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Optimization Problems and 
Approximation

We are unable to solve NP-complete problems efficiently,
i.e., there is no known way to solve them in polynomial time.

Why not looking for an approximate solution?

Is there a difference in complexity?

Most of them are decision versions of optimization problems…

with a set of feasible solutions for each instance

with an associated quality measure

Optimization Problems and Approximation

Example Knapsack revisited
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Optimization Problems and Approximation
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Optimization Problems and Approximation

The Class NPO
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Optimization Problems and Approximation

Example Problem: MaxkSat
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Example Problem: MaxkSat

NP-hardness
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7 clauses satisfied
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by replaced is false=== )()()( zAyAxA
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Optimization Problems and Approximation

Performance Ratio
Approximation algorithms deliver solutions of 
guaranteed quality – they are not heuristics.
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Optimization Problems and Approximation

Performance Ratio
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Approximation Problem
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Example Problem: MaxkSat
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Example Problem: VertexCover
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Approximation Classes 

Example Problem: TSP (I)
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Example Problem: TSP (II)
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Example Problem: TSP (III)
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Approximation Schemes

The classes PTAS and FPTAS
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Example Problem: KNAPSACK
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Approximation Schemes
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Hardness in Approximation

 gaps. produces  whichproblems ionapproximat to

problems,  from reductiongeneric  A :Wanted hardNP −

Relies on the so-called PCP-Theorem –
an alternative formulation of NP.

problems. ionapproximat to

languages  reduce to allows It completeNP −

...TSP to reduction the Remember

Hardness in Approximation

PCP-Verification
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Hardness in Approximation

PCP-Theorem (II)
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Hardness in Approximation

Example Problem: Max3Sat (I)
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Hardness in Approximation

Example Problem: Max3Sat (II)
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Example Problem: Max3Sat (III)
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Example Problem: Max3Sat (IV)
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Remark: Decoding of PCP-Proofs
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Approximation Classes

Relationships
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Approximation Classes

More Classes
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Approximation Classes

More Example Problems
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Approximation Classes
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