
Scalable Synchronous Queues
By William N. Scherer III, Doug Lea, and Michael L. Scott.
Summary on the paper by Nakul Chaudhari 

for Seminar : Advanced Seminar Course Verification of Concurrent Programs

Introduction
! Since many  years modern computers have increasingly moved towards multicore 

architectures. To harness the computing power of these processors concurrent processing is 

needed, and to benefit the whole system working towards one purpose, synchronization between 
these concurrent process is needed. Concurrent data structures resident in shared memory  make 

such synchronization possible. 
! Individual processes or threads may face different kind of delays, from short  (e.g. cache 

misses) to long due to getting descheduled. Such descheduled threads may cause priority 
inversion of important threads or even deadlocks in system. Such descheduling generally  appears 

due to use of locks. Locks are important part and of concurrent programs, making shared data 
processing mutually  exclusive for threads. These critical sections guarded by  locks if made enough 

smaller can be executed by nonblocking or lock-free algorithms using modern techniques like CAS 
(compare and set).  But at the same time this makes designing such algorithms complex and a 

difficult task. This paper introduces a new nonblocking algorithm to a concurrent data structure 
called ʻSynchronous Queuesʼ (SQʼs). We see how its working yields significantly  better results over 

previous blocking algorithms for the same. 
! Various mechanisms exist to transfer data between threads of concurrent systems. We can 

imagine threads as producers and consumers pairing up to transfer data. To get a steady flow  of 
data we can buffer up unconsumed data ʻputʼ by  producers and consumers can then do a ʻtakeʼ 

from this pool of data. This is a asymmetric fashion of transfer. In synchronous methods producers 
and consumers can arrive at any  desired time, but they  leave together. Thus they do a handoff by 

waiting for each other and leaving in pairs. Example usage can be : if a producer thread has tasks 
to assign and a consumer thread has computing power to supply  for such tasks, then producers 

and consumers can be paired, and the producer is guaranteed that a consumer has taken his task 
as the handoff is symmetric. Unlike in an asymmetric assignment of task, the producer has no idea 

if the task was successfully assigned or not.

! In the following pages we will take a look at the various implementations of Synchronous 

Queues. We will take a look in detail at the most simple implementation and the latest nonblocking 
implementation. We will also see how the various algorithms have made progress over the 

https://campus.tum.de/tumonline/lv.detail?clvnr=950069565
https://campus.tum.de/tumonline/lv.detail?clvnr=950069565


previous ones and what disadvantages they still have. In the end we will briefly take a look at 

performance of the latest implementation.

Naive Synchronous Queue
! It is perhaps the most simple implementation of a synchronous queue, using popular Java 

constructs for concurrent programming. This implementation uses a simple monitor for serializing 
access to the members of the synchronous queue. The Queue in fact contains placeholder for just 

one data item and a flag called putting. Putting indicates to another incoming producer whether a 
previous producer has already input data. The Java constructs used are :

synchronized - synchronizes access to 
methods of this classʼs objects.

The next three are inherited from the Java 
Object superclass, and every  object in Java has 

them:
wait  - causes current thread to wait until notify  or 

notifyAll are called by  other threads on the object 
(they  are inherited from the Java Object 

superclass, and every object in Java has them),
notify  - wakes up any single thread waiting on 

this objects monitor,
notifyAll - wakes up all the threads waiting on 

this objects monitor. 
! The implementation uses notifyAll 

instead of notify, as using notify the wrong waiting 
thread can be woken up, resulting in a deadlock. A simple e.g. let P1,P2 be the producers, C1 be 

the consumer. P1 enters to put and waits at line 21. P2 enters and waits at line 16. C1 enters, 
takes data, sets it to null and notifies P2. P2 wakes up but sleeps again as putting is still set to 

true. P1 is still waiting and is never notified. So putting is never set to false and any new producer 
or P2 can never put new data and all future consumers are also made to wait as no new data is 

available. Unfortunately using notifyAll creates quadratic wake up calls of the n producers and 
consumers. Also using a monitor based approach we incur heavy  costs of blocking and unblocking 

threads accessing the object.
! Usage of ʻputtingʼ  flag is must in this case. If putting would not have been used then 

another producer would have had the ability  to set the data, and an already  old producer (who has 
put some data) who is waiting for the data to be set to null would never get out of its while loop. 

