Optimization Problems and Approximation

We are unable to solve NP-complete problems efficiently, i.e., there is no known way to solve them in polynomial time.

Most of them are decision versions of optimization problems..
with a set of feasible solutions for each instance with an associated quality measure

Why not looking for an approximate solution?
Is there a difference in complexity?

Optimization Problems and Approximation Example Knapsack revisited

All set $T \subseteq S: \sum_{i \in T} w(i) \leq W$ are feasible solutions. $\sum_{i \in T} v(i)$ is the quality of the solution T wrt. to the instance i.

```
KNAPSACK =<I,sol,m,max >
I={<S,w,W,v>}\S={1,..,n},w,v:S->N,W\inN,V\inN
sol(i)={T\subseteqS:\mp@subsup{\sum}{i\inT}{}w(i)\leqW}
m}(i,s)=\mp@subsup{\sum}{i\inT}{}v(i
```

Optimization Problems and Approximation The Class NPO
$N P O$ is the class of optimization problems whose decision versions are in $N P$.

$$
\operatorname{opt}(i)=\underset{s \in \operatorname{sol}(\mathrm{i})}{\operatorname{type}} \mathrm{m}(i, s)
$$

$$
O P T P R O B=<I, \text { sol, } \mathrm{m}, \text { type }>\in N P O \text { iff }
$$

ヨpolynomial $p: \forall i \in I, s \in \operatorname{sol}(\mathrm{i}):|s| \leq p(|i|)$

$$
\text { deciding } s \in \operatorname{sol}(\mathrm{i}) \text { is in } P
$$

deciding $s \in \operatorname{sol}(\mathrm{i})$ is in P

$$
\text { computing } \mathrm{m}(s, i) \text { is in } F P
$$

computing $\mathrm{m}(s, i)$ is in $F P$

Optimization Problems and Approximation
Example Problem: MaxkSat

MaxkSat $=<I$, sol, m, max $>$
$I=C N F-$ Formulas with at most k literals per clause
$\operatorname{sol}(\varphi)=$ set of assignments to the vars. of φ
$\mathrm{m}(\varphi, A)=$ the number of clauses which are satisfied by A

MaxSat has all CNF - Expressions as instances.

There is also a weighted version :Each clause has a weight the measure is the sum of the weights of the satisfied clauses.

Example Problem: MaxkSat NP-hardness

MaxkSat $=<I$, sol, m, max $>$

$I=C N F-$ Formulas with at most k literals per clause
$\operatorname{sol}(\varphi)=$ set of assignments to the vars. of φ
$\mathrm{m}(\varphi, A)=$ the number of clauses which are satisfied by A

Max3Sat (D) is certainly $N P$ - complete
(thus Max3Sat is NP-hard) :
$3 S A T$ is a special case
But also $\operatorname{Max} 2 \operatorname{Sat}(D)$ is $N P-$ complete...
But also $\operatorname{Max} 2 \operatorname{Sat}(D)$ is $N P$ - complete....
a local replacement reduction from 3SAT :

$(x \vee y \vee z)$ is replaced by	$A(x)=A(y)=A(z)=$ true
$(x)(y)(z)(w)$	$A(w)=$ true
$(\neg x \vee \neg y)(\neg y \vee \neg z)(\neg x \vee \neg z)$	7 clauses satisfied
$(x \vee \neg w)(y \vee \neg w)(z \vee \neg w)$	

Example Problem: MaxkSat NP-hardness

But also $\operatorname{Max} 2 \operatorname{Sat}(D)$ is $N P$ - complete....
...a local replacement reduction from 3SAT
$(x \vee y \vee z)$ is replaced by
$A(x) \neq A(y)=A(z)=$ true
$(x)(y)(z)(w)$
$A(w)=$ true
$(\neg x \vee \neg y)(\neg y \vee \neg z)(\neg x \vee \neg z)$
7 clauses satisfied

Example Problem: MaxkSat NP-hardness

But also $\operatorname{Max} 2 \operatorname{Sat}(D)$ is $N P$ - complete...
. . a local replacement reduction from 3SAT :

$(x \vee y \vee z)$ is replaced by	$A(x)=A(y) \neq A(z)=$ true
$(x)(y)(z)(w)$	$A(w)=$ false
$(\neg x \vee \neg y)(\neg y \vee \neg z)(\neg x \vee \neg z)$	7 clauses satisfied
$(x \vee \neg w)(y \vee \neg w)(z \vee \neg w)$	

