Komplexitätstheorie

Strukturelle Komplexitätstheorie

Formale Grundlagen

Structural Complexity Theory deals with resource-bounded computation for particular models of computation. It arose from the notion of tractable (feasible) computability.

Problems (rather than algorithms) are grouped into complexity classes by inherent complexity.

Studying the mathematical structures of complexity classes and their relationships, e.g., the question $P=(?) N P$, is the main interest of Structural Complexity Theory.

Definition 2 A class is a set of languages. Given a class C, its complement class co- $C=\{L \mid \bar{L} \in C\}$.

Definition 3 If $M \subseteq D$, the characteristic function $\chi_{M}: D \rightarrow\{1,0\}$ of M (with respect to D) is defined

$$
\chi_{M}(x)=1 \Longleftrightarrow x \in M
$$

and

$$
\chi_{M}(x)=0 \Longleftrightarrow x \in D-M
$$

Given a language L, its complement $\bar{L}=\Sigma^{*}-L$ consists of all strings not belonging to L.
Definition 1 An alphabet is a finite set of symbols.
Unless stated explictly, it will be denoted by Σ.

Given an alphabet Σ, Σ^{*} denotes the set of all finite strings of elements of Σ, including the empty string ϵ.

A set $L \subseteq \Sigma^{*}$ is called a language.

Basic Definitions

Problem Representation

Objects (data) must be formally represented in order to be processed by a machine.

Definition 4 Given a set S, a representation of S in Σ^{*} is a suitable function $f: S \rightarrow \Sigma^{*}$; define that $L_{S}=f(S)$.
f corresponds to the internal data representation in common programming languages.

We shall identify S with L_{S}.
f "suitable":

- if $x \neq y$, then $f(x) \neq f(y)$ (injective).
- L_{S} should be easily recognizable (i.e., $\chi_{L_{S}}$ should be "easy" to compute)

Problem Description

Definition 5 A decision problem Π consists of a set D_{Π} of instances and a subset $Y_{\Pi} \subseteq D_{\Pi}$ of yes-instances.
The complementary problem, co-П, has instances D_{Π} and yes-instances $D_{\Pi}-Y_{\Pi}$.

Assumption: encodings of generic instances can be "easily" recognized by a TM (i.e.
$\chi_{L_{D_{\Pi}}}$ is easy to compute).
Standard problem description:

INSTANCE: A generic problem instance I, i.e. $I \in D_{\square}$.

QUESTION: yes-no question " $I \in Y_{\Pi}$?".

Example: Satisfiability problem

SAT:

INSTANCE: A well-formed Boolean (propositional) formula F.
QUESTION: Is F satisfiable?

$$
\text { E.g., } F=\left(x_{1} \wedge \neg x_{2}\right) \vee \neg\left(x_{3} \vee x_{2}\right)
$$

Search problems: a solution (value) for a problem instance is sought.

Example: Compute the greatest common divisor $\operatorname{gcd}(n, m)$ of two integers n, m.

Decision problems can be seen as special search problems (compute "yes" or "no").

Example: FSAT

Given a Boolean formula F, find a truth assignment σ to the variables that satisfies F (i.e. F has value 1).

One can often solve a search problem "easily" with a subroutine for a suitable associated decision problem.

Example: Solve FSAT using associated decision problem SAT.

Traditionally, complexity theory considers decision problems.

9

Definition 7 If M is a k-tape TM, a configuration of M is a $k+1$-tuple

$$
\left(q, x_{1}, x_{2}, \ldots, x_{k-1}, x_{k}\right)
$$

where q is the current state of M, and each $x_{j} \in \Sigma^{*} \# \Sigma^{*}$ represents the current contents of the $j^{\text {th }}$ tape. The symbol "\#" is supposed not to be in Σ, and precedes the position of the tape head.

Definition 8 The initial configuration of a TM M on an input w is $\left(q_{0}, \# w, \#, \ldots, \#\right)$.

Definition 9 An accepting configuration is a configuration $\left(q, w_{1}, \ldots, w_{k}\right)$ where $q \in F$

Turing Machines

The Turing Machine is the computation model we shall define complexity upon.