Also the same case would arise if the putting flag is set to false by  the take method instead of the 

102    COMMUNICATIONS OF THE ACM    |   MAY 2009  |   VOL.  52  |   NO.  5

research highlights 

 

thread happens to retry its dequeue operation first once data 
becomes available. Further, each invocation of the totalized 
method introduces performance-degrading contention for 
memory–interconnect bandwidth.

As an alternative, suppose we could register a request for a 
hand-off partner. Inserting this reservation could be done in a 
nonblocking manner, and checking to see whether a partner 
has arrived to fulfill our reservation could consist of reading a 
Boolean flag in the request data structure. A dual data struc-
ture16, 19 takes precisely this approach: Objects may contain 
both data and reservations. We divide partial methods into 
separate, first-class request and follow-up operations, each of 
which has its own invocation and response. A total queue, for 
example, would provide dequeue_request and dequeue_
followup methods (Listing 2). By analogy with Lamport’s 
bakery algorithm,10 the request operation returns a unique 
ticket that represents the reservation and is then passed as an 
argument to the follow-up method. The follow-up, for its part, 
returns either the desired result (if one is matched to the ticket) 
or, if the method’s precondition has not yet been satisfied, an 
error indication.

The key difference between a dual data structure and 
a “totalized” partial method is that linearization of the  
p_request call allows the dual data structure to deter-
mine the fulfillment order for pending requests. In addi-
tion, unsuccessful follow-ups, unlike unsuccessful calls 
to totalized methods, are readily designed to avoid bus or 
memory contention. For programmer convenience, we pro-
vide demand methods, which wait until they can return suc-
cessfully. Our implementations use both busy-wait spinning 
and scheduler-based suspension to effect waiting in threads 
whose preconditions are not met.

When reasoning about progress, we must deal with the fact 
that a partial method may wait for an arbitrary amount of time 
(perform an arbitrary number of unsuccessful follow-ups) 
before its precondition is satisfied. Clearly it is desirable that 
requests and follow-ups be nonblocking. In practice, good 
system performance will also typically require that unsuccess-
ful follow-ups not interfere with other threads’ progress. We 
define a data structure as contention-free if none of its follow-up 
operations, in any execution, performs more than a constant 
number of remote memory accesses across all unsuccessful 
invocations with the same request ticket. On a machine with 
an invalidation-based cache coherence protocol, a read of 

location o by thread t is said to be remote if o has been written 
by some thread other than t since t last accessed it; a write by 
t is remote if o has been accessed by some thread other than t 
since t last wrote it. On a machine that cannot cache remote 
locations, an access is remote if it refers to memory allocated 
on another node. Compared to the local-spin property,13 con-
tention freedom allows operations to block in ways other than 
busy-wait spinning; in particular, it allows other actions to be 
performed while waiting for a request to be satisfied.

3. ALGORITHM DESCRIPTIONS
In this section we discuss various implementations of syn-
chronous queues. We start with classic algorithms used 
extensively in production software, then we review newer 
implementations that improve upon them. Finally, we 
describe our new algorithms.

