Übung zur Vorlesung Model Checking

1 CTL and LTL Specifications

(a) * Show that $\mathbf{A}f\mathbf{U}g$ is equivalent to

$$\neg [(\mathbf{E}(\neg g\mathbf{U}(\neg g \land \neg f)) \lor \mathbf{E}\mathbf{G}\neg g].$$

(b) Given a formula $\mathbf{E}a\mathbf{U}b$, and a Kripke structure K = (S, R, L), describe an algorithm which labels all states $s \in S$ where $K, s \models \mathbf{E}a\mathbf{U}b$, in **linear time**, i.e., in time O(|S| + |R|).

Note: the algorithm has to label *all* states s where $K, s \models EaUb$, not just find some such states. For linear time, operations on lists, sets, etc. have to be counted.

- (c) ****** Same as above, for **EG***b*.
- (d) * Let $K_1 = (S_1, R_1, L_1)$ and $K_2 = (S_2, R_2, L_2)$. We define $K_1 \leq K_2$ if $S_1 = S_2$, $R_1 \subseteq R_2$, and $L_1 = L_2$.
 - i) Show that \leq is a partial order.
 - ii) Show the following lemma: Let ϕ be an LTL specification, and $K_1 \leq K_2$ Kripke structures. If $K_2, s \models \phi$ then $K_1, s \models \phi$.
 - iii) Show that there exists a CTL specification which cannot be expressed in LTL. Hint: Use the previous Lemma on the formula $\mathbf{EF}p$.
- (e) ****** Find a Kripke structure K, s such that $K, s \models \mathbf{AFG}p$ but $K, s \not\models \mathbf{AFAG}p$.
- (f) ******* Show that there exists an LTL specification which cannot be expressed in CTL.

2 Fixpoint Characterizations

Reconsider the Kripke structure in Figure 1. Using the fixpoint characterizations of CTL, show which states satisfy the following specifications:

- (a) **EF***a*.
- (b) **AG***a*.
- (c) $\mathbf{E}a\mathbf{U}b$.
- (d) $(a \lor q) \to \mathbf{EX}b$.

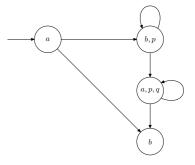


Figure 1: Kripke structure.