Optimization Problems and
Approximation

We are unable to solve NP-complete problems efficiently,
i.e., there is no known way to solve them in polynomial time.

Most of them are decision versions of optimization problems...

with a set of feasible solutions for each instance

with an associated quality measure

Why not looking for an approximate solution?

Is there a difference in complexity?

Optimization Problems and Approximation

Definition of Optimization
Problems

OPTPROB =<1, s0l,m, type >
| the instance set
sol(i) the set of feasible solutions for instance i
(sol(i) nonempty for i O1)
m(i,s) the measure of solution swrt.instance i
(positive integer for i 01 and sOsol(i))

opt(i) = type m(i, s)

350l

Optimization Problems and Approximation

Example Problem: MaxkSat

MaxkSat =< |, sol, m, max >
| =CNF - Formulas with at most k literals per clause
sol(¢) = set of assignments to the vars. of ¢
m(@, A) = the number of clauses which are satisfied by A

MaxSat has all CNF - Expressions as instances.

There is also a weighted version : Each clause has a weight - -
the measure is the sum of the weights of the satisfied clauses.

Optimization Problems and Approximation

Example Knapsack revisited

AllsetT OS: Zw(i) <W are feasible solutions.

im

Zv(i) is the quality of the solution T wrt. to the instance i.
i

KNAPSACK =<1, sol,m,max >
I ={<s,ww,v>[S={1,..,n}, wyv:S - N, WON, VON}

10) lros: Zw(i)sw}

l i

m(i,s) = > (i)

i

Optimization Problems and Approximation

The Class NPO

NPOQ s the class of optimization problems whose
decision versions are in NP.

OPTPROB =< |, sol, m, type >0 NPO iff
Cpolynomial p:0iO1,sOsol(i):| sl p(li)
deciding sOsol(i) isin P

computing m(s,i) isin FP

Example Problem: MaxkSat

NP-hardness

MaxkSat =< | ,sol, m,max >
| =CNF - Formulas with at most k literals per clause
sol(@) = set of assignments to the vars. of ¢
m(¢@, A) = the number of clauses which are satisfied by A

Max3Sat(D) is certainly NP —complete
(thus Max3Sat is NP —hard) :
3SAT is a special case

But also Max2Sat(D) is NP - complete....

Example Problem: MaxkSat

NP-hardness

But also Max2Sat(D) is NP —complete...
....alocal replacement reduction from 3SAT :

(xOyLC z)isreplaced by A(X) = A(y) = A(2) = true
(%) (¥) (2) (W) A(W) =true

(=x0=y) (;y0-2) (-x0-2)
xO=-w) (yO-w) (zO-w)

7 clauses satisfied

Example Problem: MaxkSat

NP-hardness

But also Max2Sat(D) is NP —complete...
....alocal replacement reduction from 3SAT :

(xOyLC z)isreplaced by AX) = A(y) # A(2) =true
(X) (¥) (2) (W) A(w) = false

(=x0=y) (-y0-2) (-x0-2)
xO=-w) (yO-w) (zO-w)

7 clauses satisfied

Example Problem: MaxkSat

NP-hardness

But also Max2Sat(D) is NP —complete....
....alocal replacement reduction from 3SAT :

(xCyCz)isreplaced by Each 3-literal clause is
() (y) (2) (W) replaced by a 10 clauses.

(=x0-y) (-y0=2) (-x0-2)
xO=w) (yO-w) (zO-w)

Iff the original clause was
satisfied, then 7 in the
replacement can be
satisfied.

Set K =7mwhere m is the number of clauses

in the original.

