Problems and Exercises "Nichtsequentielle Systeme und nebenläufige Prozesse", SS05 Part 2

Prof. Helmut Veith Dipl.-Ing. Christian Schallhart Dr. Stefan Katzenbeisser

Binary Decision Diagrams

- 1. Describe BDDs for the Boolean functions which are always false and always true.
- 2. Compute a OBDD A for the function $(a \land b) \rightarrow (c \lor b)$.
- 3. Compute a OBDD B for the function $(a \lor b) \to d$ with the same variable order as for A.
- 4. For the OBDDs A and B, compute the (a) conjunction and (b) disjunction.
- For the OBDDs A and B, compute the OBDD for (a) A NAND B and
 (b) ¬A AND B.
- 6. Let $f(x_1, x_2, x_3, x_4)$ be a Boolean function expressing that the number $x_1x_2x_3x_4$ (in binary notation) is not prime, and find a BDD for f. Can the problem be generalized to arbitrary n?
- 7. * Consider the Boolean function $f(x_1, \ldots, x_4, y_1, \ldots, y_4)$ which expresses that the binary number $x_1x_2x_3x_4+1$ equals the binary number $y_1y_2y_3y_4$.
 - (a) Describe f in propositional logic.
 - (b) Find a BDD for f with a good variable order.

- (c) Generalize the BDD from 4 bits to arbitrary n.
- 8. * Same as above, with f describing $x_1x_2x_3x_4 < y_1y_2y_3y_4$.
- 9. ****** Show that OBDDs are canonical: If OBDD A and OBDD B have the same variable order, and represent the same Boolean function, then they are isomorphic. Hint: Use induction.
- 10. Let $f(x_1, x_2, x_3, x_4, y_1, y_2, y_3, y_4)$ be the Boolean function from above which expresses that the binary number $x_1x_2x_3x_4+1$ equals the binary number $y_1y_2y_3y_4$, and let A be the BDD for the function $g(x_1, x_2, x_3, x_4)$ where g(0, 0, 0, 0) = 1, and $g(x_1, x_2, x_3, x_4) = 0$ otherwise. Compute the BDD for

$$g' := \exists x_1, x_2, x_3, x_4(f(x_1, x_2, x_3, x_4, y_1, y_2, y_3, y_4) \land g(x_1, x_2, x_3, x_4))$$

and for

$$g'' := \exists x_1, x_2, x_3, x_4(f(x_1, x_2, x_3, x_4, y_1, y_2, y_3, y_4) \land g'(x_1, x_2, x_3, x_4)).$$

[Hint: there is a *simple* way to do this!]

- 11. *⁵ (optional) Implement a simple OBDD library (in your favorite programming language) which provides
 - apply,
 - simplify,
 - equivalence checking and
 - pretty-printing (drawing with the help of some graph drawing software such as *dot*)