
Abstraction-Guided Synthesis of Synchronization

Master Seminar SS’2012

Sergey Grebenshchikov

Introduction

Applied in the implementation of parallel and distributed software, as well as a
design pattern for non-parallel systems, concurrency is a powerful tool. Both appli-
cation and verification of concurrent programs, however, pose additional difficulties
not encountered in sequential programs.

One commonly required feature is that concurrent threads can read and write
shared data. This presents a difficulty in design and verification: The state of
shared data may depend on the order in which the operations of individual threads
are scheduled. This results in additional state-space blow-up due to the multiplicity
of possible thread interleavings, making it difficult (for humans) to reason about
the behavior of concurrent programs and computationally hard (for algorithms) to
analyse it.

The Abstraction-Guided Synthesis (AGS) algorithm we present below tackles the
task of inferring synchronization primitives such that a given concurrent program
satisfies a given safety specification.

1 The AGS algorithm

The AGS algorithm is a procedure that takes as input a (possibly unsafe) program
P and a safety specification S and produces a modified program P ′ that satisfies
the given specification. The success of the procedure is guaranteed if all serial (i.e.
thread-atomic) executions of the progam satisfy the specification.

The core of the algorithm is the enumeration of counterexamples to S and avoid-
ance of these counterexamples by program restriction. In the paper, the addition
of atomic sections (thread sections in which context switches are prevented) is used
as a mechanism to avoid counterexamples in the above sense.

To reduce the computational effort involved in enumerating program traces,
and thus to make both analysis and synthesis more scalable, the AGS algorithm
uses abstract interpretation, combined with abstraction refinement. AGS can thus
be seen as a combination of a verifier and a synthesizer that enables a trade-off
between verifier coarseness and synthesizer restrictiveness – if we accept more re-
strictive synchronization, we can reduce the computational effort by using a coarser
abstraction.

Pseudocode for the AGS algorithm is shown in Algorithm 1. Some of the inter-
esting subroutines, such as Avoid (generation of atomicity constraints) and Imple-
ment (generation of atomic sections in the output program) are discussed in greater
detail below.

1

Algorithm 1 Abstraction-Guided Synthesis (Pseudocode)

Input: Program P , Specification S, Abstraction function α.
Output: Program P ′ satisfying S.

procedure AGS(P,S,α)
ϕ ∶= T
repeat

if ∃π ∈ AbstractTraces(P ∣ϕ, α) ∶ π /⊧ S then
if ShouldAvoid(π,α) ∨ ¬CanRefine(α,π) then

if CanAvoid(π) then
ϕ ∶= ϕ ∧Avoid(π)

else abort
else

α ∶= Refine(α,π)
else

return Implement(P ∣ϕ)

Algorithm 2 Avoid: Generation of atomicity constraints

procedure Avoid(π = π1 . . . πn)

ρ ∶= ⋁
i,j∈[n]∧i<j

{[πi, πj] ∣ ∧ ∃t ∶ T(πi) = T(πj) = t ∧ ∀l ∈]i, j[∶ T(πl) ≠ t}

return ρ

2 Minimality under abstraction

A restricted program P ′ = Implement(P ∣ϕ) returned by AGS with respect to a fixed
abstraction α and the safety specification S is minimally-atomic if any program
obtained by removing or shrinking atomic sections no longer satisfies the safety
specification under α (perhaps irreducibly-synchronized w.r.t. α and S would be a
better term for this property). It is shown in the paper that for each minimally-
atomic result program P ′, there exists a run of AGS yielding this program. This
statement relies on all counterexample paths in each iteration being considered by
AGS. Thus, to guarantee minimality, backtracking over the chosen counterexample
paths is necessary.

To ensure minimality in the above sense in the presence of abstraction refine-
ment, it is also necessary to discard the atomicity constraints ϕ after each refinement
step. Minimality is then defined with respect to the abstraction used in the last iter-
ation of AGS. If the atomicity constraints are not discarded, the resulting program
is not necessarily minimally-atomic.