Definition 6 A deterministic Turing machine (DTM) with k tapes is a five-tuple

$$
M=<Q, \Sigma, \delta, q_{0}, F>
$$

where

1. Q is the finite set of internal states;
2. Σ is the tape alphabet;
3. $q_{0} \in Q$ is the initial state;
4. $F \subseteq Q$ is the set of final states, and 5. $\delta: Q \times \Sigma^{k} \rightarrow \Sigma^{k-1} \times Q \times\{-1,0,+1\}^{k}$ is a partial function called the transition function of M.

Remark The first tape (input tape) is assumed to be read-only.

10

It is usually sufficient to use the following 1-tape model, where the unique work tape is also used as input tape:

Definition 10 A deterministic Turing machine (DTM) is a five-tuple

$$
M=<Q, \Sigma, \delta, q_{0}, F>
$$

where

1. Q is the finite set of internal states;
2. Σ is the tape alphabet;
3. $q_{0} \in Q$ is the initial state;
4. $F \subseteq Q$ is the set of final states, and 5. $\delta: Q \times \Sigma \rightarrow Q \times \Sigma \times\{-1,0,+1\}$ is a partial function called the transition function of M.

The Invariance Thesis

Definition 11 Given a TM M, a computation is a sequence of configurations which

1. obeys the transition function
2. starts with the initial configuration
3. ends in a configuration, where no more step can be performed

Definition 12 An input word $w \in \Sigma^{*}$ is accepted by a TM M, if the computation of M on input w halts in an accepting configuration. The language accepted by the TM M, denoted by $L(M)$, is the set of words accepted by M.

To obtain general complexity results, we rely on the

Invariance Thesis

All common computation models simulate each other with polynomial time overhead.

Example: A k-tape TM simulates a Random Access Machine in quadratic time, while RAM simulation of a TM costs only a logarithmic factor.

Therefore, we shall describe algorithms informally or in a legible Pascal-style formalism rather than by TMs.

Note that the only difference to our former definition is the transition function. In each step the NDTM chooses within the set of possible transitions. Therefore we have to modify our notion of word acceptance:

Definition 14 An input word $w \in \Sigma^{*}$ is accepted by a NDTM M, if there exists a computation which ends in an accepting configuration.

The language accepted by the machine M, denoted by $L(M)$, is the set of words accepted by M.
nondeterministic computation tree

\square... accept

Oracle Turing Machines

Model computations with calls to subprograms (Boolean functions in Pascal). The machine has a fixed language (oracle set) $O \subseteq \Sigma^{*}$ modelling the subroutine.

Definition 15 An oracle Turing machine (DOTM or NOTM) is a multitape Turing machine (DTM or NDTM) with one designated tape, the oracle tape or query tape, and where $\{Q U E R Y, Y E S, N O\} \subseteq Q$.

If the machine is in state $Q U E R Y$, a call to the oracle is performed:

1) If the string w on the query tape is in O, change state to $Y E S$, else to $N O$.
2) erase the content of the query tape.

An oracle call counts as a single step. Thus, the OTM can evaluate the characteristic function χ_{O} in unit time.

A 'guess \& check' TM operates in two phases:

1. nondeterministically write a sequence S of $\{0,1\}^{*}$ on a prespecified tape
2. If 1. stops, start deterministic computation (which may access S)

Such Guess \& Check-TMs are as powerful as the previously defined NDTMs:

Simulation of NDTM by Guess \& Check-TM:
Interpret S as an accepting computation of the NDTM on input w; accept if S is an accepting computation.

Simulation of Guess \& Check-TM by NDTM:
Easy. "Guessing states" S_{0}, S_{1} for phase (1); states for phase (2) + "subprogram" for lookup of S.

Simluation is quite efficiently possible.

Example: Use the language of satisfiable Boolean formulas as an oracle.

Definition 16 The language accepted by an OTM M relative to an oracle set A, denoted by $L(M, A)$, is the set of all words accepted by the OTM using the oracle set A .

An oracle for language A is as good as an oracle for \bar{A}.

Theorem 17 Given an OTM M with oracle set A, there is an OTM M^{\prime} with oracle set \bar{A} accepting the same language.

