Übung zur Vorlesung Model Checking

1 Binary Decision Diagrams

(a) Describe BDDs for the Boolean functions which are always false and always true.
(b) Compute a BDD for the function $(a \vee b) \rightarrow(c \wedge b)$.
(c) Let $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ be a Boolean function expressing that the number $x_{1} x_{2} x_{3} x_{4}$ (in binary notation) is prime, and find a BDD for f.
(d) Consider the Boolean function $f\left(x_{1}, \ldots, x_{4}, y_{1}, \ldots, y_{4}\right)$ which expresses that the binary number $x_{1} x_{2} x_{3} x_{4}+1$ equals the binary number $y_{1} y_{2} y_{3} y_{4}$.
i) Describe f in propositional logic.
ii) Find a BDD for f with a good variable order.
iii) Generalize the BDD from 4 bits to arbitrary n.
(e) Same as above, with f describing $x_{1} x_{2} x_{3} x_{4}<y_{1} y_{2} y_{3} y_{4}$.
(f) * Can problem 3 (primes) be generalized to arbitrary n ? Why (not)?

2 CTL Specifications

Figure 1: Kripke structure.
(a) On the Kripke structure in Figure 1, label the states according to the following specifications:
i) $\mathrm{EF} a$.
ii) $\mathrm{AG} a$.
iii) $\mathbf{E} a \mathbf{U} b$.
iv) $\mathbf{A G}(p \rightarrow q)$.
v) $(a \vee q) \rightarrow \mathbf{E X} b$.
(b) Let p, q be atomic properties of systems. Express the following specifications in CTL as simply as possible: (There can sometimes be several possible solutions.)
i) p can never happen.
ii) p holds at least twice in the future (i.e., at two different points in time).
iii) p cannot hold for two time units.
iv) Whenever p holds, then q can not hold any more.
v) p holds until p becomes false.
vi) Either p holds in one step, or it will never hold.
vii) If it is possible to reach p at all, then p must be reachable infinitely often.
(c) Are the following formulas true, false, or neither?
i) $(\mathbf{A G} p) \rightarrow(\mathbf{A G} \neg p)$.
ii) $(\mathbf{A G} p) \rightarrow(\mathbf{A G} p)$.
iii) $(\mathbf{A F} p) \rightarrow(\mathbf{E F} p)$.
iv) $(p \wedge \neg p) \leftarrow(q \wedge \neg p)$.
v) $(p \wedge \neg p) \rightarrow$ false.
vi) $(\mathbf{A X} p) \rightarrow(\mathbf{E F} p)$.
vii) $(\mathbf{A X} p) \rightarrow(\mathbf{E F} \neg p)$.
(d) Represent the following CTL formulas using only $\mathbf{E X}, \mathbf{E U}, \mathbf{E G}$:
i) $\mathbf{E F}(s \wedge \neg r)$
ii) $\mathbf{A G}(r \rightarrow \mathbf{A F} a c k)$
iii) $\mathrm{AGAF} e$
iv) AGEF r
(e) For each of the formulas ϕ in the last two problems, describe two Kripke structures K_{1}, K_{2} with initial states s_{1}, s_{2}, such that $K_{1}, s_{1} \models \phi$ and $K_{2}, s_{2} \not \models \phi$.

