
Master-Seminar:
Verification of Concurrent Programs

Corneliu Popeea

Technische Universität München, Germany

27 January 2012

Corneliu Popeea Master-Seminar: Verification of Concurrent Programs



Why concurrent programs?

Important
Complex
Buggy

Apache web server, MySQL, Mozilla suite (“Learning from
mistakes: A comprehensive study on real world
concurrency bug characteristics” - ASPLOS 2008)

Corneliu Popeea Master-Seminar: Verification of Concurrent Programs



Why concurrent programs?

Important
Complex
Buggy

Apache web server, MySQL, Mozilla suite (“Learning from
mistakes: A comprehensive study on real world
concurrency bug characteristics” - ASPLOS 2008)

Corneliu Popeea Master-Seminar: Verification of Concurrent Programs



Why concurrent programs?

Important
Complex
Buggy

Apache web server, MySQL, Mozilla suite (“Learning from
mistakes: A comprehensive study on real world
concurrency bug characteristics” - ASPLOS 2008)

Corneliu Popeea Master-Seminar: Verification of Concurrent Programs



A buggy example

An order violation bug from Mozilla. The program fails to
enforce the programmer’s intention: thread 2 is expected to
write io_pending to be FALSE some time after thread 1
initializes it to TRUE .

Corneliu Popeea Master-Seminar: Verification of Concurrent Programs



Demo

Model checking: use the tool Threader
Input: file.c (program + property)
Output:

’Program is correct’
’Feasible counterexample’
time-out / memory error / other error

Corneliu Popeea Master-Seminar: Verification of Concurrent Programs



Some challenges

Scalability: analyzing all thread interleavings is
prohibitively expensive
Heap analysis
Recursive procedures
Various properties to check: termination, determinism

Corneliu Popeea Master-Seminar: Verification of Concurrent Programs



A list of topics

1. KISS: Keep it simple and sequential - PLDI 2004
Algorithm: program transformation from a concurrent to a
sequential program that simulates a large subset of the
behaviors of the concurrent program
Model checking: use the SLAM tool
Examples: detect race conditions in Windows device
drivers

Corneliu Popeea Master-Seminar: Verification of Concurrent Programs



A list of topics

2. Asserting and checking determinism for multithreaded
programs - FSE 2009

Specification: regions of parallel programs that should
behave deterministically
Algorithm: automated directed testing
Examples: Java benchmarks, Parallel Java library

Corneliu Popeea Master-Seminar: Verification of Concurrent Programs



A list of topics

3. Using Promela and Spin to verify parallel algorithms -
LWN.net 2007

Specification: synchronization algorithms written in the
Promela language
Model checking: use the Spin tool
Example:

RCU (read-copy-update) is a synchronization mechanism
with extremely low overhead, an alternative to the
“readers-writers” mutual exclusion protocol
2000 uses of RCU in the Linux kernel (as of 2008)

Corneliu Popeea Master-Seminar: Verification of Concurrent Programs



A list of topics

4. Verifying SystemC: a software model checking approach -
FMCAD 2010

Application: SystemC is becoming a de-facto standard for
the development of embedded systems
Algorithm: program transformation from SystemC
programs to C programs with a non-preemptive scheduler
Model checking: with explicit support for the scheduler
Evaluation: designs such as token-ring protocols

Corneliu Popeea Master-Seminar: Verification of Concurrent Programs



A list of topics

5. A marriage of rely/guarantee and separation logic -
CONCUR 2007

Logic: RGSep, a logic to reason about heap
Example: a linked-list implementation of a set

6. Proving that non-blocking algorithms don’t block - POPL
2009

Specification: liveness properties
Algorithm: automates the application of RGSep
Example: a non-blocking stack implementation

Corneliu Popeea Master-Seminar: Verification of Concurrent Programs



A list of topics

5. A marriage of rely/guarantee and separation logic -
CONCUR 2007

Logic: RGSep, a logic to reason about heap
Example: a linked-list implementation of a set

6. Proving that non-blocking algorithms don’t block - POPL
2009

Specification: liveness properties
Algorithm: automates the application of RGSep
Example: a non-blocking stack implementation

Corneliu Popeea Master-Seminar: Verification of Concurrent Programs



A list of topics

7. Efficient algorithms for pre* and post* - POPL 2000
Algorithm: compute sets of reachable states
Examples: recursive procedures and fork-join
synchronization

8. Proofs of networks of processes - TOSE 1981
Logic: for reasoning about processes that communicate
via message-passing
Examples: computing odd primes, computing factorial
numbers

Corneliu Popeea Master-Seminar: Verification of Concurrent Programs



A list of topics

7. Efficient algorithms for pre* and post* - POPL 2000
Algorithm: compute sets of reachable states
Examples: recursive procedures and fork-join
synchronization

8. Proofs of networks of processes - TOSE 1981
Logic: for reasoning about processes that communicate
via message-passing
Examples: computing odd primes, computing factorial
numbers

Corneliu Popeea Master-Seminar: Verification of Concurrent Programs



A list of topics

9. A study of real-world bugs - ASPLOS 2008
Application: bugs in open-source software, e.g., Apache
web server, Mozilla, MySQL, OpenOffice
Study: classification of concurrency bugs, how many
threads/variables are involved, how were these bugs fixed

10. Scalable synchronous queues - PPoPP 2006
Novel data structure: a scalable synchronous queue
Evaluation: outperforms the SynchrnousQueue from Java
SE 5.0

Corneliu Popeea Master-Seminar: Verification of Concurrent Programs



A list of topics

9. A study of real-world bugs - ASPLOS 2008
Application: bugs in open-source software, e.g., Apache
web server, Mozilla, MySQL, OpenOffice
Study: classification of concurrency bugs, how many
threads/variables are involved, how were these bugs fixed

10. Scalable synchronous queues - PPoPP 2006
Novel data structure: a scalable synchronous queue
Evaluation: outperforms the SynchrnousQueue from Java
SE 5.0

Corneliu Popeea Master-Seminar: Verification of Concurrent Programs



Administrative issues

Dates
Vorbesprechung: now
Topic assignment: now or by email
First meeting with the supervisor: first week of May at
the latest
First version of the slides: first week of June
Final version of slides and summary: one week before
the presentation
Presentation: date to be decided

Corneliu Popeea Master-Seminar: Verification of Concurrent Programs



Administrative issues

Supervision
Corneliu Popeea: homepage
Andrey Rybalchenko: homepage
Alexander Malkis: homepage

Corneliu Popeea Master-Seminar: Verification of Concurrent Programs

http://www.model.in.tum.de/~popeea/
http://www7.in.tum.de/~rybal/
http://software.imdea.org/people/alexander.malkis/


Administrative issues

Grading
Preparation phase
Writing a summary (4-5 pages)
Giving a talk (40 minutes)
Active participation during the talks

Corneliu Popeea Master-Seminar: Verification of Concurrent Programs



Questions ?

Corneliu Popeea Master-Seminar: Verification of Concurrent Programs