Proof: Define transition function δ^{\prime} of M^{\prime} as δ of M but exchange transitions for $Y E S$ and NO :
$\delta^{\prime}(N O, \ldots)=\delta(Y E S, \ldots), \quad \delta^{\prime}(Y E S, \ldots)=\delta(N O, \ldots)$
M^{\prime} acts on the result of a subprogram call opposite to M.
\Rightarrow (double complement) M^{\prime} basically acts like M.

NONDETERMINISTIC PROGRAMS

We extend pseudocode programs by nondeterministic commands:
guess $\left(v_{1}, \ldots, v_{n}\right)$:
assign nondeterministically values to
v_{1}, \ldots, v_{n}.
choice(stat ${ }_{1} \mid$ stat $_{2}|\ldots|$ stat $\left._{n}\right)$:
execute nondeterministically one of the statements stat $_{1}, \ldots$, stat $_{n}$

Additional statements succeed and fail:
succeed:
if any computation branch reaches this point, stop and accept.
fail:
stop the computation.

Time and Space Bounded

 ComputationDefine classes of problems solvable by some machine within certain time bound.

Definition: The size of problem instance I, $|I|$, is the number of symbols of the word x representing I. (I.e., $x=f(I)$.)

Definition: The running time of a DTM M on input I, time $_{M}(I)$, is the number of steps until M halts. (Undefined if M does not halt.)

The running time of a NDTM M on input I, time $_{M}(I)$, is the minimum number of steps over all accepting computations and 1, if no accepting computation exists.

Analogous definition for OTMs.

Example: Programs for SAT

Let $\operatorname{Var}(F)=\left\{x_{1}, \ldots, x_{n}\right\}$ be the variables occurring in the Boolean formula F. : Is E satisfiable?

DTM:

For each truth assignment τ to $\operatorname{Var}(F)$ do /*
2^{n} times! */
if τ satisfies E then succeed fail

NDTM:

```
For i:=1 to n do
    choice(\tau(\mp@subsup{x}{i}{}):= true | }\tau(\mp@subsup{x}{i}{}):=\mathrm{ false);
if \tau satisfies E then succeed;
fail
```

alternative guess and check algorithm:

```
guess(\tau); /* guess a truth assignment */
if \tau satisfies E then succeed;
fail
```

For integer $n \geq 0$, the running time of machine M for $n, \operatorname{time}_{M}(n)$, is the maximum over all $\operatorname{time}_{M}(I)$ where $|I|=n$.

Definition 18 For a function $t(n) \geq n+1$,

1) $\operatorname{DTIME}(t)=$ class of all sets accepted by DTMs M with $\operatorname{time}_{M}(n) \leq t(n)$, for $n \geq 0$.
2) $\operatorname{NTIME}(t)=$ class of all sets accepted by NDTMs with time $_{M}(n) \leq t(n)$, for $n \geq 0$.

Remarks

- t should be time-constructible.

$$
\begin{aligned}
\mathrm{P} & =\bigcup_{i \geq 0} \operatorname{DTIME}\left(n^{i}\right) \\
\mathrm{NP} & =\bigcup_{i \geq 0} \operatorname{NTIME}\left(n^{i}\right) \\
\text { EXPTIME } & =\bigcup_{i \geq 0} \operatorname{DTIME}\left(2^{n^{i}}\right) \\
\text { NEXPTIME } & =\bigcup_{i \geq 0} \operatorname{NTIME}\left(2^{n^{i}}\right)
\end{aligned}
$$

Similar definitions for space- bounded computations.

Definition:

The space used by a DTM M on input I, space $_{M}(I)$, is the number of different cells of the work tape visited until M halts. (Undefined if M does not halt.)

The space used by a NDTM M on input I, space $_{M}(I)$, is the minimum number of different work tape cells visited in an accepting computation, over all accepting computations, and 1, if no accepting computation exists.

Analogous definition for OTMs assumption: oracle tape counts as work tape (exception: sublinear work space restrictions.)

