Übung zur Vorlesung Model Checking

1 Binary Decision Diagrams

- (a) Describe BDDs for the Boolean functions which are always false and always true.
- (b) Compute a BDD for the function $(a \lor b) \to (c \land b)$.
- (c) Let $f(x_1, x_2, x_3, x_4)$ be a Boolean function expressing that the number $x_1x_2x_3x_4$ (in binary notation) is prime, and find a BDD for f.
- (d) Consider the Boolean function $f(x_1, \ldots, x_4, y_1, \ldots, y_4)$ which expresses that the binary number $x_1x_2x_3x_4 + 1$ equals the binary number $y_1y_2y_3y_4$.
 - i) Describe f in propositional logic.
 - ii) Find a BDD for f with a good variable order.
 - iii) Generalize the BDD from 4 bits to arbitrary n.
- (e) Same as above, with f describing $x_1x_2x_3x_4 < y_1y_2y_3y_4$.
- (f) * Can problem 3 (primes) be generalized to arbitrary n? Why (not)?

2 CTL Specifications

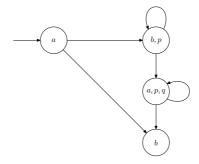


Figure 1: Kripke structure.

(a) On the Kripke structure in Figure 1, label the states according to the following specifications:

i) **EF***a*.

- ii) AGa.
- iii) $\mathbf{E}a\mathbf{U}b$.
- iv) $\mathbf{AG}(p \to q)$.
- v) $(a \lor q) \to \mathbf{EX}b.$
- (b) Let p, q be atomic properties of systems. Express the following specifications in CTL as simply as possible: (There can sometimes be several possible solutions.)
 - i) p can never happen.
 - ii) p holds at least twice in the future (i.e., at two different points in time).
 - iii) p cannot hold for two time units.
 - iv) Whenever p holds, then q can not hold any more.
 - v) p holds until p becomes false.
 - vi) Either p holds in one step, or it will never hold.
 - vii) If it is possible to reach p at all, then p must be reachable infinitely often.
- (c) Are the following formulas true, false, or neither ?
 - i) $(\mathbf{AG}p) \rightarrow (\mathbf{AG}\neg p).$
 - ii) $(\mathbf{AG}p) \rightarrow (\mathbf{AG}p)$.
 - iii) $(\mathbf{AF}p) \to (\mathbf{EF}p).$
 - iv) $(p \land \neg p) \leftarrow (q \land \neg p)$.
 - v) $(p \land \neg p) \rightarrow \text{false.}$
 - vi) $(\mathbf{A}\mathbf{X}p) \to (\mathbf{E}\mathbf{F}p).$
 - vii) $(\mathbf{A}\mathbf{X}p) \to (\mathbf{E}\mathbf{F}\neg p).$
- (d) Represent the following CTL formulas using only **EX**, **EU**, **EG**:
 - i) $\mathbf{EF}(s \wedge \neg r)$
 - ii) $\mathbf{AG}(r \to \mathbf{AF}ack)$
 - iii) AGAFe
 - iv) AGEFr
- (e) For each of the formulas ϕ in the last two problems, describe two Kripke structures K_1, K_2 with initial states s_1, s_2 , such that $K_1, s_1 \models \phi$ and $K_2, s_2 \not\models \phi$.