
Technische Universität München SS 2007
Institut für Informatik Übungsblatt 7
Prof. Dr. Helmut Veith Mittwoch, 20. Juni 2007

Dipl.-Inf.(FH) Andreas Holzer, M.Sc.

Übung zur Vorlesung Model Checking

CBMC

Use CBMC to solve the following exercises. CBMC can be obtained from http://

www.cs.cmu.edu/∼modelcheck/cbmc/. Use the documentation provided on the CBMC
website to solve the following exercises.

(a) Checking properties with CBMC.

i) What is wrong with this program? Use CBMC for checking where this pro-
gram fails.

#include <stdlib.h>

void test() {

int size = nondet_int();

if (size > 0) {

int* array = (int*)(malloc(size * sizeof(int)));

int x = size - 1;

int y = size - 1;

int index = (x + y)/2;

int c = array[index];

}

}

After observing the error in this rather artificial program you may be inter-
ested in more common algorithms where it occurs: http://googleresearch.
blogspot.com/2006/06/extra-extra-read-all-about-it-nearly.html.

ii) Using __CPROVER_assume. We have already seen that CBMC can check cer-
tain properties implicitly. We now want to demonstrate how software com-
ponents can be verified separately using __CPROVER_assume. CBMC reports
no errors on the following code. Lets assume doWork and foo are very big
and we want to verify them separately. Place both functions in different files
and verify them. What problems occur? How can you solve it?



#include <stdlib.h>

void doWork(int size, int index);

void foo() {

int size = nondet_int();

int index = nondet_int();

if (size > 0 && 0 <= index && index < size) {

doWork(size, index);

}

}

void doWork(int size, int index) {

int *array = (int*)(malloc(size * sizeof(int)));

int value = array[index];

free(array);

}

iii) Problems that may occur when using __CPROVER_assume. Why does CBMC
recognize the following program as correct? What is the underlying problem?
How can you check whether this problem occurs when you use __CPROVER_assume?

#include <stdlib.h>

void foo() {

__CPROVER_assume(0);

int *array = (int*)(malloc(10 * sizeof(int)));

int c = array[-1];

free(array);

}

iv) In this program an allocated list should be traversed. There are errors inside
the code. Detect them with the help of CBMC and correct the program. Fur-
thermore, show that the number of calls to the function traverse is related
to the length of the list by stating some assertion that is then checked by
CBMC. Hint: Consider issues about loop unwinding and maybe you want to
use assert.

#include <stdlib.h>

struct node {

struct node* succ;

};

void traverse(struct node* n) {

traverse(n->succ);



}

int main(int argc, char **argv) {

struct node *list = (void*)0;

struct node *new_node;

int i;

int size = 10;

for (i = 0; i < size; i++) {

new_node = malloc(sizeof(struct node));

new_node->succ = list;

list = new_node;

}

traverse(list);

return 0;

}

(b) Test generation using CBMC. A software model checker can not only be used for
verifying software but also for generating test cases for this software. This exercise
shows you how CBMC can be used for this purpose.

i) Use CBMC to generate test cases that reach the fprintf in the following
program.

#include <stdio.h>

void foo(int x, int y);

int main(int argc, char **argv) {

if (argc >= 3) {

int x = atoi(argv[1]);

int y = atoi(argv[2]);

foo(x, y);

}

return 0;

}

void foo(int x, int y) {

if (x == 55) {

if (y >= 10) {

fprintf(stdout, "(%d, %d)\n", x, y);

}

}

}



ii) With CBMC we have a tool for software verification, so why is testing still
useful? What other things can you do with our generated test cases? How
can we automize the test case generation? What problems occur with our
method to generate test cases?

Caution: On Windows systems there may be a bug in stdio.h that is delivered
with CBMC. In the case that you get an error then you have to change the line
#define printf( format, args... ) __CPROVER_printf( format, ## args)

to #define printf( format, args ) __CPROVER_printf( format, ## args).


