
Komplexitätstheorie

Strukturelle Komplexitätstheorie

Formale Grundlagen

Helmut Veith, veith@in.tum.de

Structural Complexity Theory

Structural Complexity Theory deals with

resource-bounded computation for particular

models of computation. It arose from the

notion of tractable (feasible) computability.

Problems (rather than algorithms) are

grouped into complexity classes by inherent

complexity.

Studying the mathematical structures of

complexity classes and their relationships,

e.g., the question P =(?) NP, is the main

interest of Structural Complexity Theory.

2

Basic Definitions

Definition 1 An alphabet is a finite set of

symbols.

Unless stated explictly, it will be denoted

by Σ.

Given an alphabet Σ, Σ∗ denotes the set of

all finite strings of elements of Σ, including

the empty string ε.

A set L ⊆ Σ∗ is called a language.

Given a language L, its complement

L = Σ∗ − L consists of all strings not

belonging to L.

3

Definition 2 A class is a set of languages.

Given a class C, its complement class

co-C = {L|L ∈ C}.

Definition 3 If M ⊆ D, the characteristic

function χM : D → {1,0} of M (with respect

to D) is defined

χM(x) = 1 ⇐⇒ x ∈ M

and

χM(x) = 0 ⇐⇒ x ∈ D − M

4

Problem Representation

Objects (data) must be formally represented

in order to be processed by a machine.

Definition 4 Given a set S, a representation

of S in Σ∗ is a suitable function f : S → Σ∗;

define that LS = f(S).

f corresponds to the internal data

representation in common programming

languages.

We shall identify S with LS.

f “suitable”:

• if x 6= y, then f(x) 6= f(y) (injective).

• LS should be easily recognizable (i.e., χLS

should be “easy” to compute).

5

Example: Represent an undirected (finite)

graph G = (V, E), (i.e., S consists of all such

graphs).

Many possibilities; E. g., encode G by a string

• describing |V | and the adjacency matrix

• describing |V |, |E|, and the vertex-edge

incidence matrix

• describing |E| and the list of the edges,

where nodes are represented by numbers 1,

. . . , |V |.

• . . .

6

Question: Which representation should be

chosen ?

Rule: Any “natural” representation is

reasonable. Such representations can be

usually transformed into each other efficiently

(in polynomial time).

Complexity of problem solving can be

affected by

• high (exponential) overhead in encoding

• extremely succinct (highly compressed)

encoding

Assumption: Numbers are represented in

binary notation.

E.g., 5 is encoded by 101.

“Unary” notation (e.g., ‘11111’ for 5) is

exponentially longer!

7

Problem Description

Definition 5 A decision problem Π consists

of a set DΠ of instances and a subset

YΠ ⊆ DΠ of yes-instances.

The complementary problem, co-Π, has

instances DΠ and yes-instances DΠ − YΠ.

Assumption: encodings of generic instances

can be “easily” recognized by a TM (i.e.

χLDΠ
is easy to compute).

Standard problem description:

INSTANCE: A generic problem instance I,

i.e. I ∈ DΠ.

QUESTION: yes-no question “I ∈ YΠ?”.

Example: Satisfiability problem

SAT:

INSTANCE: A well-formed Boolean

(propositional) formula F .

QUESTION: Is F satisfiable?

E.g., F = (x1 ∧ ¬x2) ∨ ¬(x3 ∨ x2)

8

Search problems: a solution (value) for a

problem instance is sought.

Example: Compute the greatest common

divisor gcd(n, m) of two integers n, m.

Decision problems can be seen as special

search problems (compute “yes” or “no”).

Example: FSAT

Given a Boolean formula F , find a truth

assignment σ to the variables that satisfies F

(i.e. F has value 1).

One can often solve a search problem

“easily” with a subroutine for a suitable

associated decision problem.

Example: Solve FSAT using associated

decision problem SAT.

Traditionally, complexity theory considers

decision problems.

9

Turing Machines

The Turing Machine is the computation

model we shall define complexity upon.

Definition 6 A deterministic Turing machine

(DTM) with k tapes is a five-tuple

M =< Q,Σ, δ, q0, F >

where

1. Q is the finite set of internal states;

2. Σ is the tape alphabet;

3. q0 ∈ Q is the initial state;

4. F ⊆ Q is the set of final states, and

5. δ : Q × Σk → Σk−1 × Q × {−1,0,+1}k is a

partial function called the transition function

of M.