Example Problem: MaxkSat

NP-hardness

But also Max2Sat(D) is NP —complete...
....alocal replacement reduction from 3SAT :

(xOyLC z)isreplaced by A(X) # Aly) = A(2) = true
()/(y) (2) (W) A(W) = true

(=x0-y) (=yO0-2) (-x0-2)
xO=-w) (yO-w) (zO-w)

7 clauses satisfied

Example Problem: MaxkSat

NP-hardness

But also Max2Sat(D) is NP —complete...
....alocal replacement reduction from 3SAT :

(xOyLC z)isreplaced by A(X) = A(y) = A(2) =false
(%) (¥) (2) (W) A(w) = false

(=x0=y) (-y0-2) (-x0-2)
xO=-w) (yO-w) (zO-w)

6 clauses satisfied

Optimization Problems and Approximation
Performance Ratio

Approximation algorithms deliver solutions of
guaranteed quality — they are not heuristics.

But how to measure the quality of a solution?

Let O =<1,s0l, m,type > be an optimization problem.
giveniJl and a sUsol(i) we define

[opt(i) m(@i,9)|

[m(.9) "opt(i) |
as the performance ratio.

ssol(i)is aan r —approximate solution if R(i,s) <r.

R(i, s) = max

Optimization Problems and Approximation

Performance Ratio

Let O =<1,s0l, m,type > be an optimization problem.
giveniJl and a sUsol(i) we define

R(i,s) = maxJ opF(i) s m(i,§) 1
| mGi.9) " opt(i) |

as the performance ratio.
sOsol(i) isaanr —approximate solution if R(i,s) <r.

R(i,s) =1limplies that sis optimal.

R(i,s) 21in general, the closer to 1, the better.

Optimization Problems and Approximation

Approximation Problem

Let O =<1,s0l, m,type > be an optimization problem
and r afunction N - [1,).

Then the approximation problem <O, r >is to
find for allinstances i O1 anr(]i |) - approximate
solution sOsol(i).

The question is which approximation problems
<O, >arelocatedin FP.

And how to provethat they are not (under some
assumption suchas P # NP)..

Approximation Algorithm
Example Problem: VertexCover

approxVertexCover(V, E) Cisindeed a valid cover.

1.C:=0; Every cover must cover all
2. while E#0 do the edges pickedinline 3.
3. picka<u,v>0OE

4. C:=CO{uv}k

5. remove {u,v} fromV,E;
6

Thus every cover must

_mGo) _,

R(G,C) = S

contain at least | C| /2 vertexes.

Example Problem MaxkSat
Performance Ratio

MaxkSat =< | ,sol, m,max >
| =CNF - Formulas with at most k literals per clause
sol(@) = set of assignments to the vars. of ¢
m(@, A) = the number of clauses which are satisfied by A

R(#, A) :%@g If we have an Awith R(#, A) < 2 then

no A'can satisfy more than % m(¢g, A) clauses.

Approximation Algorithm

Example Problem: MaxkSat

approxMaxSat(¢)

l.fori=1ton

2. val:=E(m(¢, AO{x =true}))>E(m(¢, AO{x =false}))
3. A=A0{x =val}; ¢:=g¢[x =val];

4.return A

E@0)= Y 1-252 3 1-27 =2 |g|
cop clgp

Thus, this algorithm is a 2 - approximate algortithm or better.

Approximation Classes

APX

We have two approximation problems, which can be solved
within a constant performance ratio
within polynomial time.

Soit's time to define a corresponding class: APX.

Let O be an NPO problem.
OO APX iff there exists an
r —approximation algorithm for O
which run in polynomial time for
some constant r >1.

Approximation Classes

Example Problem: TSP (I)

We will show that TSP 0 APX = P =NP.

We use another NP —complete problem to
reduce from: HAMILTONIANCYCLE

HAMILTONIANCYCLE : Givenagraph G =<V, E >,
is there a cycle, which visits any node exactly once?

We construct a distance matrix M as follows (for r 21):
[1:<u,v>0E

M(u,v) = 1 IV []: otherwise

Approximation Classes

Example Problem: TSP (llI)

If Gis a positive instance, then opt(M) =| V|.
Otherwise opt(M) 2[r|V| |+ |V |-1.

