $q \in K$ and $w_{i}, u_{i} \in \Sigma^{*}$
The number of symbols in the largest configuration is the space required by M on input x .

But only the contents of the work tapes are counted!
I.e., input and output are not considered for space bounds.

Multi-Tape TMs: Stronger??

Let M be a k-tape TM running in time $O(f(n))$. Then there is a 1 - tape TM M^{\prime} with $M(x)=M^{\prime}(x)$ which runs in time $O\left(f^{2}(n)\right)$.
(On the other hand: Palindroms can be decided by a

- 2-tape TM within time O(n)
- 1-tape TM requires $\mathrm{O}\left(\mathrm{n}^{2}\right)$.)

This Lecture

- Definition of TMs
- Execution of TMs
- Multi-Tape TMs
- Non-Deterministic TMs

Multi-Tape TMs

- Uniformity Theorem
- Instead of a single tape, we use several tapes
- They are dedicated:
- Input Tape (read only)
- Work Tapes (read/wirite)
- Output Tape (write only)

This Lecture

- Definition of TMs
- Execution of TMs
- Multi-Tape TMs
- Non-Deterministic TMs
- Uniformity Theorem

Deterministic TMs

The TMs we saw so far were deterministic.
I.e., the input determined the outcome of the computation.
I.e., we used a transition function:
$\delta: K \times \Sigma \rightarrow(K \cup\{\mathrm{H}, \mathrm{A}, \mathrm{R}\}) \times \Sigma \times\{\leftarrow, \rightarrow,-\}$
That's the way, our real computers work....

Non-Deterministic TMs

Non-Deterministic TMs are a formalism to express certain algorithms.
.... but you cannot simulate a nondet. TM directly by a real computer...

We start with an example...

Example: UNO

Given an undirected graph $G=\langle V, E\rangle$.
Is there a circle which includes all nodes in V ?

Note: We are only looking at the decision problem ..

Example: UNO

Given an undirected graph $G=\langle V, E\rangle$. Is there a circle which includes all nodes in V ?

Sure:

Example: UNO

Given an undirected graph $G=\langle V, E\rangle$.
Is there a circle which includes all nodes in V ?
If you try to solve this problem, you will end up enumerating the possible solutions...

1. for each permutation π of V
2. if π is a path in G then accept
3. reject

Example: UNO

1. guess a permutation π of V
 2. if π is a path in G then accept
 3. reject

... it might make a wrong guess, but
if there exists a solution, at least one guess will find it!
A way to capture such "algorithms": Non-deterministic TMs.

Deterministic TMs

We emphasized the fact that det. TMs use a transition function.

$$
\delta: K \times \Sigma \rightarrow(K \cup\{\mathrm{H}, \mathrm{~A}, \mathrm{R}\}) \times \Sigma \times\{\leftarrow, \rightarrow,-\}
$$

Non-Deterministic TMs

For a reason. Non-det. TMs use a transition relation.

$$
\delta \subseteq K \times \Sigma \times(K \cup\{\mathrm{H}, \mathrm{~A}, \mathrm{R}\}) \times \Sigma \times\{\leftarrow, \rightarrow,-\}
$$

Configurations are still the same:
$C=\left\langle q, w, u>\right.$ with $q \in K$ and $w, u \in \Sigma^{*}$
But how does it run???

Non-Deterministic and Deterministic TMs
We emphasized the fact that det. TMs use a transition function.

$$
\delta: K \times \Sigma \rightarrow(K \cup\{\mathrm{H}, \mathrm{~A}, \mathrm{R}\}) \times \Sigma \times\{\leftarrow, \rightarrow,-\}
$$

For a reason. Non-det. TMs use a transition relation.

$$
\delta \subseteq K \times \Sigma \times(K \cup\{\mathrm{H}, \mathrm{~A}, \mathrm{R}\}) \times \Sigma \times\{\leftarrow, \rightarrow,-\}
$$

A Deterministic Computational Step
$C=<q, w, u>$ and $\delta\left(q, w_{n}\right)=<q^{\prime}, w_{n}{ }^{\prime}, d i r>$.
If $\operatorname{dir}=\rightarrow$ then $w^{\prime}=w_{1} \ldots w_{n-1} w_{n}{ }^{\prime} u_{1}$

$$
u^{\prime}=u_{2} \ldots u_{n}
$$

For dir $=\rightarrow$ and dir $=-$ analogously.
C is said to yield $C^{\prime}=\left\langle q^{\prime}, w^{\prime}, u^{\prime}\right\rangle$.
The transition from C to C^{\prime} is a single step.

A Nondeterministic
 Computational Step

$C=<q, w, u>$ and $\left\langle q, w_{n}, q^{\prime}, w_{n}{ }^{\prime}, \operatorname{dir}>\in \delta\right.$.
If $\operatorname{dir} \rightarrow$ then $w^{\prime}=w_{1} \ldots w_{n-1} w_{n}{ }^{\prime} u_{1}$

$$
u^{\prime}=u_{2} \ldots u_{n}
$$

For dir $=\rightarrow$ and dir $=-$ analogously.
C is said to yield $C^{\prime \prime}=\left\langle q^{\prime}, w^{\prime}, u^{\prime}\right\rangle$.
The transition from C to C^{\prime} is a single step.

Example

$$
C=<\mathrm{S}, \#, \varepsilon>
$$

This Lecture

- Definition of TMs
- Execution of TMs
- Multi-Tape TMs
- Non-Deterministic TMs
- Uniformity Theorem

Uniformity Theorem

For every polynomial time algorithm A , there is a family of circuits $\mathrm{C}_{1}, \mathrm{C}_{2} \ldots$, such that

- C_{i} can be constructed in time polynomial in i
- $\mathrm{C}_{|\mathrm{x}|}(\mathrm{x})=\mathrm{A}(\mathrm{x})$

Uniformity Theorem for Nondeterministic Algorithms

For every nondeterministic polynomial time algorithm A , there is a family of circuits C_{1}, $\mathrm{C}_{2} \ldots$, such that

- C_{i} can be constructed in time polynomial in i Note: Inputs of C_{i} are of size polynomial in i
- There exists a y with $C_{|x|}(x, y)=$ true iff there is a computation of $A(x)=$ true

This Lecture

- Definition of TMs
- Execution of TMs
- Multi-Tape TMs
- Non-Deterministic TMs
- Uniformity Theorem

