Model Checking II
Temporal Logic Model Checking




Temporal Logic Model Checking

Specification Language: A propositional temporal
logic called C'TL.

Verification Procedure: Exhaustive search of the
state space of the concurrent system to determine if
the specification is true or not.

e E. M. Clarke and E. A. Emerson. Synthesis of
synchronization skeletons for branching time temporal

logic. In Logic of programs: workshop, Yorktown
Hewghts, NY, May 1981, volume 131 of Lecture
Notes in Computer Science. Springer-Verlag, 1981.

e J.P. Quielle and J. Sifakis. Specification and
verification of concurrent systems in CESAR. In
Proceedings of the Fifth International Symposium
in Programming, volume 137 of Lecture Notes in
Computer Science. Springer-Verlag, 1981.



Why Model Checking?

Advantages:

e No proofs!!!

e Fast

e Counter-examples

e No problem with partial specifications

e Logics can easily express many concurrency properties

Main Disadvantage: State Explosion Problem
e Too many processes

e Data Paths

Much progress has been made on this problem recently!!



Model of Computation

Finite-state systems are modeled by labeled
state-transition graphs, called Kripke Structures.

If some state is designated as the initial state, the
structure can be unwound into an infinite tree with that
state as the root.

We will refer to the infinite tree obtained in this manner
as the computation tree of the system.

Paths in the tree represent possible computations or
behaviors of the program.



Model of Computation (Cont.)

@ State Transition Graph or

Kripke Model

¢

Infinite Computation Tree

(Unwind State Graph to obtain Infinite Tree)



Model of Computation (Cont.)

Formally, a Kripke structure is a triple M = (S, R, L),
where

e S is the set of states,
e R C 5§ x S is the transition relation, and

o [: S — P(AP) gives the set of atomic propositions
true in each state.

We assume that R is total (i.e., for all states s € S there
exists a state s’ € S such that (s,5') € R).

A path in M is an infinite sequence of states,
T = 8o, S1, - .. such that for i > 0, (s;, s;11) € R.

We write 7' to denote the suffiz of 7 starting at s;.

Unless otherwise stated, all of our results apply only to
finite Kripke structures.



Computation Tree Logics

Temporal logics may differ according to how they handle
branching in the underlying computation tree.

In a linear temporal logic, operators are provided for
describing events along a single computation path.

In a branching-time logic the temporal operators quantify
over the paths that are possible from a given state.



The Logic CTL"

The computation tree logic CTL* combines both
branching-time and linear-time operators.

In this logic a path quantifier can prefix an assertion
composed of arbitrary combinations of the usual
linear-time operators.

1. Path quantifier:
e A—"for every path”

e E—"there exists a path”
2. Linear-time operators:

e Xp—vp holds next time.

e F'p—p holds sometime in the future
e Gp—vp holds globally in the future
e pUg—p holds until g holds



Path Formulas and State Formulas

The syntax of state formulas is given by the following
rules:

o If p € AP, then p is a state formula.

o If f and ¢ are state formulas, then —f and f V g are
state formulas.

o If f is a path formula, then E(f) is a state formula.

Two additional rules are needed to specify the syntax of
path formulas:

o If f is a state formula, then f is also a path formula.

o If f and g are path formulas, then = f, f Vg, X f, and
f U g are path formulas.



State Formulas (Cont.)

If fis a state formula, the notation M, s = f means
that f holds at state s in the Kripke structure M.

Assume f; and f are state formulas and g is a path
formula. The relation M, s |= f is defined inductively as
follows:

l.sEDp & p e L(s).

2. sE-fi & sl fi

3. sEfiV foeo sk fiors E fo
4. s

= E(g) < there exists a path 7 starting with
s such that 7 = g.

10



Path Formulas (Cont.)

If fis a path formula, M, 7 = f means that f holds
along path 7 in Kripke structure M.

Assume g; and g are path formulas and f is a state
formula. The relation M, 7 = f is defined inductively as

follows:

L. tE=f & s is the first state of 7w and s = f.
2. TEg1 & T g1

3. mE@ Ve mEg ormE g

4. tEXg &1 Eg.

5. m = g1 U go& there exists a k£ > 0 such that

™ goand for 0 < j < k, 0 = g;.

11



Standard Abbreviations

The customary abbreviations will be used for the
connectives of propositional logic.

In addition, we will use the following abbreviations in
writing temporal operators:

° A(f) = ~E(=f)
oF f=trueU f
OGfEﬁFﬁf

12



The Logic CTL

CTL is a restricted subset of CTL* that permits only
branching-time operators—each of the linear-time
operators (&, F, X, and U must be immediately
preceded by a path quantifier.

More precisely, CTL is the subset of CTL* that is
obtained if the following two rules are used to specify the
syntax of path formulas.

e If f and g are state formulas, then X f and f U g are
path formulas.

o If f is a path formula, then so is —f.

Example: AG(EF p)

13



The Logic LTL

Linear temporal logic (LTL), on the other hand, will
consist of formulas that have the form A f where f is a
path formula in which the only state subformulas
permitted are atomic propositions.

More precisely, a path formula is either:
e lf p € AP, then p is a path formula.

e If f and g are path formulas, then = f, f Vg, X f, and
f U g are path formulas.

Example: A(FG p)

14



Expressive Power

It can be shown that the three logics discussed in this
section have different expressive powers.

For example, there is no CTL formula that is equivalent
to the LTL formula A(FG p).

Likewise, there is no LTL formula that is equivalent to
the CTL formula AG(EF p).

The disjunction A(FGp) V AG(EF p) isa CTL*
formula that is not expressible in either CTL or LTL.

15



Basic CTL Operators

There are eight basic CTL operators:
e AX and EX,
e AG and EG,
e AF and EF,
e AU and EU

Each of these can be expressed in terms of EX, EG,
and EU:

e AX f = -EX(—f)

e AG f = - EF(—f)

o AF f = ~EG(~f)

o EF f = E[true U f]

¢ A[fUyg|=-E[-gU~fA-g]A-EG~g

16



Basic CTL Operators (Cont.)

The four most widely used CTL operators are illustrated
below. Each computation tree has the state s as its root.

M,s EEGg M,so =AGyg

17



Typical CTL* formulas

e EF(Started N —Ready): It is possible to get to a
state where Started holds but Ready does not hold.

o AG(Req — AF Ack): If a request occurs, then it will
be eventually acknowledged.

e AG(AF DeviceEnabled): The proposition
DeviceEnabled holds infinitely often on every
computation path.

e AG(EF Restart): From any state it is possible to get
to the Restart state.

o A(GF enabled = GF executed): if a process is
infinitely-often enabled, then it is infinitely-often
executed.

Note that the first four formulas are CTL formulas.

18



Model Checking Problem

Let M be the state—transition graph obtained from the
concurrent system.

Let f be the specification expressed in temporal logic.

Find all states s of M such that

M,sE f.

There exist very efficient model checking algorithms for
the logic CTL.

e E. M. Clarke, E. A. Emerson, and A. P. Sistla.
Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM
Trans. Programming Languages and Systems,

8(2):pages 244-263, 1986.

19



The EMC Verification System

— (EMC)

-CTL formulas

Y
State Transition Graph True or Counterexample

4

10%to 10 tates

20



