Problems and Exercises "Nichtsequentielle Systeme und nebenläufige Prozesse", SS05 Part 1

Prof. Helmut Veith Dipl.-Ing. Christian Schallhart Dr. Stefan Katzenbeisser

1 CTL and LTL Specifications

Figure 1: Kripke structure.

1. On the Kripke structure in Figure 1, label the states according to the following specifications:

- (a) **EF***a*.
- (b) **AG***a*.
- (c) $\mathbf{E}a\mathbf{U}b$.
- (d) $\mathbf{AG}(p \to q)$.
- (e) $(a \lor q) \to \mathbf{EX}b$.
- 2. Let p, q be atomic properties of systems. Express the following specifications in CTL as simply as possible: (There can sometimes be several possible solutions.)
 - (a) p can never happen.
 - (b) p holds at least twice in the future (i.e., at two different time points).
 - (c) p cannot hold for two time units.
 - (d) Whenever p holds, then q can not hold any more.
 - (e) p holds until p becomes false.
 - (f) Either p holds in one step, or it will never hold.
 - (g) If it is possible to reach p at all, then p must be reachable infinitely often.
- 3. Are the following formulas true, false, or neither ?
 - (a) $(\mathbf{AG}p) \to (\mathbf{AG}\neg p).$
 - (b) $(\mathbf{AG}p) \rightarrow (\mathbf{AG}p)$.
 - (c) $(\mathbf{AF}p) \rightarrow (\mathbf{EF}p)$.
 - (d) $(p \land \neg p) \leftarrow (q \land \neg p)$.
 - (e) $(p \land \neg p) \rightarrow \text{false.}$
 - (f) $(\mathbf{AX}p) \to (\mathbf{EF}p).$
 - (g) $(\mathbf{AX}p) \to (\mathbf{EF}\neg p).$
- 4. Represent the following CTL formulas using only **EX**, **EU**, **EG**:
 - (a) $\mathbf{EF}(s \wedge \neg r)$
 - (b) $\mathbf{AG}(r \to \mathbf{AF}ack)$
 - (c) $\mathbf{AGAF}e$

(d) $\mathbf{AGEF}r$

- 5. For each of the formulas ϕ in the last two problems, describe two Kripke structures K_1, K_2 with initial states s_1, s_2 , such that $K_1, s_1 \models \phi$ and $K_2, s_2 \not\models \phi$.
- 6. * Show that $\mathbf{A}f\mathbf{U}g$ is equivalent to

$$\neg [(\mathbf{E}(\neg g\mathbf{U}(\neg g \land \neg f)) \lor \mathbf{EG} \neg g].$$

7. Given a formula $\mathbf{E}a\mathbf{U}b$, and a Kripke structure K = (S, R, L), describe an algorithm which labels all states $s \in S$ where $K, s \models \mathbf{E}a\mathbf{U}b$, in **linear time**, i.e., in time O(|S| + |R|).

Note: the algorithm has to label *all* states *s* where $K, s \models EaUb$, not just find some such states. For linear time, operations on lists, sets, etc. have to be counted.

- 8. ****** Same as above, for **EG***b*.
- 9. * Let $K_1 = (S_1, R_1, L_1)$ and $K_2 = (S_2, R_2, L_2)$. We define $K_1 \le K_2$ if $S_1 = S_2, R_1 \subseteq R_2$, and $L_1 = L_2$.
 - (a) Show that \leq is a partial order.
 - (b) Show the following lemma:
 Let φ be an LTL specification, and K₁ ≤ K₂ Kripke structures.
 If K₂, s ⊨ φ then K₁, s ⊨ φ.
 - (c) Show that there exists a CTL specification which cannot be expressed in LTL. Hint: Use the previous Lemma on the formula $\mathbf{EF}p$.
- 10. ****** Find a Kripke structure K, s such that $K, s \models \mathbf{AFG}p$ but $K, s \not\models \mathbf{AFAG}p$.
- 11. ******* Show that exists an LTL specification which cannot be expressed in CTL.