Remark The first tape (input tape) is

assumed to be read-only.

10

Definition 7 If M is a k-tape TM, a

configuration of M is a k + 1-tuple

(q, x1, x2, . . . , xk−1, xk)

where q is the current state of M , and each

xj ∈ Σ∗#Σ∗ represents the current contents

of the jth tape. The symbol “#” is supposed

not to be in Σ, and precedes the position of

the tape head.

Definition 8 The initial configuration of a

TM M on an input w is (q0,#w,#, . . . ,#).

Definition 9 An accepting configuration is a

configuration (q, w1, . . . , wk) where q ∈ F

11

It is usually sufficient to use the following

1-tape model, where the unique work tape is

also used as input tape:

Definition 10 A deterministic Turing

machine (DTM) is a five-tuple

M =< Q,Σ, δ, q0, F >

where

1. Q is the finite set of internal states;

2. Σ is the tape alphabet;

3. q0 ∈ Q is the initial state;

4. F ⊆ Q is the set of final states, and

5. δ : Q × Σ → Q × Σ × {−1,0,+1} is a partial

function called the transition function of M.

12

Definition 11 Given a TM M , a computation

is a sequence of configurations which

1. obeys the transition function

2. starts with the initial configuration

3. ends in a configuration, where no more

step can be performed

Definition 12 An input word w ∈ Σ∗ is

accepted by a TM M , if the computation of

M on input w halts in an accepting

configuration. The language accepted by the

TM M , denoted by L(M), is the set of words

accepted by M.

13

The Invariance Thesis

To obtain general complexity results, we rely

on the

Invariance Thesis

All common computation models simulate

each other with polynomial time overhead.

Example: A k-tape TM simulates a Random

Access Machine in quadratic time, while RAM

simulation of a TM costs only a logarithmic

factor.

Therefore, we shall describe algorithms

informally or in a legible Pascal-style

formalism rather than by TMs.

14

Nondeterministic Turing Machines

Definition 13 A nondeterministic Turing

machine (NDTM) with k Tapes is a five-tuple

M =< Q,Σ, δ, q0, F >

where

1. Q is the finite set of internal states;

2. Σ is the tape alphabet;

3. q0 ∈ Q is the initial state;

4. F ⊆ Q is the set of final states, and

5. δ : Q × Σk → P(Σk−1 × Q × {−1,0,+1}k) is

a partial function called the transition

function of M where P(A) denotes the power

set of a set A.

15

Note that the only difference to our former

definition is the transition function. In each

step the NDTM chooses within the set of

possible transitions. Therefore we have to

modify our notion of word acceptance:

Definition 14 An input word w ∈ Σ∗ is

accepted by a NDTM M , if there exists a

computation which ends in an accepting

configuration.

The language accepted by the machine M ,

denoted by L(M), is the set of words

accepted by M .

16

... accept

|

|

|

| |

|

|
@

@
@

@
@

@
@

@
@

@
@

@
@@

B
B
B
B
B
B
B
B
B
B
B
B
BB

E
E
E
E
E
E
E
E
E
E
E
E
EE

�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�

�
�
�

�
�
�

�
�
�

��

�
�

�
�

�
�

�
�

�
�

�
�

��

�
�
�

�
�
�

�
�
�

�
�
�

��

B
B
B
B
B
B
B
B
B
B
B
B
BB

B
B
B
B
B
B
B
B
B
B
B
B
BB

�
�
�

�
�
�

�
�
�

�
�
�

��

B
B
B
B
B
B
B
B
B
B
B
B
BB

�
�
�

�
�
�

�
�
�

�
�
�

��

B
B
B
B
B
B
B
B
B
B
B
B
BB

�
�
�

�
�
�

�
�
�

�
�
�

��

�
�

�
�

�
�

�
�

�
�

�
�

��

nondeterministic computation tree

. . .