3 Encoding of trace infeasibility

To avoid a counterexample trace π by adding atomic sections, AGS generates an
atomicity constraint to encode the infeasibility of π in the output program. The
constraint ϕ computed by the procedure Avoid. We examine this process on a small
example. Consider the program shown in Fig. 1 together with the safety specifica-
tion that the assertion in thread T must not be violated (doing so leads to an error
state). Under parity abstraction over the variables y1 and y2 and identity abstrac-
tion over x and z, we obtain the counterexample trace π1 = S1R1T1S2R2T2T3 (we

2

R() {
x+=z ;
x+=z ;

}

S () {
z++;
z++;

}

T() {
y1 = f (x) ;
y2 = x ;
assert(y1 ≠ y2) ;

}
f (x) {

i f (x == 1)
return 3 ;

else i f (x == 2)
return 6 ;

else return 5 ;
}

Figure 1: Example: R ∥ S ∥ T , f atomic

use the notation Ti to refer to the i-th statement of thread T). To avoid this trace,
we compute the (disjunction of) atomicity constraints Avoid(π1) by enumerating
the context switches within π1 and requiring at least one of them to be disabled in
the output program, thus making π1 infeasible. The trace π1 has the three context
switches S1 → R1T1 → S2, R1 → T1S2 → R2 and T1 → S2R2 → T2. We thus obtain
the atomicity constraint

Avoid(π1) = [S1, S2] ∨ [R1,R2] ∨ [T1, T2] =∶ ψ1

Here, the notation [S1, S2] represents the constraint that no context switch can
occur between the statements S1 and S2. Restricting the set of abstract traces with
this constraint and keeping the parity abstraction function, we obtain an abstract
reachability tree (ART) containing a counterexample path π2 = R1S1S2R2T1T2T3
(note that this path satisfies, as it must, the atomicity constraint ϕ1: the statements
S1 and S2 are executed atomically). The path π2 has only one context switch,
namely R1 → S1S2 → R2, thus we obtain the atomicity constraint

Avoid(π2) = [R1,R2] =∶ ψ2

Restricting the set of abstract traces further by ψ2, one further counterexample
π3 = S1R1R2S2T1T2T3 is reachable, yielding the atomicity constraint ψ3 = [S2, S2].
After restiction with ψ3, error states are no longer present in the ART and the
algorithm terminates. During this run of AGS, we have accumulated the atomicity
constraint

ϕ = ψ1 ∧ ψ2 ∧ ψ3 = ([S1, S2] ∨ [R1,R2] ∨ [T1, T2]) ∧ [R1,R2] ∧ [S1, S2]

A minimal satisfying assignment is [R1,R2] ∧ [S1, S2], resulting in the atomic sec-
tions shown in the output program in Fig. 2. The implemented atomic sections
ensure that the program satisfies the safety specification and suffice to prove this
under parity abstraction.

4 Atomicity constraints as SAT instances

If a singleton atomicity constraint [a, b] is represented as a propositional variable
X[a,b], the composite atomicity constraint ϕ = ϕi∧ . . .∧ϕn with ϕi = [ai1, bi1]∨ . . .∨
[aiki , biki] could be represented by replacing [ai1, bi1] by X[a,b] in each ϕi to obtain a
propositional formula in positive CNF that can be passed to a SAT solver. Denoting

3

R() {
a tomica l l y {

x+=z ;
x+=z ; }

}

S () {
a tomica l l y {

z++;
z++; }

}

T() {
y1 = f (x) ;
y2 = x ;
assert(y1 ≠ y2) ;

}
f (x) {

i f (x == 1)
return 3 ;

else i f (x == 2)
return 6 ;

else return 5 ;
}

Figure 2: Example: AGS(R ∥ S ∥ T), f atomic

the immediate dominator of a by IDom(a) and the immediate postdominator of b by
IPDom(b), the atomic section represented by an assingment of true to X[a,b] begins
at IDom(a) and ends at IPDom(b). Overlapping atomic sections are joined to begin
at the common immediate dominator and end at the common postdominator.

This way of choosing atomic sections is aimed to maximize the number of coun-
terexamples eliminated by a single atomic section and thus minimize the total num-
ber of atomic sections. It however, wholly ignores the size of the sections, which may
well have a considerable impact on the number of valid traces that are eliminated
along with the erroneous ones.

