Übungsbeispiele "Logik" W05 Blatt 1

Prof. Helmut Veith
Dipl.-Ing. Christian Schallhart
Dr. Stefan Katzenbeisser

1 Junktor \leftrightarrow

Sei \leftrightarrow ein neuer aussagenlogischer Junktor, der durch $\phi \leftrightarrow \psi = (\phi \to \psi) \land (\psi \to \phi)$ definiert ist.

- 1. Geben Sie die Wahrheitstafel für \leftrightarrow an.
- 2. Zeigen Sie,
 - dass $\phi \equiv \psi$ genau dann wenn $\models \phi \leftrightarrow \psi$ und
 - dass $\models \phi$ genau dann wenn $\models \phi \leftrightarrow 1$, und $\models \neg \phi$ genau dann wenn $\models \phi \leftrightarrow 0$.

2 Unerfüllbarkeit, Erfüllbarkeit, Gültigkeit

Geben Sie an, welche der folgenden Formeln unerfüllbar, erfüllbar und gültig sind und beweisen Sie dies. Das heißt, zeigen Sie für ϕ , ob $\not\models \phi$ (unerfüllbar), $\exists \tau : \tau \models \phi$ (erfüllbar) oder ob $\models \phi$ (gültig) gilt.

- 1. $p \rightarrow p$
- 2. $(p \rightarrow q) \rightarrow (p \leftrightarrow q)$
- 3. $(p \leftrightarrow q) \rightarrow (p \rightarrow q)$
- 4. $((p \rightarrow q) \rightarrow p) \rightarrow p$
- 5. $((p \rightarrow q) \rightarrow p) \rightarrow q$
- 6. $((p \rightarrow q) \land p) \rightarrow q$
- 7. $(a \lor b) \land \neg a \land \neg b$
- 8. $(\neg(p \land \neg q) \land \neg p) \lor q$
- 9. $(p \rightarrow q) \lor (q \rightarrow r)$
- 10. $(p \rightarrow q) \land (q \rightarrow r)$

3 Noch mehr Implikationen *

Zeigen Sie mittels Induktion, dass

$$\{(\phi_1 \land \phi_2 \land \ldots \land \phi_n) \rightarrow \psi\} \rightarrow \{\phi_1 \rightarrow (\phi_2 \rightarrow (\ldots \rightarrow (\phi_n \rightarrow \psi)))\}$$

4 Konjunktive Normalform

Zeigen Sie, dass jede aussagenlogische Formel logisch äquivalent zu einer Formel in konjunktiver Normalform (KNF, CNF) ist.

5 CNF & DNF

Wandeln Sie die folgenden Formeln jeweils in CNF und DNF um:

- 1. $(p \rightarrow \neg q) \rightarrow (q \lor \neg p)$
- 2. $r \to (s \to ((t \land s) \to r))$
- 3. $(\neg p \land q) \rightarrow (p \land (r \rightarrow q))$

6 Semantische Folgerung

Zeigen Sie, dass die folgenden Aussagen äquivalent sind:

- $\phi \models \psi$
- $\bullet \models \phi \rightarrow \psi$
- für alle Belegungen τ , $\tau(\phi) \leq \tau(\psi)$
- true $\equiv \phi \rightarrow \psi$
- $\phi \to \psi \in TAUT$
- $\models \neg \phi \lor \psi$

7 Lindenbaum Algebra

Zeigen Sie, dass $\phi \models \psi$ eine partielle Ordnung auf der Lindenbaum Algebra definiert.

8 Majority Gate

Betrachten Sie die Boolesche Funktion $f(x_1, ..., x_n)$ die 1 wird, wenn mehr als die Hälfte der x_i 1 sind. Geben Sie eine Formel für f an.

9 Vollständigkeit für Boolesche Funktionen

Aus der Vorlesung wissen Sie, dass jede Boolesche Funktion durch eine Boolesche Formel mit den Operatoren $\{\lor,\land,\lnot\}$ darstellbar ist. Zeigen Sie, dass auch

- $1. \{nand\}$
- $2. \{ \vee, \neg \}$
- $3. \{1, \vee, \otimes\}$
- 4. $\{0, \to\}$
- 5. $\{\text{sel}, 0, 1\}$

funktional vollständig sind. Dabei ist sel(x, y, z) die dreistellige Funktion, die durch sel(1, y, z) = y und sel(0, y, z) = z definiert ist.

Zeigen Sie, dass $\{\rightarrow, \lor\}$ nicht funktional vollständig ist.

Zeigen Sie, dass nand und nor die einzigen funktional vollständigen binären Junktoren sind.

10 Formeln vereinfachen

Vereinfachen Sie die folgenden Formeln, so dass dieselben möglichst kurz werden. Benützen Sie dazu in der vereinfachen Formel einmal nur Operatoren aus $\{\lor, \land, \neg\}$, ein weiteres Mal nur Operatoren aus $\{0, \rightarrow\}$ und letztlich ein drittes Mal Operatoren aus $\{\lor, \land, \neg, \rightarrow, \leftrightarrow, 0, 1\}$.

- 1. $p \leftrightarrow q$
- 2. $((p \rightarrow q) \rightarrow ((r \lor p) \rightarrow (r \lor q)))$
- 3. $(p \wedge q) \otimes p \otimes q$
- 4. $(p \lor (q \land r)) \rightarrow ((p \lor q) \land r)$

11 Vollständigkeit für monotone Boolesche Funktionen *

Mittels $\{\lor, \land, 0, 1\}$ sind genau die monotonen Booleschen Funktionen darstellbar. Um das zu zeigen, beweisen Sie, dass

- 1. eine Formel, die nur $\{\vee,\wedge,0,1\}$ enthält, eine monotone Funktion darstellt und
- 2. jede monotone Funktion durch eine Formel in $\{\lor, \land, 0, 1\}$ darstellbar ist.

12 Maximalität von $\{\lor, \land, 0, 1\}$

Zeigen Sie, dass durch Hinzugabe einer beliebigen n-stelligen Funktion f die Menge $\{\vee, \wedge, 0, 1, f\}$ funktional vollständig wird.

13 Resolution

Zeigen Sie, wie Sie Resolution zur Feststellung der folgenden Fragestellungen verwenden können:

- 1. $\phi \in SAT$
- 2. $\phi \in TAUT$
- 3. $\models \phi \leftrightarrow \psi$
- 4. $\phi \equiv \text{false}$

14 Resolution **

Implementieren Sie einen einfachen aussagenlogischen Resolutionsbeweiser in der Programmiersprache Ihrer Wahl.

15 Korrektheitslemma für SK

Beweisen Sie das Korrektheitslemma für den Gentzen-Kalkül SK.