Note: if the oracle space is unrestricted, then

$$
\text { PSPACE }{ }^{\mathrm{P}}=\text { EXPTIME. }
$$

Properties \& Relationships

- Each deterministic class is closed under complementation.
- Each deterministic class is included in its nondeterministic counterpart.
- $\mathrm{P} \subseteq=$? $\mathrm{NP} \subseteq=$? PSPACE
- PSPACE $=$ NPSPACE
- $\mathrm{LOG} \subseteq=$? $\mathrm{NLOG} \subseteq=$? $\mathrm{P} \subseteq=$? PSPACE
- $\mathrm{NLOG} \subset$ PSPACE $\subseteq=$? EXPTIME
- $\mathrm{P} \subset$ EXPTIME

For integer $n \geq 0$, the space used by machine M for $n, \operatorname{space}_{M}(n)$, is the maximum over all $\operatorname{space}_{M}(I)$ where $|I|=n$.

Definition 19 For a function $t(n) \geq 1$,

1) $\operatorname{DSPACE}(t)=$ class of all sets accepted by DTMs M with space $_{M}(n) \leq t(n)$, for $n \geq 0$.
2) $\operatorname{NSPACE}(t)=$ class of all sets accepted by NDTMs with $\operatorname{space}_{M}(n) \leq t(n)$, for $n \geq 0$.

Remarks

- t should be space-constructible.

$$
\begin{aligned}
\mathrm{LOG} & =\bigcup_{c \geq 1} \operatorname{SPACE}(c \cdot \log n) \\
\mathrm{NLOG} & =\bigcup_{c \geq 1} \operatorname{NSPACE}(c \cdot \log n) \\
\mathrm{PSPACE} & =\bigcup_{i \geq 0} \operatorname{SPACE}\left(n^{i}\right) \\
\mathrm{NPSPACE} & =\bigcup_{i \geq 0} \operatorname{NSPACE}\left(n^{i}\right)
\end{aligned}
$$

C-Completeness

Polynomial Reductions

Definition 20 Given two languages A_{1} and A_{2}, A_{1} is polynomial time many-one reducible (m-reducible or Karp reducible) to A_{2} $\left(A_{1} \leq_{m}^{P} A_{2}\right)$ iff there exists a function $f: \Sigma^{*} \rightarrow \Sigma^{*}$, such that $f(w)$ is computable in time polynomial in $|w|$ and $\chi_{A_{1}}(x)=\chi_{A_{2}}(f(x))$ for all $x \in \Sigma^{*}$.

Intuitively, $A \leq_{m}^{P} B$ means that A is not harder than B in the following sense: An algorithm for B is sufficient for solving A as well with only polynomial time overhead for encoding A in terms of B.
One speaks of many-one reducible, since several (often isomorphic) instances of A may be mapped on the same instance of B.

Important properties of $\leq{ }_{m}^{P}$:

- \leq_{m}^{P} is reflexive and transitive, i.e. a preorder
- $A \leq{ }_{m}^{P} B \Longleftrightarrow \bar{A} \leq_{m}^{P} \bar{B}$ (proof via the characteristic function)

Hardness and Completeness

Definition 21

Given a class C, a set A is m-hard for C (or C-hard) if for every $B \in C$, it holds that $B \leq_{m}^{P} A$.

A set A is m-complete for C (or C-complete), iff it is m-hard for C and $A \in C$.

Trivial consequences:

- A is C-hard, $A \leq{ }_{m}^{P} B \Rightarrow B$ is C-hard
- A is C-complete, $B \in C, A \leq{ }_{m}^{P} B \Rightarrow B$ is C-complete.
- A is C-hard $\Rightarrow \bar{A}$ is co- C-hard

Strategy to prove C-completeness of A :
(1) prove $A \in C$
(2) show $S \leq_{m}^{P} A$, where S is known to be C-complete.

Satisfiability Problems

\longrightarrow : polynomial-time many one reducible $\left(\leq_{m}^{P}\right)$

Theorem 22 (Cook/Levin)
SAT is NP-complete.

CNF-SAT:
INSTANCE: A Boolean formula E in conjunctive normal form
QUESTION: Is E satisfiable?

k-CNFSAT (k-SAT)

INSTANCE: A Boolean formula E in k-CNF, i.e., every clause consists of k literals.

