Problems and Exercises
 "Nichtsequentielle Systeme und nebenläufige
 Prozesse", SS05
 Part 2

Prof. Helmut Veith
Dipl.-Ing. Christian Schallhart
Dr. Stefan Katzenbeisser

Binary Decision Diagrams

1. Describe BDDs for the Boolean functions which are always false and always true.
2. Compute a OBDD A for the function $(a \wedge b) \rightarrow(c \vee b)$.
3. Compute a OBDD B for the function $(a \vee b) \rightarrow d$ with the same variable order as for A.
4. For the OBDDs A and B, compute the (a) conjunction and (b) disjunction.
5. For the OBDDs A and B, compute the OBDD for (a) A NAND B and (b) $\neg A$ AND B.
6. Let $f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ be a Boolean function expressing that the number $x_{1} x_{2} x_{3} x_{4}$ (in binary notation) is not prime, and find a BDD for f. Can the problem be generalized to arbitrary n ?
7. * Consider the Boolean function $f\left(x_{1}, \ldots, x_{4}, y_{1}, \ldots, y_{4}\right)$ which expresses that the binary number $x_{1} x_{2} x_{3} x_{4}+1$ equals the binary number $y_{1} y_{2} y_{3} y_{4}$.
(a) Describe f in propositional logic.
(b) Find a BDD for f with a good variable order.
(c) Generalize the BDD from 4 bits to arbitrary n.
8. * Same as above, with f describing $x_{1} x_{2} x_{3} x_{4}<y_{1} y_{2} y_{3} y_{4}$.
9. ** Show that OBDDs are canonical: If OBDD A and OBDD B have the same variable order, and represent the same Boolean function, then they are isomorphic. Hint: Use induction.
10. Let $f\left(x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, y_{2}, y_{3}, y_{4}\right)$ be the Boolean function from above which expresses that the binary number $x_{1} x_{2} x_{3} x_{4}+1$ equals the binary number $y_{1} y_{2} y_{3} y_{4}$, and let A be the BDD for the function $g\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ where $g(0,0,0,0)=1$, and $g\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=0$ otherwise. Compute the BDD for

$$
g^{\prime}:=\exists x_{1}, x_{2}, x_{3}, x_{4}\left(f\left(x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, y_{2}, y_{3}, y_{4}\right) \wedge g\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)
$$

and for

$$
g^{\prime \prime}:=\exists x_{1}, x_{2}, x_{3}, x_{4}\left(f\left(x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, y_{2}, y_{3}, y_{4}\right) \wedge g^{\prime}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right)
$$

[Hint: there is a simple way to do this!]
11. *5 (optional) Implement a simple OBDD library (in your favorite programming language) which provides

- apply,
- simplify,
- equivalence checking and
- pretty-printing (drawing with the help of some graph drawing software such as dot)