Example Problem: MaxkSat NP-hardness

But also $\operatorname{Max} 2 \operatorname{Sat}(D)$ is $N P$ - complete...
.... a local replacement reduction from 3SAT

$(x \vee y \vee z)$ is replaced by	$A(x)=A(y)=A(z)=$ false
$(x)(y)(z)(w)$	$A(w)=$ false
$(\neg x \vee \neg y)(\neg y \vee \neg z)(\neg x \vee \neg z)$	6 clauses satisfied
$(x \vee \neg w)(y \vee \neg w)(z \vee \neg w)$	

$A(x)=A(y)=A(z)=$ false
$(x)(y)(z)(w)$
6 clauses satisfied

Example Problem: MaxkSat NP-hardness

But also $\operatorname{Max2Sat}(D)$ is $N P$ - complete....
. a local replacement reduction from 3SAT :

$(x \vee y \vee z)$ is replaced by	Each 3-literal clause is
$(x)(y)(z)(w)$	replaced by a 10 clauses.
$(\neg x \vee \neg y)(\neg y \vee \neg z)(\neg x \vee \neg z)$	Iff the original clause was
$(x \vee \neg w)(y \vee \neg w)(z \vee \neg w)$	satisfied, then 7 in the replacement can be satisfied.

Set $K=7 m$ where m is the number of clauses in the original.

Optimization Problems and Approximation

Performance Ratio

Approximation algorithms deliver solutions of guaranteed quality - they are not heuristics.

But how to measure the quality of a solution?

Let $O=<I$, sol, m, type $>$ be an optimization problem.
given $i \in I$ and a $s \in \operatorname{sol}(i)$ we define

$$
R(i, s)=\max \left\{\frac{\operatorname{opt}(\mathrm{i})}{\mathrm{m}(\mathrm{i}, \mathrm{~s})}, \frac{\mathrm{m}(\mathrm{i}, \mathrm{~s})}{\operatorname{opt}(\mathrm{i})}\right\}
$$

as the performance ratio.
$s \in \operatorname{sol}(i)$ is a an r-approximate solution if $R(i, s) \leq r$.

Optimization Problems and Approximation Performance Ratio

Let $O=<I$, sol, m , type $>$ be an optimization problem. given $i \in I$ and a $s \in \operatorname{sol}(i)$ we define

$$
R(i, s)=\max \left\{\frac{\operatorname{opt}(\mathrm{i})}{\mathrm{m}(\mathrm{i}, \mathrm{~s})}, \frac{\mathrm{m}(\mathrm{i}, \mathrm{~s})}{\operatorname{opt}(\mathrm{i})}\right\}
$$

as the performance ratio.
$s \in \operatorname{sol}(i)$ is a an r-approximate solution if $R(i, s) \leq r$.
$R(i, s)=1$ implies that s is optimal.
$R(i, s) \geq 1$ in general, the closer to 1 , the better.

Example Problem MaxkSat Performance Ratio

MaxkSat $=<I$, sol, m, $\max >$
$I=C N F-$ Formulas with at most k literals per clause
$\operatorname{sol}(\varphi)=$ set of assignments to the vars. of φ
$\mathrm{m}(\varphi, A)=$ the number of clauses which are satisfied by A
$R(\varphi, A)=\frac{\operatorname{opt}(\varphi)}{\mathrm{m}(\varphi, A)} \quad$ If we have an A with $R(\varphi, A) \leq \frac{3}{2}$ then
no A^{\prime} can satisfy more than $\frac{3}{2} \mathrm{~m}(\varphi, A)$ clauses.

Optimization Problems and Approximation

Approximation Problem

Let $O=<I$, sol, m, type $>$ be an optimization problem and r a function $N \rightarrow[1, \infty)$.

Then the approximation problem $\langle O, r\rangle$ is to find for all instances $i \in I$ an $r(|i|)$-approximate solution $s \in \operatorname{sol}(i)$.

The question is which approximation problems $\langle O, r\rangle$ are located in $F P$.
And how to prove that they are not (under some assumption such as $P \neq N P$).