QUESTION: Is E satisfiable?

Theorem 23 CNF-SAT is NP-complete.

Theorem 24 3SAT is NP-complete.

The proofs are based on constructing equivalent formulas in a boolean algebra in polynomial time. 2SAT, however, is in P .

Proof (cont.) VC is NP-complete

A Classical Reduction

Vertex Cover

Definition 25 Given an undirected graph $G=(V, E), V^{\prime} \subseteq V$ is a vertex cover (vc) iff $\forall(v, w) \in E: v \in V^{\prime}$ or $w \in V^{\prime}$.

VC:

INSTANCE: An undirected graph $G=(V, E)$ and an integer $K \leq|V|$
QUESTION: Is there a vertex cover of size $\leq K$?

Theorem 26 VC is NP-complete.

Proof:

Membership: Guess a set $V^{\prime} \subseteq V$ of vertices of size $\leq k$ and test in polynomial time if it is a vertex cover.

Example:

Instance of 3SAT:

$$
F=(a \vee b \vee c) \wedge(a \vee \neg b \vee \neg c) \wedge(a \vee \neg b \vee c)
$$

Constructed Instance of VC $(q=3)$:

Vertex cover $C=\left\{v_{1,1}, v_{1,3}, v_{2,2}, v_{2,3}, v_{3,1}, v_{3,2}\right\}$
\Leftrightarrow reduced formula $F^{\prime}=b \wedge a \wedge c$
\Leftrightarrow sat.ass. σ where $b=$ true, $a=$ true, $c=$ true

Hardness: We show that $3 \mathrm{SAT} \leq_{m}^{P} \vee \mathrm{VC}$:

Let $\quad F=F_{1} \wedge F_{2} \wedge \ldots \wedge F_{q}$, where $F_{i}=\left(\alpha_{i, 1} \vee \alpha_{i, 2} \vee \alpha_{i, 3}\right)$, be an instance of 3SAT.

Construct a graph $G=(V, E)$, where

$$
\begin{aligned}
V= & \left\{v_{i, j} \mid 1 \leq i \leq q, j=1,2,3\right\} \\
E= & \left\{\left\{v_{i, j}, v_{i, k}\right\} \mid j \neq k\right\} \\
& \cup\left\{\left\{v_{i, j}, v_{k, l}\right\} \mid \alpha_{i, j} \equiv \neg \alpha_{k, l}\right\}
\end{aligned}
$$

The $v_{i, j}$ represent the literals $\alpha_{i, j}$; the edges connect all pairs $\alpha_{i, j_{1}}, \alpha_{i, j_{2}}$ of literals from the same clause F_{i} and all pairs of opposite literals (x and $\neg x$).

Intuition: vc C corresponds to literals $\alpha_{i, j}$ that are discarded ("deleted"). Complement $V-C$ describes a set of literals that can simultaneously have value true.

Proof (cont.): VC is NP-complete

Claim:

G has a vc of size $\leq 2 q \Longleftrightarrow \mathrm{~F}$ is satisfiable
\Leftarrow : choose a truth assignment σ to the variables that makes F true.

Select from every clause F_{i} one literal $\alpha_{i, \sigma(i)}$ whose value in σ is true.

The set of $2 q$ vertices $C=\left\{v_{i, j} \mid j \neq \sigma(i)\right\}$ forms a vc.
Indeed, C includes

1) two vertices $v_{i, j_{1}}, v_{i, j_{2}}$ for each $i=1, \ldots, q$, and
2) at least one of the vertices $v_{i, k}$ and $v_{j, l}$ for each pair of opposite literals $\alpha_{i, k}$ and $\alpha_{j, l}$ since only one of $\alpha_{i, k}$ and $\alpha_{j, l}$ can be true in σ (but not both).