3.1. Classic synchronous queues
Perhaps the simplest implementation of synchronous queues 
is the naive monitor-based algorithm that appears in Listing 3. 
In this implementation, a single monitor serializes access to 
a single item and to a putting flag that indicates whether a 
producer has currently supplied data. Producers wait for the 
flag to be clear (lines 15–16), set the flag (17), insert an item 
(18), and then wait until a consumer takes the data (20–21). 
Consumers await the presence of an item (05–06), take it (07), 
and mark it as taken (08) before returning. At each point where 
their actions might potentially unblock another thread, pro-
ducer and consumer threads awaken all possible candidates 
(09, 20, 24). Unfortunately, this approach results in a number 
of wake-ups quadratic in the number of waiting producer and 
consumer threads; coupled with the high cost of blocking or 

datum dequeue(SynchronousQueue Q) {
  reservation r = Q.dequeue_reserve();
  do {
     datum d = Q.dequeue_followup(r);
     if (failed != d) return d;
     /* else delay -- spinning and/or scheduler-based */
  while (!timed_out());
  if (Q.dequeue_abort(r)) return failed;
  return Q.dequeue_followup(r);
}

Listing 2: Combined operations: dequeue pseudocode (enqueue is 
symmetric).

00 public class NaiveSQ<E> {
01 boolean putting = false;
02 E item = null;
03
04 public synchronized E take() {
05 while (item == null)
06 wait();
07 E e = item;
08 item = null;
09 notifyAll();
10 return e;
11 }
12
13 public synchronized void put (E e) {
14 if (e == null) return;
15 while (putting)
16 wait();
17 putting = true;
18 item = e;
19 notifyAll();
20 while (item != null)
21 wait();
22 putting = false;
23 notifyAll();
24 }
25 }

Listing 3: Naive synchronous queue.

fig.1



put method. Hence it is imperative to use the putting flag and also to set (to true or false) only  in 

the put method.
! Hansonʼs implementation improves upon the naive SQ by  waking up only  the 

corresponding consumer or producer. Still it uses three semaphores which cause blocking and 
hence six synchronization operations per handoff between a producer and a consumer. Java 5 

improves upon this by  using only  three  synchronization operations per handoff, but still uses a 
blocking algorithm. 

Java 6 Synchronous Queue
! A major difference between Java 6 and Java 5 implementation is use of a nonblocking 

algorithm. Previous implementation used a single lock to serialize access to both producer and 
consumer queues. Here concurrency  is maintained by  using atomic machine instructions like the 

CAS. Also, waiting (for e.g. producer waiting for consumer to take data) is achieved by  spinning 
e.g. in a while loop until desired event occurs. Using a nonblocking algorithm higher scalability  is 

achievable. 
! As shown in fig.2 a enqueue  method is 

used by producers to put data, and 
analogous dequeue method (not in figure) by 

consumers to take data. A single queue 
implemented by  a linked list data structure 

holds both requests or data nodes, but only 
one kind at a time. The algorithms uses many 

CAS methods in the form casfield(old,new).
! The enqueue code is separated into two 

cases depending on the existing nodes in the 
linked list - either there are zero or more 

existing data nodes put by  previous 
producers or one or more request nodes 

added by  existing consumers. In the first case 
the algorithm checks whether read values are 

consistent (line 10). If the queueʼs tail pointer 
is current (line 13) it tries to insert a data 

node in the queue. When inserted it waits 
until a consumer takes it and sets the inserted nodeʼs data pointer to null (line 15-16). It advances 

the head pointer of linked list if needed and returns. In the second case, the linked list already 
contains request nodes. The algorithm tries to supply  data to the request node immediately 

104    COMMUNICATIONS OF THE ACM    |   MAY 2009  |   VOL.  52  |   NO.  5

research highlights 

 

reservations, except that in this case there may, temporarily, 
be a single node of the opposite type at the head.

Code for the push operation appears in Listing 6. (Except 
for the direction of data transfer, pop is symmetric.) We 
begin by reading the node at the top of the stack (line 06). 

claimed our data (15–16), which it does by updating our node’s 
data pointer to null. Then we help remove our node from the 
head of the queue and return (18–20). The request linear-
izes in this code path at line 13 when we successfully insert 
our offering into the queue; a successful follow-up linearizes 
when we notice at line 15 that our data has been taken.