Approximation Algorithm

Example Problem: MaxkSat

approxMaxSat(φ)

1. for $i=1$ to n
2. val $:=\mathrm{E}\left(\mathrm{m}\left(\varphi, A \cup\left\{x_{i}=\operatorname{true}\right\}\right)\right)>\mathrm{E}\left(\mathrm{m}\left(\varphi, A \cup\left\{x_{i}=\right.\right.\right.$ false $\left.\left.\}\right)\right)$;
3. $\mathrm{A}:=\mathrm{A} \cup\left\{x_{i}=\mathrm{val}\right\} ; \varphi:=\varphi\left[x_{i}=\mathrm{val}\right]$;
4. return A;
$E(\varphi,\{ \})=\sum_{C \in \varphi} 1-2^{-|C|} \geq \sum_{C \in \varphi} 1-2^{-1}=\frac{1}{2}|\varphi|$
Thus, this algorithm is a 2 - approximate algortithm or better.

Approximation Algorithm

Example Problem: VertexCover

C is indeed a valid cover.
Every cover must cover all the edges picked in line 3.

Thus every cover must contain at least $|\mathrm{C}| / 2$ vertexes.

$$
R(G, C)=\frac{\mathrm{m}(G, C)}{\operatorname{opt}(G)} \leq 2
$$

Approximation Classes

APX

We have two approximation problems, which can be solved within a constant performance ratio within polynomial time.

So it's time to define a corresponding class : $A P X$.
Let O be an NPO problem.
$O \in A P X$ iff there exists an
r-approximation algorithm for O which run in polynomial time for some constant $r \geq 1$.

Approximation Classes Example Problem: TSP (I)

We will show that $T S P \in A P X \Leftrightarrow P=N P$.
We use another $N P$ - complete problem to
reduce from : HAMILTONIANCYCLE
HAMILTONIANCYCLE : Given a graph $G=\langle V, E\rangle$,
is there a cycle, which visits any node exactly once?
We construct a distance matrix M as follows (for $r \geq 1$):
$M(u, v)=\left\{\begin{array}{l}1:\langle u, v\rangle \in E \\ |r| V \mid\rceil: \text { otherwise }\end{array}\right.$

Approximation Classes

Example Problem: TSP (II)
We construct a distance matrix M as follows ($r \geq 1$):
$M(u, v)=\left\{\begin{array}{l}1:\langle u, v\rangle \in E \\ |r| V| |: \text { otherwise }\end{array}\right.$
If G is a positive instance, then $\operatorname{opt}(M)=|\mathrm{V}|$.
Otherwise opt $(M) \geq\lceil r|V|\rceil+|V|-1$.
Now assume that there is an r-approximate algorithm for TSP.

Approximation Classes

Example Problem: TSP (III)
If G is a positive instance, then $\operatorname{opt}(M)=|\mathrm{V}|$.
Otherwise opt $(M) \geq\lceil r|V|\rceil|V|-1$.
Now assume that there is an r-approximate algorithm apporx for TSP and let $s=\operatorname{approx}(M)$.

If $G \in$ HAMILTONIANCYCLE, we find

Approximation Classes

Example Problem: TSP (IV)
So we could prove that $T S P \notin A P X$ (assuming $P \neq N P$) by giving a reduction from an $N P$ - hard problem, which established a gap between positive and negative instances.

The gap was large enough to distinguish whether we reduced from a positive or a negative instance.

Wanted : A generic reduction from NP - hard problems, to approximation problems which produces gaps.

Approximation Classes
 Relationships

$$
A P X \subseteq N P O
$$

$$
T S P \in A P X \Leftrightarrow P=N P
$$

$$
A P X \subset N P O \Leftrightarrow P \neq N P
$$

Approximation Classes

 Approximation SchemesAn algorithm which can be parametrized with the performance ration to achieve is called approximation - scheme.

Let $O=<I$, sol, m, type $>$ be an optimization problem.
Then an algorithm A is an approximation scheme for O iff

$$
\text { for all } i \in I, r>1 \text { and } s=A(i, r)
$$

$s \in \operatorname{sol}(I)$ and $R(i, s) \leq r$.

Approximation Schemes The classes PTAS and FPTAS

```
O\in FPTAS if there is an approximation scheme A
such that A(i,r) runs in DTIME(poly(i|,1/(r-1)))
for alli\inI and r>1.
```

$O \in P T A S$ if there is an approximation scheme A such that $A(i, r)$ runs in $\operatorname{DTIME}($ poly $(i \mid))$
for all $i \in I$ and any fixed $r>1$.