Claim: G has a vc C of size $\leq 2 q \Longleftrightarrow F$ is satisfiable
\Rightarrow : The vc C must contain:

1) at least one of of the vertices $v_{i, k}$ and $v_{j, l}$ for each pair of opposite literals $\alpha_{i, k}$ and $\alpha_{j, l}$. (The edge $\left\{v_{i, k}, v_{j, l}\right\}$ must be covered.)
2) exactly two of the vertices $v_{i, 1}, v_{i, 2}$, and $v_{i, 3}$ for each $i=1, \ldots, q$. Indeed, the edges $\left\{v_{i, 1}, v_{i, 2}\right\},\left\{v_{i, 2}, v_{i, 3}\right\},\left\{v_{i, 1}, v_{i, 3}\right\}$ must be covered; on the other hand, $|C| \leq 2 q$.

Define a truth value assignment σ by

$$
\sigma(x)= \begin{cases}\text { true, } & \alpha_{i, j}=x \text { and } v_{i, j} \notin C \\ & \text { for some } i \text { and } j \\ \text { false, }, & \text { otherwise }\end{cases}
$$

σ is well-defined and makes F true:
By 1), σ makes each $\alpha_{i, j}$ true s.t. $v_{i, j} \notin C$;
by 2), at least one such $\alpha_{i, j}$ exists for each $i=1, \ldots, q$.

The reduction is computable in polynomial time. Thus, VC is NP-complete.

The world of NP and co-NP:

(Assuming $\mathrm{P} \neq \mathrm{NP}$ and NP \neq co-NP)

Co-NP-Completeness

Recall: co- $C=\{\bar{L} \mid L \in C\}$; thus co-NP $=$ $\{\bar{L} \mid L \in \mathbf{N P}\}$.

Theorem 27 Given a set L, L is NP-complete iff \bar{L} is co-NP-complete.
A decision problem Π is NP-complete iff co-П is co-NP-complete.

We obtain a co-NP-complete problem:
UNSAT:
INSTANCE: A Boolean formula E QUESTION: Is E unsatisfiable?

Theorem 28 UNSAT is co-NP-complete.

Proof: E is unsatisfiable iff E is not a Yes-instance of SAT. Thus, UNSAT is the complementary problem of SAT (co-SAT).
Another co-NP-complete problem:
TAUT:
INSTANCE: A Boolean formula E
QUESTION: Is E a tautology?

The Polynomial Hierarchy

NP-Turing-Hardness

The polynomial reductions used in proving NP-completeness are akin to exhibiting (polynomial) algorithms that call a subroutine for a known NP-complete problem A. If the subroutine takes only polynomial time, the whole algorithm is polynomial.

This remains true if we would allow multiple calls to the subroutine for A. This idea is used in oracle computations. An OTM may consult an oracle (a subroutine) for another problem which answers in unit time.

Turing Reductions

Definition 29 A problem X is polynomial time Turing reducible (Cook reducible) to a problem $Y, X \leq_{T} Y$, if there is a polynomial DOTM for X with access to an oracle for Y.

A problem X is NP-Turing-hard, if there is an NP-complete problem Y s.t. $Y \leq_{T} X$

A problem X is NP-easy, if for some problem $Y \in \mathrm{NP}, X \leq_{T} Y$. (We call such problems easy, since they are not much harder than NP-complete problems).

Example: Given a satisfiable formula F, find an actually satisfying truth assignment.

A problem X is polynomial time nondeterministic Turing reducible to a problem $Y, X \leq_{N T} Y$, if there is a polynomial NOTM for X with access to an oracle for Y.

The Polynomial Hierarchy

Observe that this process of defining new classes in terms of old ones can be iterated:

Definition 33 The polynomial hierarchy consists of classes $\Sigma_{k}^{\mathrm{P}}, \Pi_{k}^{\mathrm{P}}, \Delta_{k}^{\mathrm{P}}$, defined as follows:

$$
\Sigma_{0}^{P}=\Pi_{0}^{P}=\Delta_{0}^{P}=\mathrm{P}
$$

and for $k \geq 0$:

$$
\begin{aligned}
\Delta_{k+1}^{\mathrm{P}} & =\mathrm{P}^{\Sigma_{k}^{\mathrm{P}}} \\
\Sigma_{k+1}^{\mathrm{P}} & =\mathrm{NP}^{\Sigma_{k}^{\mathrm{P}}} \\
\Pi_{k+1}^{\mathrm{P}} & =\operatorname{co}-\Sigma_{k+1}^{\mathrm{P}}
\end{aligned}
$$

These notions can be extended to whole classes of problems:

Definition 30 Let C be a class of languages.

$$
\begin{aligned}
\mathrm{P}^{C} & =\left\{L \mid \exists L^{\prime} \in C: L \leq_{T} L^{\prime}\right\} \\
\mathrm{NP}^{C} & =\left\{L \mid \exists L^{\prime} \in C: L \leq_{N T} L^{\prime}\right\}
\end{aligned}
$$

Alternatively, one could define:

Definition 31 Given a complexity class C, P^{C} denotes the class of languages acceptable by a polynomial time bounded DOTM using an oracle for C.