Now assume that there is an r —approximate
algorithm apporx for TSP and let s=approx(M).

If GOHAMILTONIANCYCLE, we find
m(M,s) _ m(M,s)
opt(M) V|
But otherwise we have
m(M,s) = opt(M) 2 [|V [+ [V |-1>[r |V []|

r=R(M,s) = andso|V |r=m(M,s).

Approximation Classes

Relationships

APX [0 NPO

TSPOAPX = P=NP

APX OO NPO < P# NP

Max3Sat and VertexCover are in APX.

Approximation Classes

Example Problem: TSP (ll)

We construct a distance matrix M as follows (r 21):
_[li<uv>0E

M (u,V) |[r IV []: otherwise

If Gis a positive instance, then opt(M) =| V|.
Otherwise opt(M) =[r[V| ||V |-1.

Now assume that there is an r —approximate
algorithm for TSP.

Approximation Classes

Example Problem: TSP (IV)

So we could prove that TSP [0 APX (assuming P # NP)
by giving a reduction from an NP - hard problem, which
established a gap between positive and negative instances.

The gap was large enough to distinguish whether
we reduced from a positive or a negative instance.

Wanted : A generic reduction from NP —hard problems,
to approximation problems which produces gaps.

Approximation Classes

Approximation Schemes

An algorithm which can be parametrized with
the performance ration to achieve is called
approximation — scheme

Let O =<1,sol,m,type >be an optimization problem.

Then an algorithm Ais an approximation scheme for O iff
foralliCll, r >1 and s=A(,r)
sOsol(l)and R(i,s) <r.

Approximation Schemes

The classes PTAS and FPTAS

OUFPTASIf there is an approximation scheme A
such that A(i,r) runsin DTI ME(pon(|i 1,2/(r —1)))
forallidl andr >1.

OOPTASIf there is an approximation scheme A
such that A(i,r) runsin DTIME(poly(i]))
foralliOl and any fixedr >1.

Example Problem: KNAPSACK
A Pseudo-Polynomial Algorithm

Let W(i,v) be the minimum weight attainable by selecting among
the firstiitems such that their total value is exactly v.
W(0,0)=0
W(O,v)=c0 V£0
W(i +1,v) = minfW(i, v), [W(i,v=v(i + 1) +w(i +1)}
By building the table of the W(i,v) for 0<i<nand
0<vsV =3 v(i) wecansolve KNAPSACK.
i0s

This algorithm runs in DTIME(poly(n,V)) (pseudo -poly.)

Example Problem: KNAPSACK
An FPTAS (Il)

This algorithm runs in DTIME(poly(n,V)) (pseudo -poly.)
Assume ¢ > 0 fixed.

Let | =[logmax,.s V(i) | DV V)T

i iar

N
Choose k with oy <e. opt(1) < opt(1") +n2"
Set L =1 -klogn. .
A A Opt(l) < 1+L
Define | " with opt(1) ~ max,c V(i)

V(i) =|vai)/2- bt

L
Sl+£<l+€
2

Solving | ' optimally yields an1+ ¢ approximate solution for |

Approximation Schemes

Example Problem: KNAPSACK

KNAPSACK =< |,sol, m,max >

I ={<swWw,v>Ss={1.n}, wyv:S - N, WON}
sol(i):-{TDS:ZW(i)sW1

f
m(i,s) = Y v(i)

Let W(i,v) be the minimum weight attainable
by selecting among the first i items such that
that their total value is exactly v.

Example Problem: KNAPSACK
An FPTAS (1)

This algorithm runs in DTIME(poly(n,V)) (pseudo -poly.)
Assume ¢ > 0 fixed.

Let | =[logmax,.s V(i) |

We keep the most

Choose k with '—1 <e.
n significant klog n bits.

Set L=1-klogn.
Define | ' with Therest,i.e., L =I-klogn,
V(i) = Lv(i) /2t J2L gets zeroized.