17

Alternative nondeterministic TM

A ‘guess & check’ TM operates in two

phases:

1. nondeterministically write a sequence S of

{0,1}∗ on a prespecified tape

2. If 1. stops, start deterministic computation

(which may access S)

Such Guess & Check-TMs are as powerful as

the previously defined NDTMs:

Simulation of NDTM by Guess & Check-TM:

Interpret S as an accepting computation of

the NDTM on input w; accept if S is an

accepting computation.

Simulation of Guess & Check-TM by NDTM:

Easy. “Guessing states” S0, S1 for phase (1);

states for phase (2) + “subprogram” for

lookup of S.

Simluation is quite efficiently possible.

18

Oracle Turing Machines

Model computations with calls to

subprograms (Boolean functions in Pascal).

The machine has a fixed language (oracle

set) O ⊆ Σ∗ modelling the subroutine.

Definition 15 An oracle Turing machine

(DOTM or NOTM) is a multitape Turing

machine (DTM or NDTM) with one

designated tape, the oracle tape or query

tape, and where {QUERY, Y ES, NO} ⊆ Q.

If the machine is in state QUERY , a call to

the oracle is performed:

1) If the string w on the query tape is in O,

change state to Y ES, else to NO.

2) erase the content of the query tape.

An oracle call counts as a single step. Thus,

the OTM can evaluate the characteristic

function χO in unit time.

19

Example: Use the language of satisfiable

Boolean formulas as an oracle.

Definition 16 The language accepted by an

OTM M relative to an oracle set A, denoted

by L(M, A), is the set of all words accepted

by the OTM using the oracle set A.

An oracle for language A is as good as an

oracle for A.

Theorem 17 Given an OTM M with oracle

set A, there is an OTM M ′ with oracle set A

accepting the same language.

Proof: Define transition function δ′ of M ′ as

δ of M but exchange transitions for Y ES and

NO:

δ′(NO, . . .) = δ(Y ES, . . .), δ′(Y ES, . . .) = δ(NO, . . .)

M ′ acts on the result of a subprogram call

opposite to M .

⇒ (double complement) M ′ basically acts like

M .

20

NONDETERMINISTIC PROGRAMS

We extend pseudocode programs by

nondeterministic commands:

guess(v1, . . . , vn):

assign nondeterministically values to

v1, . . . , vn.

choice(stat1|stat2| . . . |statn):

execute nondeterministically one of the

statements stat1,...,statn.

Additional statements succeed and fail:

succeed:

if any computation branch reaches this point,

stop and accept.

fail:

stop the computation.

21

Example: Programs for SAT

Let V ar(F) = {x1, . . . , xn} be the variables

occurring in the Boolean formula F . : Is E

satisfiable?

DTM:

For each truth assignment τ to V ar(F) do /*

2n times! */

if τ satisfies E then succeed

fail

NDTM:

For i := 1 to n do

choice(τ(xi) := true | τ(xi) := false);

if τ satisfies E then succeed;

fail

alternative guess and check algorithm:

guess(τ); /* guess a truth assignment */

if τ satisfies E then succeed;

fail

22

Time and Space Bounded
Computation

Define classes of problems solvable by some

machine within certain time bound.

Definition: The size of problem instance I,

|I|, is the number of symbols of the word x

representing I. (I.e., x = f(I).)

Definition: The running time of a DTM M

on input I, timeM(I), is the number of steps

until M halts. (Undefined if M does not halt.)

The running time of a NDTM M on input I,

timeM(I), is the minimum number of steps

over all accepting computations and 1, if no

accepting computation exists.

Analogous definition for OTMs.

23

For integer n ≥ 0, the running time of

machine M for n, timeM(n), is the maximum

over all timeM(I) where |I| = n.

Definition 18 For a function t(n) ≥ n + 1,

1) DTIME(t) = class of all sets accepted by

DTMs M with timeM(n) ≤ t(n), for n ≥ 0.

2) NTIME(t) = class of all sets accepted by

NDTMs with timeM(n) ≤ t(n), for n ≥ 0.

Remarks

• t should be time-constructible.

P =
⋃

i≥0

DTIME(ni)

NP =
⋃

i≥0

NTIME(ni)

EXPTIME =
⋃

i≥0

DTIME(2ni
)

NEXPTIME =
⋃

i≥0

NTIME(2ni
)

24

Similar definitions for space- bounded

computations.

