Problems and Exercises
 "Model Checking", SS06
 Part 2

Prof. Helmut Veith
Dipl.-Inf. Johannes Kinder
Dipl.-Ing. Robert Stepanek

Basic Fixpoint Theorems

1. By use of $\mathbf{E G} f_{1}=\boldsymbol{\operatorname { f g }} Z\left(f_{1} \wedge \mathbf{E X} Z\right)$ compute the set $\mathbf{E G} q$ for the Kripke structure shown above.
2. Consider the functions

$$
\begin{aligned}
& H_{1}, H_{2}, H_{3}: \mathcal{P}(\{1,2,3,4,5,6,7,8,9,10\}) \rightarrow \mathcal{P}(\{1,2,3,4,5,6,7,8,9,10\}) \\
& H_{1}(Y):=Y-\{1,4,7\} \\
& H_{2}(Y):=\{2,5,9\}-Y \\
& H_{3}(Y):=\{1,2,3,4,5\} \cap(\{2,4,8\} \cup Y)
\end{aligned}
$$

(a) Show which of these functions are monotone.
(b) Compute the least and greatest fixed points of H_{3}.
(c) Does H_{2} have any fixed points?

Binary Decision Diagrams

3. Consider the boolean functions $A:=(a \wedge b) \rightarrow(c \vee b)$ and $B:=(a \vee b) \rightarrow d$.
(a) Compute an OBDD for A.
(b) Compute the OBDD for B which has the same variable ordering as the OBDD for A.
(c) Compute the OBDD for the boolean function defined by $A \wedge B$.
(d) Same for $A \vee B$.
4. Let $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ be a Boolean function expressing that the number $x_{1} x_{2} x_{3} x_{4}$ (in binary notation) is not prime, and find a BDD for f. Can the problem be generalized to arbitrary n ?
5. * Consider the Boolean function $f\left(x_{1}, \ldots, x_{4}, y_{1}, \ldots, y_{4}\right)$ which expresses that the binary number $x_{1} x_{2} x_{3} x_{4}+1$ equals the binary number $y_{1} y_{2} y_{3} y_{4}$.
(a) Describe f in propositional logic.
(b) Find a BDD for f with a good variable order.
(c) Generalize the BDD from 4 bits to arbitrary n.
6. Let $f\left(x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, y_{2}, y_{3}, y_{4}\right)$ be the Boolean function from above which expresses that the binary number $x_{1} x_{2} x_{3} x_{4}+1$ equals the binary number $y_{1} y_{2} y_{3} y_{4}$, and let A be the BDD for the function $g\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ where $g(0,0,0,0)=$ 1 , and $g\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=0$ otherwise. Compute the BDD for

$$
g^{\prime}:=\exists x_{1}, x_{2}, x_{3}, x_{4}\left(f\left(x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, y_{2}, y_{3}, y_{4}\right) \wedge g\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)
$$

and for

$$
g^{\prime \prime}:=\exists x_{1}, x_{2}, x_{3}, x_{4}\left(f\left(x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, y_{2}, y_{3}, y_{4}\right) \wedge g^{\prime}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right) .
$$

[Hint: there is a simple way to do this!]

