
Komplexitätstheorie 2004
Problemset 1

November 4, 2004

DIMACS Graph Format (.col)

Files in the DIMACS standard graph format are ASCII files which are organized in a line-
by-line fashion:

• Lines which contain a comment start with a c.

• The problem line must appear exactly once within a file. It must be the first non-
comment line. It must have the following form: p edge |V| |E| where the latter two
are the number of nodes and edges respectively.

• Edges are described with a line of the form e u v where u and v are the two adjacent
nodes. A graph file never contains e u v and e v u at the same time. u and v are
taken from 1 . . . |V |.

• Disclaimer: The DIMACS format comes with more line types, however, we need only
the mentioned line types.

Note, that the first character of a line (which indicates the line type) must be the first
character of the line with no leading white-spaces.
In the following, you will have to parse such files. However, all programs which parse .col
files can behave arbitrarily on syntactically incorrect input files.

Problem 1: 2Coloring Solver

Write a program which takes a DIMACS graph description via stdin and exits with exit code
0 if and only if the described graph is two-colorable.

Note: An efficient solution exits.

1

Problem 2: 3Coloring Solver

Write a program which takes a DIMACS graph description via stdin and exits with exit code
0 if and only if the described graph is three-colorable.

Note: Do not expect to find an efficient solution.

You are not allowed to use this solution as solution for problem 1.

Problem 3: k −Clique Solver

Write a program which takes a DIMACS graph description via stdin, and exits with exit
code 0 if and only if the described graph has a k-clique.

The value of k must be specified in the file with a line of the following form c required
clique size k which must be the first line in the file.

Note: Do not expect your solution to be efficient for arbitrary k and arbitrary graphs.

DIMACS CNF-Format (.cnf)

The DIMACS CNF-files are again ASCII-files which are organized line-wise:

• Comments start with c.

• The problem line must appear exactly once as the first non-comment line. Its format
is p cnf |V| |C| where |V | is the number of variables and |C| is the number of clauses
in the instance.

• Clauses make up the rest of the file (disregarding comments). A clause with posi-
tive literals over the variables p1, . . . , pk and with negative literals over the variables
n1, . . . , nl is represented by a line p1, . . . ,pk,−n1, . . . ,−nl where pi and ni are taken
from 1, . . . , |V |.

Note, that the first character of a line (which indicates the line type) must be the first
character of the line with no leading white-spaces.
As in the case of .col files, you are not required to write a parser which reacts sensibly
on incorrect input files.

Problem 4: 2Sat Solver

Write a program which takes a DIMACS CNF description on stdin and exits with exit code 0
if and only if the described instance is a satisfiable 2Sat-instance, i.e., it must be satisfiable
and each clause must contain either one or two literals.

Note: An efficient solution exits.

2

Problem 5: Sat Solver

Write a program which takes a DIMACS CNF description on stdin and exits with exit code
0 if and only if the described instance is satisfiable.

Note: Do not expect to find an efficient solution.

You are not allowed to use this solution as solution for problem 4.

Problem 6: Generalize: Hard vs. Easy Problems

• Some of the above problems did not have an efficient solution. Other did have such a
solution. Can you make some general remarks? Can you find common characteristics
of the hard problems?

• What happens, if you fed a solver for a hard problem with an easy instance, e.g., solve
a 2Coloring-instance with your general solver (if you not handle the special case
explicitly)?

Problem 7: Proving Membership within NP

• Assume, that your solver does not only decide the problem at hand buy also outputs
a solution, for example, that a Sat-solver outputs a satisfying assignment.
How hard is it to check that the solution is valid? Can you give efficient check-
algorithms for Sat, 3Coloring, and Clique?

Describe the algorithms in pseudo code.

• Prove that Sat, 3Coloring, and Clique are in NP!

Problem 8: Sat ≤ 3Sat

Write a preprocessor which takes a .cnf file as input on stdin, and outputs a .cnf file on
stdout, such that the output instance contains no clause with more than three literals and
is satisfiable if and only if the original instance was satisfiable.

Problem 9: Clique ≤ Sat *

Write a preprocessor which takes a graph description as input on stdin (k must be specified
in the first line c required clique size k), and outputs a .cnf file on stdout such that the
output is satisfiable if and only if the input graph had a k-clique.

If you wrote a Sat solver, experiment: pipe the result of the preprocessor into the Sat-Solver
to decide your clique instances.

3

Problem 10: 3Sat ≤ Clique

Write a preprocessor which takes a .cnf file as input on stdin, and outputs a .col file on
stdout such that the output has a k-clique if the input described a satisfiable instance. Your
program can choose k freely but has to add a line of the form c required clique size k as
the very first line of the file.

If the input instance contains clauses with more than three literals, your program can behave
arbitrarily.

If you wrote a Clique solver, experiment: pipe the result of the preprocessor into the
Clique-Solver to decide your clique instances.

If you also solved Problems 6 and 7 and wrote a Sat solver (or one of your colleges), try
sat 3sat | 3sat clique | clique sat | sat solver. Experiment.

Problem 11: Discuss the relative hardness

Consider the circle: sat 3sat | 3sat clique | clique sat. What can you say about
the relative hardness of these problems? What happens if sat 3sat | 3sat clique |

clique sat takes a lot of time?

4