Definition:

The space used by a DTM M on input I,

spaceM(I), is the number of different cells of

the work tape visited until M halts.

(Undefined if M does not halt.)

The space used by a NDTM M on input I,

spaceM(I), is the minimum number of

different work tape cells visited in an

accepting computation, over all accepting

computations, and 1, if no accepting

computation exists.

Analogous definition for OTMs

assumption: oracle tape counts as work tape

(exception: sublinear work

space restrictions.)

Note: if the oracle space is unrestricted, then

PSPACEP = EXPTIME.

25

For integer n ≥ 0, the space used by machine

M for n, spaceM(n), is the maximum over all

spaceM(I) where |I| = n.

Definition 19 For a function t(n) ≥ 1,

1) DSPACE(t) = class of all sets accepted by

DTMs M with spaceM(n) ≤ t(n), for n ≥ 0.

2) NSPACE(t) = class of all sets accepted by

NDTMs with spaceM(n) ≤ t(n), for n ≥ 0.

Remarks

• t should be space-constructible.

LOG =
⋃

c≥1

SPACE(c·logn)

NLOG =
⋃

c≥1

NSPACE(c·logn)

PSPACE =
⋃

i≥0

SPACE(ni)

NPSPACE =
⋃

i≥0

NSPACE(ni)

26

Properties & Relationships

• Each deterministic class is closed under

complementation.

• Each deterministic class is included in its

nondeterministic counterpart.

• P ⊆=? NP ⊆=? PSPACE

• PSPACE = NPSPACE

• LOG ⊆=? NLOG ⊆=? P ⊆=? PSPACE

• NLOG ⊂ PSPACE ⊆=? EXPTIME

• P ⊂ EXPTIME

• NP ⊂ NEXPTIME

27

C-Completeness

Polynomial Reductions

Definition 20 Given two languages A1 and

A2, A1 is polynomial time many-one reducible

(m-reducible or Karp reducible) to A2

(A1 ≤P
m A2) iff there exists a function

f :Σ∗ → Σ∗, such that f(w) is computable in

time polynomial in |w| and

χA1
(x) = χA2

(f(x)) for all x ∈ Σ∗.

Intuitively, A ≤P
m B means that A is not

harder than B in the following sense: An

algorithm for B is sufficient for solving A as

well with only polynomial time overhead for

encoding A in terms of B.

One speaks of many-one reducible, since

several (often isomorphic) instances of A may

be mapped on the same instance of B.

28

Important properties of ≤P
m:

• ≤P
m is reflexive and transitive, i.e. a

preorder

• A ≤P
m B ⇐⇒ A ≤P

m B (proof via the

characteristic function)

Hardness and Completeness

Definition 21

Given a class C, a set A is m-hard for C (or

C-hard) if for every B ∈ C, it holds that

B ≤P
m A.

A set A is m-complete for C (or C-complete),

iff it is m-hard for C and A ∈ C.

29

'

&

$

%

'

&

$

%

-

6

6

reducible (≤P
m)

: polynomial-time many one

The Notion of Completeness:

C-hard languages

(problems)

C-complete languages

Class C

30

Trivial consequences:

• A is C-hard, A ≤P
m B ⇒ B is C-hard

• A is C-complete, B ∈ C, A ≤P
m B ⇒ B is

C-complete.

• A is C-hard ⇒ A is co-C-hard

Strategy to prove C-completeness of A:

(1) prove A ∈ C

(2) show S ≤P
m A, where S is known to be

C-complete.

31

Satisfiability Problems

Theorem 22 (Cook/Levin)

SAT is NP-complete.

CNF-SAT:

INSTANCE: A Boolean formula E in

conjunctive normal form

QUESTION: Is E satisfiable?

k-CNFSAT (k-SAT)

INSTANCE: A Boolean formula E in k-CNF,

i.e., every clause consists of k literals.

QUESTION: Is E satisfiable?

Theorem 23 CNF-SAT is NP-complete.

Theorem 24 3SAT is NP-complete.

The proofs are based on constructing

equivalent formulas in a boolean algebra in

polynomial time. 2SAT, however, is in P.