Definition 32 Given a complexity class C, NP^{C} denotes the class of languages acceptable by a polynomial time bounded NOTM using an oracle for C.

Remark: Having an oracle for A is equivalent to having one for \bar{A}. Hence, $\mathrm{P}^{A}=\mathrm{P}^{\bar{A}}$, e.g., $\mathrm{P}^{\mathrm{NP}}=\mathrm{P}^{\mathrm{CO}-\mathrm{NP}}$.

The polynomial hierarchy PH is defined as:

$$
\mathrm{PH}=\bigcup_{k=0}^{\infty} \Sigma_{k}^{\mathrm{P}}
$$

In particular:

$$
\begin{aligned}
& \Delta_{1}^{P}=\mathrm{P} \\
& \Sigma_{1}^{P}=\mathrm{NP} \\
& \Pi_{1}^{P}=\mathrm{co-NP} \quad \Delta_{2}^{P}=\mathrm{P}_{2}^{P}=\mathrm{NP}^{\mathrm{N} P} \\
& \mathrm{co}_{2}^{\mathrm{N}} \mathrm{NP}^{\mathrm{NP}}
\end{aligned}
$$

Theorem 34 The following containment relationships hold:

$$
\Delta_{k}^{\mathrm{P}} \subseteq \Sigma_{k}^{\mathrm{P}} \cap \Pi_{k}^{\mathrm{P}} \quad \Sigma_{k}^{\mathrm{P}} \cup \Pi_{k}^{\mathrm{P}} \subseteq \Delta_{k+1}^{\mathrm{P}}
$$

Complete problems for Σ_{k}^{P} and Π_{k}^{P}

Quantified Boolean Formulas

QBF $_{k, \exists}$:

INSTANCE: A well-formed Boolean expression E in the variables $x_{i, j}$, $1 \leq i \leq k, 1 \leq j \leq m_{i}$ for $m_{1}, \ldots, m_{k} \geq 1$.
QUESTION: Is the quantified Boolean expression

$$
\left(\exists \vec{x}_{1}\right)\left(\forall \vec{x}_{2}\right)\left(\exists \vec{x}_{3}\right) \cdots\left(Q_{k} \vec{x}_{k}\right) E
$$

true, where $\vec{x}_{i}=x_{i, 1}, \ldots, x_{i, m_{i}}$ and Q_{k} is \exists if k is odd and \forall otherwise?

This problem is easily seen to lie in Σ_{k}^{P}, and is in fact complete for this class. The dual problem $\mathbf{Q B F}_{k, \forall}$ is complete for Π_{k}^{P}.

Remark: $\mathrm{QBF}=\cup_{i}\left(\mathrm{QBF}_{i, \exists} \cup \mathrm{QBF}_{i, \forall}\right)$ is complete for PSPACE.

A complete problem for Δ_{k}^{P}

Theorem 35 The following problem is complete for Δ_{2}^{P} :

MSA $_{\text {odd }}$:
INSTANCE: A Boolean formula E in the variables x_{1}, \ldots, x_{n}
QUESTION: Is $x_{n}=$ true in the lexicographically maximum truth assignment to $x_{1} \ldots x_{n}$ that satisfies E ?

Generalization to $\Delta_{k+2}^{\mathrm{P}}$-complete problem:
INSTANCE: A quantified Boolean expression

$$
\forall \vec{p}_{1} \exists \vec{p}_{2} \cdots Q_{k} \vec{p}_{k} E\left(\vec{x}, \vec{p}_{1}, \ldots, \vec{p}_{k}\right)
$$

with free variables $\vec{x}=x_{1}, \ldots, x_{n}$.
QUESTION: Is $x_{n}=$ true in the lex.
maximum truth assignment ϕ to \vec{x} such that $F[\vec{x} / \phi(\vec{x})]$ is valid?