Approximation Schemes

 Example Problem: KNAPSACK```
KNAPSACK =< I, sol, m, max >
 I={<S,w,W,v>\S={1,.,n},w,v:S->N,W\inN}
sol(i)={T\subseteqS: 隹 w(i)\leqW}
m(i,s)= 偱r v(i)
```

Let $W(i, v)$ be the minimum weight attainable by selecting among the first $i$ items such that that their total value is exactly $v$.

## Example Problem: KNAPSACK

## An FPTAS (I)

This algorithm runs in $\operatorname{DTIME(poly}(n, V)$ ) (pseudo - poly.)
Assume $\varepsilon>0$ fixed
Let $l=\left\lceil\log \max _{i \in S} v(i)\right\rceil$.
Choose $k$ with $\frac{n}{n^{k}}<\varepsilon$.
We keep the most
Set $L=l-k \log n$.
Define $I^{\prime}$ with
The rest, i.e., $L=l-k \log n$
$v^{\prime}(i)=\left\lfloor v(i) / 2^{L} 2^{L}\right.$ gets zeroized.

## Example Problem: KNAPSACK

An FPTAS (II)
This algorithm runs in $\operatorname{DTIME}(\operatorname{poly}(n, V))$ (pseudo - poly.)
Assume $\varepsilon>0$ fixed.
Let $l=\left\lceil\log \max _{i \in S} v(i)\right\rceil$.
Choose $k$ with $\frac{n}{n^{k}}<\varepsilon$.
Set $L=l-k \log n$.
Define $I^{\prime}$ with
$v^{\prime}(i)=\left\lfloor v(i) / 2^{L}\right\rfloor^{L}$

$$
\begin{aligned}
\sum_{i \in T} v(i) & \leq \sum_{i \in T} v^{\prime}(i)+|T| 2^{L} \\
\operatorname{opt}(I) & \leq \operatorname{opt}\left(I^{\prime}\right)+n 2^{L} \\
\frac{\operatorname{opt}(I)}{\operatorname{opt}\left(I^{\prime}\right)} & \leq 1+\frac{n 2^{L}}{\max _{i \in S} \nu^{\prime}(i)} \\
& \leq 1+\frac{n 2^{L}}{2^{l}}<1+\varepsilon
\end{aligned}
$$

Solving $I^{\prime}$ optimally yields an $1+\varepsilon$ approximate solution for $I$

## Example Problem: KNAPSACK

An FPTAS (III)
This algorithm runs in $\operatorname{DTIME}(\operatorname{poly}(n, V))$ (pseudo - poly.)
Assume $\varepsilon>0$ fixed.
Let $l=\left\lceil\log \max _{i \in S} v(i)\right\rceil$.
Choose $k$ with $\frac{n}{n^{k}}<\varepsilon$.
We can solve $I^{\prime}$ in

Set $L=l-k \log n$.
DTIME (poly ( $\left.n, V^{\prime}\right)$ )

Define $I^{\prime}$ with $\quad=\operatorname{DTIME}(\operatorname{poly}(n, 1 / \varepsilon))$
$v^{\prime}(i)=\left\lfloor v(i) / 2^{L} \mathfrak{2}^{L}\right.$
Solving $I^{\prime}$ optimally yields an $1+\varepsilon$ approximate solution for $I$ within DTIME $(\operatorname{poly}(|l|, 1 / \varepsilon))$. KNAPSACK $\in$ FPTAS.

## Approximation Schemes <br> Polynomially Bound Problems

Let $O=<I$, sol, m, type $>$ be a problem in NPO.

> If there is polynomial $p$ such that $\forall i \in I, s \in \operatorname{sol}(i): \mathrm{m}(i, s) \leq p(|i|)$ then $O$ is polynomially bound, i.e., $\quad O \in N P O-P B$.

If there is an $N P$ - hard problem in $N P O-P B$ which admits an FPTAS, then $P=N P$.

## Polynomially Bound Problems Permit no FPTAS (I)

If there is an $N P$ - hard problem in $N P O-P B$ which admits an $F P T A S$, then $P=N P$.

Let $O$ be a maximation problem in $N P O-P B$.
Set $r(i)=1+\frac{1}{p(|i|)}$, where $p$ is the poly. - bound.
An $r(i)$-approximate solution $s$ for $i$ is optimal since,
$\frac{p(|i|)+1}{p(|i|)}=r(i) \geq \frac{\operatorname{opt}(i)}{\mathrm{m}(i, s)}$ gives
$\mathrm{m}(i, s) \geq \operatorname{opt}(i) \frac{p(|i|)}{p(|i|)+1}=\operatorname{opt}(\mathrm{i})-\frac{\operatorname{opt}(\mathrm{i})}{p(|i|)+1}>\operatorname{opt}(i)-1$

Polynomially Bound Problems
Permit no FPTAS (II)
Set $r(i)=1+\frac{1}{p(|i|)}$, where $p$ is the poly. - bound.
An $r(i)$-approximate solution $s$ for $i$ is optimal since,
$\frac{p(|i|)+1}{p(|i|)}=r(i) \geq \frac{\operatorname{opt}(i)}{\mathrm{m}(i, s)}$ gives
$\mathrm{m}(i, s) \geq \operatorname{opt}(i) \frac{p(|i|)}{p(|i|)+1}=\operatorname{opt}(\mathrm{i})-\frac{\operatorname{opt}(\mathrm{i})}{p(|i|)+1}>\operatorname{opt}(i)-1$
If $O$ would be in FPTAS then we can solve $O$ optimally in DTIME $(\operatorname{poly}(|i|, 1 /(r(|i|)-1))=\operatorname{DTIME}(\operatorname{poly}(|i|)$.

## Approximation Classes Relationships