32

A Classical Reduction

Vertex Cover

Definition 25 Given an undirected graph

G = (V, E), V ′ ⊆ V is a vertex cover (vc) iff

∀(v, w) ∈ E : v ∈ V ′ or w ∈ V ′.

VC:

INSTANCE: An undirected graph G = (V, E)

and an integer K ≤ |V |

QUESTION: Is there a vertex cover of size

≤ K?

Theorem 26 VC is NP-complete.

Proof:

Membership: Guess a set V ′ ⊆ V of vertices

of size ≤ k and test in polynomial time if it is

a vertex cover.

33

Proof (cont.) VC is NP-complete

Hardness: We show that 3SAT ≤P
m VC:

Let F = F1 ∧ F2 ∧ . . . ∧ Fq, where

Fi = (αi,1 ∨ αi,2 ∨ αi,3), be an instance of

3SAT.

Construct a graph G = (V, E), where

V = {vi,j | 1 ≤ i ≤ q, j = 1,2,3}

E = { {vi,j, vi,k} | j 6= k}

∪{ {vi,j, vk,l} | αi,j ≡ ¬αk,l}

The vi,j represent the literals αi,j;

the edges connect all pairs αi,j1, αi,j2 of

literals from the same clause Fi and all pairs

of opposite literals (x and ¬x).

Intuition: vc C corresponds to literals αi,j

that are discarded (“deleted”). Complement

V − C describes a set of literals that can

simultaneously have value true.

34

Vertex cover C = { v1,1, v1,3, v2,2, v2,3, v3,1, v3,2 }

⇔ reduced formula F ′ = b ∧ a ∧ c

⇔ sat.ass. σ where b = true, a = true, c = true

' $

& %

&%
'$

&%
'$

&%
'$

&%
'$

&%
'$

&%
'$&%

'$

&%
'$

&%
'$

,
,,

l
ll

l
ll

,
,,

,
,,

l
ll

�
�

�
�

�
�

�
�

�
�

�
�
�

v3,3

v3,2v3,1v1,2v1,1

v1,3

v2,2v2,1

v2,3

Constructed Instance of VC (q = 3):

F = (a ∨ b ∨ c) ∧ (a ∨ ¬b ∨ ¬c) ∧ (a ∨ ¬b ∨ c)

Example:

Instance of 3SAT:

35

Proof (cont.): VC is NP-complete

Claim:

G has a vc of size ≤ 2q ⇐⇒ F is satisfiable

⇐: choose a truth assignment σ to the

variables that makes F true.

Select from every clause Fi one literal αi,σ(i)

whose value in σ is true.

The set of 2q vertices C = {vi,j | j 6= σ(i)}

forms a vc.

Indeed, C includes

1) two vertices vi,j1, vi,j2 for each i = 1, . . . , q,

and

2) at least one of the vertices vi,k and vj,l for

each pair of opposite literals αi,k and αj,l

since only one of αi,k and αj,l can be true in σ

(but not both).

36

Claim: G has a vc C of size ≤ 2q ⇐⇒ F is

satisfiable

⇒: The vc C must contain:

1) at least one of of the vertices vi,k and vj,l

for each pair of opposite literals αi,k and αj,l.

(The edge {vi,k, vj,l} must be covered.)

2) exactly two of the vertices vi,1, vi,2, and

vi,3 for each i = 1, . . . , q. Indeed, the edges

{vi,1, vi,2}, {vi,2, vi,3}, {vi,1, vi,3} must be

covered; on the other hand, |C| ≤ 2q.

Define a truth value assignment σ by

σ(x) =

true, αi,j = x and vi,j /∈ C
for some i and j;

false, otherwise.

σ is well-defined and makes F true:

By 1), σ makes each αi,j true s.t. vi,j /∈ C;

by 2), at least one such αi,j exists for each

i = 1, . . . , q.

The reduction is computable in polynomial

time. Thus, VC is NP-complete.

37

Co-NP-Completeness

Recall: co-C = {L | L ∈ C}; thus co-NP=

{L | L ∈ NP}.

Theorem 27 Given a set L, L is

NP-complete iff L is co-NP-complete.

A decision problem Π is NP-complete iff co-Π

is co-NP-complete.

We obtain a co-NP-complete problem:

UNSAT:

INSTANCE: A Boolean formula E

QUESTION: Is E unsatisfiable?

