Technische Universität München Institut für Informatik Prof. Dr. Helmut Veith Dipl.-Inf. Stefan Kugele

Übung zur Vorlesung Model Checking

This exercise focuses on Boolean Satisfiability (SAT), a classical search problem in computer science. Stephen A. Cook and Leonid Levin showed, that this problem is **NP**complete, i.e., great many differently structured and at the same time practically relevant search problems can be translated to SAT in a strictly formal sense by so-called *reductions*. Bounded Model Checking (BMC) is just one domain in which SAT-based techniques could be applied very successfully.

SAT-Solving

Use minisat as a state-of-the-art SAT solver to solve the following exercises. minisat can be obtained from:

http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat/MiniSat.html

Any other SAT-solver which is able to read and write DIMACS compatible input and output format can be used as well.

- (a) Repeat the DIMACS format for CNF encoding.
- (b) Repeat the Tseitin transformation.
- (c) Translate the formula into a CNF formula in DIMACS format: $(a \lor b) \Rightarrow (c \land d)$
- (d) <u>Sudoku</u>

	6	8				2		
			5			7		
	2							
				2	6			
1							4	
5								
4			3					5
	7			8				
							1	

Figure 1: Sudoku puzzle.

A SUDOKU puzzle is represented by a 9x9 grid, which comprises nine 3x3 sub-grids. Some of the entries in the grid are filled with numbers from 1 to 9, whereas other entries are left blank. Such a puzzle is solved by assigning numbers from 1 to 9 to the blank entries such that every row, every column, and every 3x3 sub-grid contains each of the nine possible numbers. Figure 1 shows an partially filled grid.

- i) Develop a suitable reduction from SUDOKU to SAT.
- ii) Implement an application, script, etc. in a language of your choice which encodes the given puzzle into a CNF formula in DIMACS format.
- iii) Use minisat to solve the puzzle.