Example Problem: KNAPSACK
An FPTAS (Ill)

This algorithm runsin DTIME(poly(n,V)) (pseudo -poly.)
Assume ¢ > 0 fixed.

Let| =[logmax, ¢ V(i) |

We cansolve |'in
DTIME(poly(n,V"))
SetL=I-klogn. = DTIME(poly(n, n24%"))
Define 1" with = DTIME(poly(n,1/ £))

V(i) = |vii)/2- b+

Choose k with Lk <e.
n

Solving | ' optimally yields an1+ ¢ approximate solution for |
within DTIME(poly(|1|,l/e)). KNAPSACK [J FPTAS.

Approximation Schemes
Polynomially Bound Problems
Let O =<1,sol,m,type >be a problem in NPO.

If there is polynomial p such that
OiO1,sOsal(i): m(i,s)< p(li])

then Qs polynomially bound, i.e.,
O[ONPO - PB.

If there is an NP - hard problem in NPO - PB
which admits an FPTAS, then P = NP.

Polynomially Bound Problems
Permit no FPTAS (ll)

Setr(i) =1+ p(ll') ,where pis the poly.-bound.
i
An r(i) —approximate solution sfor i is optimal since,
PUID+L_ .y 0PI
() m(i.s)

: o PAID _ ey opt() e
m(|,s)zopt(|)p(|i|)+1—opt(|) p(|i|)+1>0pt(l) 1

gives

If O would be in FPTAS then we can solve O optimally
in DTIME(poly([i |.1/(r(]i [) =1)) = DTIME(poly(|i).

Approximation Classes

Problems in PTAS-FPTAS

PLANAR INDEPENDENTSET isin NPO - PB and is NP —hard.
PLANAR INDEPENDENTSET O FPTAS = P = NP.

Unproven : PLANAR INDEPENDENTSET [J PTAS.

Polynomially Bound Problems

Permit no FPTAS (I)

If there is an NP - hard problem in NPO - PB
which admits an FPTAS, then P = NP.

Let O be a maximation problem in NPO - PB.

Setr(i) =1+ p(ll') ,where pis the poly.-bound.
i

An (i) —approximate solution sfor i is optimal since,
pip+1_ opt(i)

=r(i)2

p(liD mg oS

. o PAID _ ey 0P i
m(i, s) ZOpt(I)W =opt(i) o(liD +l> opt(i) -1

Approximation Classes

Relationships

FPTAS [0 PTAS [J APX [NPO

TSPOAPX = P=NP
Max3Sat [1FPTAS ~ P = NP

Two questions : Are there problems in PTASFPTAS?
Are there problems in APX — PTAS?
(asusual, based on P # NP)

Approximation Classes

Relationships

FPTAS O PTAS O APX O NPO

PLANAR INDEPSET O FPTAS TSPOAPX = P=NP

- P=NP Max3Sat] FPTAS — P = NP

One question: Are there problems in APX — PTAS ?
(as usual, based on P # NP)

Hardness in Approximation

Wanted: A generic reduction from NP —hard problems,
to approximation problems which produces gaps.

Remember the reduction to TSP...

Relies on the so-called PCP-Theorem —
an alternative formulation of NP.

It allows to reduce NP —completelanguages
to approximation problems.

Hardness in Approximation

PCP-Theorem (I)

Alanguage L isin PCP(r(n),q(n))
if there is a polynomial time PCP(r (n),q(n)) - Verifier V
such that
OxOL O: Prﬁb/(x, M, R) = accept| =1
OxOL O : Pr[V (x, M, R) = aceppt] <1/2
with | =O(r (| x|)), and V reading O(q(n)) bits non - adaptively
from I1.

Easy : NP [0 PCP(logn,1) Hard: NP O PCP(logn,1)

Hardness in Approximation

PCP-Theorem (ll)

How to use?

Reduce the verification process to
an approximation problem such that
the gap of the acceptance probability
of the PCP-Verifier translates into a
gap in the measure of the optimal
solution(s).