Theorem 28 UNSAT is co-NP-complete.

Proof: E is unsatisfiable iff E is not a

Yes-instance of SAT. Thus, UNSAT is the

complementary problem of SAT (co-SAT).

Another co-NP-complete problem:

TAUT:

INSTANCE: A Boolean formula E

QUESTION: Is E a tautology? 38

'

&

$

%

'

&

$

%

'

&

$

%

'

&

$

%

'

&

$

%

'

&

$

%

NP-

P

The world of NP and co-NP:

NP

(Assuming P 6= NP and NP 6= co-NP)

co-NP

PSPACE

complete

co-NP-

complete

39

The Polynomial Hierarchy

NP-Turing-Hardness

The polynomial reductions used in proving

NP-completeness are akin to exhibiting

(polynomial) algorithms that call a subroutine

for a known NP-complete problem A. If the

subroutine takes only polynomial time, the

whole algorithm is polynomial.

This remains true if we would allow multiple

calls to the subroutine for A. This idea is

used in oracle computations. An OTM may

consult an oracle (a subroutine) for another

problem which answers in unit time.

40

Turing Reductions

Definition 29 A problem X is polynomial

time Turing reducible (Cook reducible) to a

problem Y , X ≤T Y , if there is a polynomial

DOTM for X with access to an oracle for Y .

A problem X is NP-Turing-hard, if there is an

NP-complete problem Y s.t. Y ≤T X

A problem X is NP-easy, if for some problem

Y ∈ NP, X ≤T Y . (We call such problems

easy, since they are not much harder than

NP-complete problems).

Example: Given a satisfiable formula F , find

an actually satisfying truth assignment.

A problem X is polynomial time

nondeterministic Turing reducible to a

problem Y , X ≤NT Y , if there is a polynomial

NOTM for X with access to an oracle for Y .

41

These notions can be extended to whole

classes of problems:

Definition 30 Let C be a class of languages.

PC = {L | ∃L′ ∈ C:L ≤T L′}

NPC = {L | ∃L′ ∈ C:L ≤NT L′}

Alternatively, one could define:

Definition 31 Given a complexity class C,

PC denotes the class of languages acceptable

by a polynomial time bounded DOTM using

an oracle for C.

Definition 32 Given a complexity class C,

NPC denotes the class of languages

acceptable by a polynomial time bounded

NOTM using an oracle for C.

Remark: Having an oracle for A is equivalent

to having one for A. Hence, PA = PA, e.g.,

PNP = Pco-NP.

42

The Polynomial Hierarchy

Observe that this process of defining new

classes in terms of old ones can be iterated:

Definition 33 The polynomial hierarchy

consists of classes ΣP
k , ΠP

k , ∆P
k , defined as

follows:

ΣP
0 = ΠP

0 = ∆P
0 = P

and for k ≥ 0:

∆P
k+1 = PΣP

k

ΣP
k+1 = NPΣP

k

ΠP
k+1 = co-ΣP

k+1

43

The polynomial hierarchy PH is defined as:

PH =
∞
⋃

k=0

ΣP
k

In particular:

∆P
1 = P ∆P

2 = PNP

ΣP
1 = NP ΣP

2 = NPNP

ΠP
1 = co-NP ΠP

2 = co-NPNP

Theorem 34 The following containment

relationships hold:

∆P
k ⊆ ΣP

k ∩ ΠP
k ΣP

k ∪ ΠP
k ⊆ ∆P

k+1

44

The Structure of PH

Q
Q

Q
Q

Q
QQk

�
�

�
�

�
��3

Q
Q

Q
Q

Q
QQk

Q
Q

Q
Q

Q
QQk

�
�

�
�

�
��3

�
�

�
�

�
��3

Q
Q

Q
Q

Q
QQk

Q
Q

Q
Q

Q
QQk

�
�

�
�

�
��3

�
�

�
�

�
��3

PSPACE

ΠP
1 = co-NPΣP

1 = NP

PH

ΠP
3

ΠP
2

∆P
3

∆P
2

∆P
1 = P

ΣP
2

ΣP
3

45

Complete problems for ΣP
k and ΠP

k

Quantified Boolean Formulas

QBFk,∃:

INSTANCE: A well-formed Boolean

expression E in the variables xi,j,

1 ≤ i ≤ k, 1 ≤ j ≤ mi for m1, . . . , mk ≥ 1.