```
FPTAS\subseteqPTAS\subseteqAPX\subseteqNPO
```

                                    \(T S P \in A P X \Leftrightarrow P=N P\)
    Max3Sat $\in$ FPTAS $\Leftrightarrow P=N P$

Two questions : Are there problems in PTAS-FPTAS?
Are there problems in APX - PTAS ?

## Approximation Classes

Problems in PTAS-FPTAS

PLANAR INDEPENDENTSET is in NPO - PB and is NP - hard.
$P L A N A R$ INDEPENDENTSET $\in F P T A S \Rightarrow P=N P$.

Unproven : PLANAR INDEPENDENTSET $\in P T A S$.

## Approximation Classes <br> Relationships

$$
F P T A S \subseteq P T A S \subseteq A P X \subseteq N P O
$$

PLANAR INDEPSET $\in$ FPTAS
$T S P \in A P X \Leftrightarrow P=N P$
$\Leftrightarrow P=N P$
Max3Sat $\in F P T A S \Leftrightarrow P=N P$

One question : Are there problems in APX - PTAS ? (as usual, based on $P \neq N P$ )

## Hardness in Approximation

Wanted : A generic reduction from $N P$ - hard problems, to approximation problems which produces gaps.

Remember the reduction to TSP..

Relies on the so-called PCP-Theorem an alternative formulation of NP.

It allows to reduce $N P$ - complete languages to approximation problems.

## Hardness in Approximation

 PCP-Verification

## Hardness in Approximation

 PCP-Theorem (I)A language $L$ is in $P C P(r(n), q(n))$
if there is a polynomial time $\operatorname{PCP}(r(n), q(n))$ - Verifier $V$ such that

$$
\begin{aligned}
& \forall x \in L \exists \Pi: \operatorname{Pr}_{\bar{R}}[V(x, \Pi, \bar{R})=\text { accept }]=1 \\
& \forall x \notin L \forall \Pi: \operatorname{Pr}_{\bar{R}}[V(x, \Pi, \bar{R})=\text { aceppt }] \leq 1 / 2
\end{aligned}
$$

with $\mid \overline{\bar{N}}=O(r(|x|))$, and $V$ reading $O(q(n))$ bits non-adaptively from $I$.

PCP - Theorem : NP $=P C P(\log n, 1)$

## Hardness in Approximation <br> Example Problem: Max3Sat (I)

Observe that the once the $O(q(n))$ bits have
been read from the proof $\Pi$, the decision
of $V$ is only depending on them.

Thus we can define a set of Boolean Expressions
$\varphi[x, \bar{R}](\bar{p})$ where
$x$ is the input,
$\bar{R}$ is the random string of length $O(\log n)$,
$\bar{p}$ are the bits read in $\Pi$,
$\varphi[x, \bar{R}](\bar{p})=1 \Leftrightarrow V(x, \Pi, \bar{R})=$ accept.

Hardness in Approximation Example Problem: Max3Sat (II)

Each $\varphi[x, R](p)$ can be expressed by $d$ clauses, where $d$ is constant (since $|\overline{\mathrm{p}}|$ is constant).

Let $\varphi$ be the conjunction of the expressions $\varphi[x, \bar{R}](\bar{p})$ for all $\bar{R}(|\bar{R}|=c \log n)$.
$x \in L \Rightarrow \exists \Pi: \operatorname{Pr}_{\bar{R}} \mid V(x, \Pi, \bar{R})=$ accept $]=1$
$\Rightarrow$ all $\varphi[x, \bar{R}]$ can be satisified satisfied simultansously
