Technische Universitat Miinchen SS 2007
Institut fiir Informatik ﬂ'bungsblatt 6
Prof. Dr. Helmut Veith Mittwoch, 13. Juni 2007

Dipl.-Inf. Michael Tautschnig

I"Jbung zur Vorlesung Model Checking

SPIN

Use SPIN to solve the following exercises. SPIN can be obtained from http://spinroot.com

(a) Unreliable Channel. Model an unreliable channel, i.e., a channel which might lose
packets. Use this channel to transmit packets from a sender to a receiver process.
Use SPIN to simulate the system.

(b) Unreliable Channel: Proof. Prove that the channel is unreliable, i.e., that not
every packet that is sent, will arrive at the receiver.

(¢) Dining Philosophers. Model the Dining Philosophers Problem in Promela with
5 philosophers. Prove that they could starve. Modify the model such that each
philosopher will eventually eat. Prove this property.

(d) * Token Ring. A token ring consists of m independent processors which are ar-
ranged in a cycle, where each processor is connected to its left and right neighbors.
The processes of the token ring use a token (represented by a message in channel)
to synchronize each other. After each processing step, the token is passed on to
one of its neighbors.

e Implement the token ring for m = 4, where the token is passed to one of
the neighbors nondeterministically. Simulate the token ring in the interactive
environment.

e Use SPIN to check whether it is guaranteed that at most one processor gets
access to the critical section at the same time.

e Use SPIN to check whether a deadlock can occur.

e Use SPIN to check whether at least one process enters the critical section
infinitely often, i.e., whether progress is achieved.

e Repeat the above steps for a model where the token is passed deterministically
to the left.

e Optional: Find the maximal m for which you can verify the model on your
machine.

(e) * Token Ring: Fairness. Use the two models from the last exercise. Use SPIN to
produce a never claim which states that each process gets access to the critical
section infinitely often, i.e., whether each process is able to make progress. Check
this condition.



authenticated users (mail.model.in.tum.de)

mailrelay.in.tum.de |

-

any internal host

@bugs.model
@lists.model.in.tu

@lists.mogel.in.tum.de ~ @mode\in.tum.de

lynx.model:Mailman

bull.model:SMTP/.166

lynx.model:BTS

@modellin.tum.de
y

bull.model:IMAPS/POP3S

Figure 1: An email delivery system.

(f) * Mail system. Model the mail system shown in Figure 1 in Promela using proper
abstractions from the irrelevant details.

The following assumptions are made: (1) Messages are only generated by the nodes
drawn as boxes. (2) Edges marked with domains only apply to emails with such
recipients, edges without domains apply to all remaining domains. (3) No email
loops through mailrelay.in.tum.de.

Using SPIN to verify that

i) no message loops forever
ii) every message passes through relay.model at least once

iii) the maximum number of hops is smaller than ten — is it also smaller than 57