QUESTION: Is the quantified Boolean

expression

(∃~x1)(∀~x2)(∃~x3) · · · (Qk~xk)E

true, where ~xi = xi,1, . . . , xi,mi
and Qk

is ∃ if k is odd and ∀ otherwise?

This problem is easily seen to lie in ΣP
k , and is

in fact complete for this class. The dual

problem QBFk,∀ is complete for ΠP
k .

Remark: QBF =
⋃

i (QBFi,∃ ∪ QBFi,∀) is

complete for PSPACE.

46

A complete problem for ∆P
k

Theorem 35 The following problem is

complete for ∆P
2 :

MSAodd:

INSTANCE: A Boolean formula E in the

variables x1, . . . , xn

QUESTION: Is xn = true in the lexico-

graphically maximum truth assignment

to x1 . . . xn that satisfies E ?

Generalization to ∆P
k+2-complete problem:

INSTANCE: A quantified Boolean expression

∀~p1∃~p2 · · ·Qk~pk E(~x, ~p1, . . . , ~pk)

with free variables ~x = x1, . . . , xn.

QUESTION: Is xn = true in the lex.

maximum truth assignment φ to ~x

such that F [~x/φ(~x)] is valid?

47

The Class PSPACE

Recall that the class PSPACE is the set of

all languages recognizable by

polynomial-space bounded TMs.

PSPACE =
⋃

i≥0

DSPACE(ni)

Every problem solvable in polynomial time is

also solvable in polynomial space, since no

more tape cells can be used than steps are

performed.

Theorem 36 PH ⊆ PSPACE

We prove that ΣP
k ⊆ PSPACE by induction on

k:

(Basis) ΣP
0 = P ⊆ PSPACE.

48

(Induction) Assume that ΣP
k ⊆ PSPACE.

Show: ΣP
k+1 ⊆ PSPACE.

We have ΣP
k+1 = NPΣP

k ⊆ NPPSPACE.

Any polynomial-time bounded computation of

a NOTM can be written out in poly-

nomial space. By cycling through all possible

such computations, an accepting

computation can be found (if one exists).

Thus, NPPSPACE ⊆ PSPACEPSPACE

(PSPACEPSPACE = languages accepted by OTM with

oracle set from PSPACE in polynomial space.)

Clearly, PSPACEPSPACE = PSPACE.

Hence, ΣP
k+1 ⊆ PSPACE.

49

PSPACE-Complete Problems

QBF:

INSTANCE: A quantified Boolean formula

F = (Q1x1) . . . (Qnxn)E

where Qi is either ∃ or ∀ and E is a Boolean

expression in x1, . . . , xn

QUESTION: Is F true?

Membership: Recursive algorithm using

(∃x1) . . . (Qnxn)E ≡

(Q2x2) . . . E|x1=0 ∨ (Q2x2) . . . E|x1=1

(∀x1) . . . (Qnxn)E ≡

(Q2x2) . . . E|x1=0 ∧ (Q2x2) . . . E|x1=1

Simulate recursion by a stack; algorithm runs

in space quadratic in the size of input F .

Many 2-person games (e.g., generalized GO)

are PSPACE-complete.

50

Literatur

M.R.Garey, D.S.Johson: Computers and

Intractability. W.H.Friedman and Company,

1979.

C.Papadimitriou: Computational Complexity.

Addison-Wesley, 1994.

U.Schöning: Theoretische Informatik -

kurzgefaßt. Spektrum Akademischer Verlag,

1994.

J.L.Balcazar, J.Diaz, J.Gabarro: Structural

Complexity I and II. Springer-Verlag 1988.

J.van Leeuwen, ed.: Handbook of Theoretical

Computer Science, Volume A. MIT

Press/Elsevier, 1990:

Chapter 1 (van Emde Boas): Machine Models and Simulation
Chapter 2 (Johson): A Catalog of Complexity Classes
Chapter 14 (Boppana, Sipser): The Complexity of Finite
Functions

+ viele andere Kapitel

51