$\Rightarrow \varphi$ satisfiable.

Hardness in Approximation
Example Problem: Max3Sat (III)
Each $\varphi[x, \bar{R}](\bar{p})$ can be expressed by $d$ clauses, where $d$ is constant (since $|\overline{\mathrm{p}}|$ is constant).

Let $\varphi$ be the conjunction of the expressions $\varphi[x, \bar{R}](\bar{p})$ for all $\bar{R}(|\bar{R}|=c \log n)$.
$x \notin L \Rightarrow \forall \Pi: \operatorname{Pr}_{\bar{R}} \mid V(x, \Pi, \bar{R})=$ accept $\mid \leq 1 / 2$
$\Rightarrow$ each assignment must leave $1 / 2$
of the expressions $\varphi[x, \bar{R}]$ unsatisified.
$\Rightarrow \frac{\operatorname{opt}(\varphi)}{|\varphi|} \leq \frac{1}{2}+\frac{1}{2} \frac{d-1}{d}:=f<1$

Hardness in Approximation
Example Problem: Max3Sat (IV)

$$
\begin{aligned}
& x \in L \Rightarrow \frac{\operatorname{opt}(\varphi)}{|\varphi|}=1 \\
& x \notin L \Rightarrow \frac{\operatorname{opt}(\varphi)}{|\varphi|} \leq \frac{1}{2}+\frac{1}{2} \frac{d-1}{d}:=f<1
\end{aligned}
$$

Let $A$ be an $1<r<\frac{1}{f}$ approximate solution for $\varphi$.
$\frac{\mathrm{m}(\varphi, A)}{} \geq \frac{1}{r}>f \quad x \in L \Rightarrow \mathrm{~m}(\varphi, A)>f \operatorname{opt}(\varphi)=f|\varphi|$
$\overline{\operatorname{opt}(\varphi)} \geq \frac{r}{r}>f \neq \mathrm{m}(\varphi, A) \leq \operatorname{opt}(\varphi) \leq f|\varphi| \quad($ for all $A)$
$r$-approximating Max3Sat is $N P$ - hard (constant $r>1$ ).

## Hardness in Approximation

Remark: Decoding of PCP-Proofs

$$
\begin{aligned}
& \forall x \in L \quad \exists \Pi: \operatorname{Pr}_{\bar{R}}[V(x, \Pi, \bar{R})=\text { accept }]=1 \\
& \forall x \notin L \forall \Pi: \operatorname{Pr}_{\bar{R}}[V(x, \Pi, \bar{R})=\text { aceppt }] \leq 1 / 2
\end{aligned}
$$

Given a proof $\Pi$ with $\operatorname{Pr}_{\bar{R}}[V(x, \Pi, \bar{R})=$ accept $]>1 / 2$ a proof $\Pi^{\prime}$ with $\operatorname{Pr}_{\bar{R}}\left[V\left(x, \Pi^{\prime}, \bar{R}\right)=\right.$ accept $]=1$ can be reconstructed efficiently (in FP).
$\Pi$ is basically encoded for error - correction-thus it possible to find the corresponding "usually encoded" proof efficiently.

Approximation Classes
Relationships

```
FPTAS\subseteqPTAS\subseteqAPX\subseteqNPO
```

Approximation Classes
Relationships

```
FPTAS\subseteqPTAS\subseteqAPX\subseteqNPO
```

```
FPTAS\subsetPTAS\subsetAPX\subsetNPO \LeftrightarrowP\not=NP
```



## More Example Problems



## Approximation Classes

More Relationships
$F P T A S \subseteq P T A S \subseteq A P X \subseteq \log -A P X \subseteq \mathrm{poly}-A P X \subseteq \exp -A P X \subseteq N P O$
$F P T A S \subset P T A S \subset A P X \subset \log -A P X \subset$ poly $-A P X \subset \exp -A P X \subset N P O$
iff
$P \neq N P$

