
Komplexitätstheorie 2004

Problemset 3

December 15, 2004

Problem 1 – Warm Up

Prove that NL = NP implies NL = PH.

Problem 2 – Functional Composition of FL-Computations

Let f and g be two functions which are computable within logarithmic space, i.e., f, g ∈ FL. Prove
that f ◦ g ∈ FL. Finally, argue that logspace reductions are transitive, i.e., if A ≤L B and B ≤L C
then A ≤L C where ≤L denotes logspace reducibility.

Problem 3 – Fuzzy Logic

The syntactical structure of Gödel logic is same as in the case of ordinary Boolean logic. However,
the semantics are different. Given a formula φ over a set of variables X = {x1, . . . , xn}, we define

• an assignment to the variables X as a function τ : X → [0, 1].

• and the evaluation function m(φ, τ) where φ is a formula over the variables X and τ is an
assignment to the variables in X. We set

– m(xi, τ) = τ(xi) with xi ∈ X.

– m(σ → ρ, τ) =
{

1 : m(σ) ≤ m(ρ)
m(ρ) : otherwise

– m(σ ∨ ρ, τ) = max(m(σ),m(ρ))
– m(σ ∧ ρ, τ) = min(m(σ),m(ρ))

Using ¬φ as shortcut for φ → 0 we find m(¬σ, τ) =
{

1 : m(σ) = 0
0 : otherwise

We call the satisfiability problem in this logic GödelSat.

• Prove that the restricted version of GödelSat where we allow only assignments of the form
τ : X → {0, 1/2, 1} is NP-hard.

• Prove that the restricted version of GödelSat is in NP.

• Prove that general GödelSat is in NP.

1

Problem 4 – P 6= NP is not enough

Proving P 6= NP would be a major break-through. However, even after such a proof a lot of
questions would remain open which are of central interest. In particular, we will look at the
complexity of Factoring which is the computational problem of finding the prime factors for any
given positive integer.

• Define the decision problem FBit with 〈x, p〉 ∈ FBit iff x are a positive integer such that
the pth bit of the largest prime-factor of x is set to 1.

• Define Primes as the language of all prime numbers – it is known that Primes ∈ NP ∩
coNP1.

1. Prove the following statement: P = NP ∩ coNP implies Factoring ∈ FP (FP is the class
of functions which are computable within polynomial time).

(a) Prove FBit ∈ NP and FBit ∈ coNP separately by using the assumption Primes ∈ P.
(Hint: The two machines to prove this will be very similiar)

(b) Conclude that Primes ∈ P implies FBit ∈ NP ∩ coNP .

(c) Prove that P = NP ∩ coNP implies Factoring ∈ FP.

2. Based on this: What is the relationship of the statements P 6= NP, P 6= NP ∩ coNP and
Factoring /∈ FP?

Problem 5 – Upward Translations

Prove that P = NP implies EXP = NEXP.

Problem 6 – DSPACE(n) 6= NP

Although we are currently unable to prove that either PSPACE 6= NP or PSPACE = NP, we
can show the following statement:

DSPACE(n) 6= NP

Note, that the inequality is the only relationship between DSPACE(n) and NP that we are able
to prove.

Prove that the two classes are different. Hint: In the lecture we proved that NP is closed
under log-space reductions. Show that DSPACE(n) is not closed under log-space reductions and
conclude that the two classes are in fact different.

Can you apply the same proof-technique to other classes? For example can you prove that

• E 6= EXP

• E 6= PSPACE
1In fact, a more recent result shows Primes ∈ P. Beforehand, it was known that Primes ∈ ZPP, i.e., the class of

randomized polynomial time algorithms, which are expected to produce a definite result within a constant number
of trials.

2

• . . .

The definitions are: EXP =
⋃∞

c=1 DTIME(2nc
) and E =

⋃∞
c=1 DTIME(2cn).

Can you generalize? Argue why P is defined as the set of all decision problems which are
solvable within polynomial time. Also, explain why EXP is preferred over E.

A note on DSPACE(n) 6= NP: By the same argument, you can separate NSPACE(n) from
NP and P and other classical classes. The classes of nondeterministic linear-space Turing machines
coincides with the those languages that are recognizable by context sensitive grammars. Thus, the
class of context sensitive languages is different from P, NP, PSPACE

Problem 7 – HornSat ∈ P

HornSat is another restriction of Sat. An instance of HornSat contains only clauses which
contain at most one positive literal (x ∨ ¬y ∨ ¬z is a Horn-clause, but x ∨ y ∨ ¬z is not a Horn
clause). HornSat is the problem of deciding whether such an instance is satisfiable or not.

Prove HornSat ∈ P.

Problem 8 – FSat ∈ FPNP

FSat is the problem of determining whether a CNF-formula is satisfiable, and if so, of computing
such a satisfying assignment. Prove that a machine which runs in polynomial time and has access
to an NP-oracle can solve this problem.

3