To obtain smaller few atomic regions, a singleton atomicity constraint [a, b]
for a thread T could be represented a propositional formula over the variables Ti
corresponding to program locations of the thread T . We represent the atomic
section beginning at IDom(a) and ending at IPDom(b) by the formula F ([a, b]):

F ([a, b]) =⋀{Ti ∈ T ∶ Ti dominated by IDom(a) ∧ post-dominated by IPDom(b)}

A composite atomicity constraint

ϕ = ϕ1 ∧ ϕ2 . . . ∧ ϕn

where
ϕi = [ai1, bi1] ∨ . . . ∨ [aiki , biki]

can then be represented by the propositional logic formula

F (ϕ) = F (ϕ1) ∧ . . . ∧ F (ϕn)

where
F (ϕi) = F ([ai1, bi1]) ∨ . . . ∨ F ([aiki , biki])

A minimal satisfying assingment for F (ϕ) corresponds to a choice of atomic sec-
tions that maximizes the number of counterexamples eliminated by a single atomic
section, but also minimizes the size of these sections.

4

5 Limitations

In the presence of synchonization primitives in the input program, AGS does not
necessarily preserve termination of the input program. Consider the following ex-
ample, where b and c are semaphores, initially both at a value of 0:

S {down(b) ;
up(c) ;
down(b) ; }

T { up(b) ;
down(c) ;
up(b) ;
assert(b == 1) ; }

Figure 3: Example program P : introduction of deadlocks by AGS. Alternative
atomic sections proposed by AGS are shown as brackets around the corresponding
statements.

The primitives up and down behave in the standard manner: up atomically
increments the semaphore; down blocks while the semaphore is at its lower bound
and atomically decrements it once it is not.

The blocking behavior of down for two threads is correctly modeled by enabling
the corresponding transition if the semaphore is not at 0 and disabling it otherwise.
We obtain the following concrete (α = id) reachability tree for P = S ∥ T :

(0,0, 0,0)

(0,1, 1,0)

(1,1, 0,0)

(2,1, 0,1)

(2,2, 0,0)

(2,3, 1,0)

(3,3, 0,0)

error

(2,4, 1,0)

(3,4, 0,0)

T1

S1

S2

T2

T3

S3

T4☇

T4

S3

P

(0,0, 0,0)

(0,1, 1,0)

T blocked inside
atomic section

T1

P ∣[T1,T2]

(0,0, 0,0)

(0,1, 1,0)

(1,1, 0,0)

(2,1, 0, 1)

S blocked inside
atomic section

T1

S1

S2

P ∣[S2,S3]

(0,0, 0,0)

(0,1, 1,0)

(1,1, 0,0)

(2,1, 0,1)

(2,2, 0,0)

(2,3, 1,0)

(2,4, 1,0)

(3,4, 0,0)

T1

S1

S2

T2

T3

T4

S3

P ∣[T3,T4] = P ∣ϕ

Figure 4: Concrete reachability trees for P and its restrictions. The counterex-
ample path π = T1S1S2T2T3S3T4 is emphasized. States are represented as tuples
(pcS ,pcT , b, c) of program variable valuations.

There is exactly one path, namely π = T1S1S2T2T3S3T4, that violates the assertion.
The path contains three context switches, namely T1 → S1S2 → T2, S2 → T2T3 → S3

and T3 → S3 → T4. Thus we obtain

Avoid(π) = [T1, T2] ∨ [S2, T3] ∨ [T3, T4] =∶ ϕ

5

The reachability trees for the restrictions of P to each of the disjuncts of ϕ are
shown in Fig. 4. Since all traces in Traces(P ∣[T1,T2])∪Traces(P ∣[S2,S3]) are prefixes
of traces in Traces(P ∣[T3,T4]), the reachability tree of P ∣ϕ is equal to that of P ∣[T3,T4].

All disjuncts of ϕ ensure safety: there are no runs violating the assertion in the
corresponding reachability trees. Each disjunct represents a minimal solution, thus
the choice made by AGS is arbitrary.

While the restriction with [T3, T4] eliminates only the counterexample path and
preserves termination of the input program, the restriction with either [S2, S3] or
[T1, T2] also avoids the assertion violation, but introduces a deadlock, in which a
thread is blocked in its atomic section, waiting for an up(.) operation of the other
thread.

If the arbitrary choice between the three minimal solutions yields either [S2, S3]
or [T1, T2], AGS introduces a deadlock that could be avoided by a different syn-
chronization available to the algorithm.

6