Hardness in Approximation

PCP-Verification

Hardness in Approximation

PCP-Theorem (I)

Alanguage L isin PCP(r(n),q(n))
if there is a polynomial time PCP(r (n),q(n)) - Verifier V
such that
OxOL O: Prﬁb/(x, M, R) = accept| =1
OxOL O : Pr[V (x, M, R) = aceppt] <1/2
with | =O(r (| x|)), and V reading O(q(n)) bits non - adaptively

from I1.
PCP-Theorem: NP = PCP(logn,1)

Hardness in Approximation
Example Problem: Max3Sat (I)

Observe that the once the O(q(n)) bits have
been read from the proof 17, the decision
of V is only depending on them.

Thus we can define a set of Boolean Expressions
#[x, Rl(p) where
xis the input,
Ris the random string of length O(logn),
‘pare the bits readin I,
S RI(p) =1 = V(XJT,R) =accept.

Hardness in Approximation

Example Problem: Max3Sat (I1)

Each ¢[x, R](p) can be expressed by d clauses,

where d is constant (since | [3 |is constant).

Let ¢ be the conjunction of the expressions
#[x RI(p) for all R(| R|=clogn).

xOL = TPV (x M, R) = accept] =1
= all #[x, R] can be satisified satisfied
simultansously
= ¢ satisfiable.

Hardness in Approximation

Example Problem: Max3Sat (1V)

xOL = 2P
[#]

xoL= P 1,1d-1_; 4

lg] 2 2 d

Let Abeanl<r < % approximate solution for @.
m@.A 1 ¢ xOL=m(g,A)> f opt(g) = f ¢ |
opi(g) r XOL = m(g, A) < opt(#) < f |#] (for all A)

pproximating Max3Sat is NP —hard (constant r >1).

Approximation Classes

Relationships

FPTAS O PTAS O APX O NPO

PLANAR INDEPSET O FPTAS TSPOAPX = P=NP

< P=NP Max3Sat [PTAS < P = NP

Hardness in Approximation

Example Problem: Max3Sat (lll)

Each ¢[x, R](p) can be expressed by d clauses,

where d is constant (since | [3 |is constant).

Let ¢ be the conjunction of the expressions
#[x RI(p) for all R(| R|=clogn).

xOL = 0N : PV (x M, R) = accept| <1/ 2
= each assignment must leave 1/ 2
of the expressions #[x, R] unsatisified.
opt(¢) 1 1d
= <—+

] "2 2 d

Hardness in Approximation

Remark: Decoding of PCP-Proofs

OxOL 071:PrV(x M, R) = accept] =1
OxOL O < Pr[V/(x, M, R) = aceppt] <1/2

Given a proof I with Prﬁl\/(x, m,R) = acceth >1/2
aproof M"with Prﬁbl(x, S accept] =1canbe
reconstructed efficiently (in FP).

M is basically encoded for error - correction - -
thus it possible to find the corresponding
"usually encoded" proof efficiently.

Approximation Classes

Relationships

FPTAS O PTAS O APX O NPO

FPTASO PTASO APX ONPO « P#NP

Approximation Classes

More Classes

Let O bean NPO problem.
OOF - APX iff thereexistsan
f —approximation algorithm for O
which runin polynomia timefor
some function f OF.

FPTAS O PTAS O APX O log— APX O poly— APX [exp— APX O NPO

Approximation Classes

More Relationships

FPTAS O PTAS O APX O log— APX O poly— APX O exp— APX 0O NPO

FPTAS [0 PTAS [APX [log- APX [poly— APX [exp- APX (1 NPO
iff
P# NP

Approximation Classes

More Example Problems

PLANAR INDEPSET SETCOVER TSP

FPTAS O PTAS O APX O log— APX O poly— APX O exp— APX O NPO

| | | |

KNAPSACK | MAX3SAT COLORING MAXONESSAT