The Class PSPACE

Recall that the class PSPACE is the set of all languages recognizable by polynomial-space bounded TMs.

$$
\operatorname{PSPACE}=\bigcup_{i \geq 0} \operatorname{DSPACE}\left(n^{i}\right)
$$

Every problem solvable in polynomial time is also solvable in polynomial space, since no more tape cells can be used than steps are performed.

Theorem $36 \mathrm{PH} \subseteq$ PSPACE
We prove that $\Sigma_{k}^{\mathrm{P}} \subseteq$ PSPACE by induction on k :
(Basis) $\Sigma_{0}^{P}=\mathrm{P} \subseteq$ PSPACE.
(Induction) Assume that $\Sigma_{k}^{P} \subseteq$ PSPACE.
Show: $\Sigma_{k+1}^{P} \subseteq$ PSPACE.
We have $\Sigma_{k+1}^{\mathrm{P}}=\mathrm{NP}^{\Sigma_{k}^{\mathrm{P}} \subseteq \mathrm{NP}^{\mathrm{PSPACE}} .}$

Any polynomial-time bounded computation of a NOTM can be written out in polynomial space. By cycling through all possible such computations, an accepting computation can be found (if one exists).

Thus, $\mathrm{NP}^{\text {PSPACE }} \subseteq$ PSPACE ${ }^{\text {PSPACE }}$
$\left(\right.$ PSPACE ${ }^{\text {PSPACE }}=$ languages accepted by OTM with oracle set from PSPACE in polynomial space.)

Clearly, PSPACE ${ }^{\text {PSPACE }}=$ PSPACE.

Hence, $\Sigma_{k+1}^{P} \subseteq$ PSPACE.

QBF:

INSTANCE: A quantified Boolean formula

$$
F=\left(\mathrm{Q}_{1} x_{1}\right) \ldots\left(\mathrm{Q}_{n} x_{n}\right) E
$$

where Q_{i} is either \exists or \forall and E is a Boolean expression in x_{1}, \ldots, x_{n}
QUESTION: Is F true?

Membership: Recursive algorithm using

$$
\begin{aligned}
& \left(\exists x_{1}\right) \ldots\left(\mathrm{Q}_{n} x_{n}\right) E \equiv \\
& \left.\left.\quad\left(\mathrm{Q}_{2} x_{2}\right) \ldots E\right|_{x_{1}=0} \vee\left(\mathrm{Q}_{2} x_{2}\right) \ldots E\right|_{x_{1}=1} \\
& \left(\forall x_{1}\right) \ldots\left(\mathrm{Q}_{n} x_{n}\right) E \equiv \\
& \left.\left.\quad\left(\mathrm{Q}_{2} x_{2}\right) \ldots E\right|_{x_{1}=0} \wedge\left(\mathrm{Q}_{2} x_{2}\right) \ldots E\right|_{x_{1}=1}
\end{aligned}
$$

Simulate recursion by a stack; algorithm runs in space quadratic in the size of input F.

Many 2-person games (e.g., generalized GO) are PSPACE-complete.

Literatur

M.R.Garey, D.S.Johson: Computers and Intractability. W.H.Friedman and Company, 1979.
C.Papadimitriou: Computational Complexity. Addison-Wesley, 1994.
U.Schöning: Theoretische Informatik kurzgefaßt. Spektrum Akademischer Verlag, 1994.
J.L.Balcazar, J.Diaz, J.Gabarro: Structural Complexity I and II. Springer-Verlag 1988.
J.van Leeuwen, ed.: Handbook of Theoretical Computer Science, Volume A. MIT Press/Elsevier, 1990:

[^0]
[^0]: Chapter 1 (van Emde Boas): Machine Models and Simulation Chapter 2 (Johson): A Catalog of Complexity Classes Chapter 14 (Boppana, Sipser): The Complexity of Finite Functions

 + viele andere Kapitel