The other case occurs when the queue consists of reser-
vations, and is depicted in Figure 1. After originally reading 
the head node (step A), we read its successor (line 24/step B) 
and verify consistency (25). Then, we attempt to supply our 
data to the headmost reservation (27/C). If this succeeds, we 
dequeue the former dummy node (28/D) and return (30). If 
it fails, we need to go to the next reservation, so we dequeue 
the old dummy node anyway (28) and retry the entire opera-
tion (32, 05). The request linearizes in this code path when 
we successfully supply data to a waiting consumer at line 
27; the follow-up linearization point occurs immediately 
thereafter.

The Synchronous Dual Stack: We represent the synchro-
nous dual stack as a singly linked list with head pointer. 
Like the dual queue, the stack may contain either data or 

Listing 5: Synchronous dual queue: Spin-based enqueue; dequeue 
is symmetric except for the direction of data transfer. The various 
cas field (old,new) operations attempt to change field from old to 
new, and return a success/failure indication. On modern processors 
they can be implemented with a single atomic compare_and_swap 
instruction, or its equivalent.

00 class Node { E data; Node next;...}
01
02 void enqueue(E e) {
03   Node offer = new Node(e, Data);
04
05   while (true) {
06     Node t = tail;
07     Node h = head;
08     if (h == t || !t.isRequest()) {
09          Node n = t.next;
10         if (t == tail) {
11               if (null != n) {
12           casTail(t, n);
13          } else if(t.casNext(n, offer)) {
14            casTail(t, offer);
15            while (offer.data == e)
16              /* spin */;
17            h = head;
18            if (offer == h.next)
19            casHead(h, offer);
20            return;
21          }
22         }
23     } else {
24       Node n = h.next;
25       if (t != tail || h != head || n == null)
26           continue; // inconsistent snapshot
27       boolean success = n.casData(null, e);
28       casHead(h, n);
29       if (success)
30             return;
31     }
32   }
33 }

00 class Node { E data; Node next, match; ... }
01
02 void push (E e) {
03   Node f, d = new Node(e, Data);
04
05   while (true) {
06         Node h = head;
07        if (null == h || h.isData()) {
08             d.next = h;
09             if (!casHead(h, d))
10             continue;
11             while (d.match == null)
12             /* spin */;
13             h = head;
14             if (null != h && d == h.next)
15             casHead(h, d.next);
16             return;
17         } else if (h.isRequest()) {
18             f = new Node(e, Data | Fulfilling, h);
19             if (!casHead(h, f))
20             continue;
21             h = f.next;
22             Node n = h.next;
23             h.casMatch(null, f);
24             casHead(f, n);
25             return;
26         } else { // h is fulfilling
27             Node n = h.next;
28             Node nn = n.next;
29             n.casMatch(null, h);
30             casHead(h, nn);
31         }
32   }
33 }

Listing 6: Synchronous dual stack: Spin-based annihilating push; pop 
is symmetric except for the direction of data transfer. (For clarity, 
code for time-out is omitted.)

Head Tail

Dummy

Item

Cancel

A

B

C

D

C

Reserv. Reserv.

Item

Figure 1: Synchronous dual queue: Enqueuing when reservations  
are present.

fig.2



following the head. If successful it advances the head node and returns. If not, even then it 

advances the head node (it helps out other threads supplying data) and tries to supply  data to the 
node following the node it just checked.

! CAS (compare and set) methods are the basic building blocks of nonblocking algorithms. 
We will first discuss some of their salient features, and then look at how to build nonblocking 

algorithms with our specific Java 6 implementation example.

CAS versus software locks
! With compare and set we can atomically update shared data without locking parts of code 

[2]. What a CAS method does is, that it compares the value of the shared data with an expected 
value (e.g. just retrieved current value) and if same (not changed between retrieval and compare), 

sets it to a new value. These methods are atomic in hardware and easily outperform software 
atomic operations (e.g. those done using locks).  Modern Processors provide us with such CAS 

methods. Also, only  since Java 5.0 it was possible to develop nonblocking algorithms with help  of 
these.

! When we use locks or monitors to develop concurrent data structures we essential block 
threads when another thread is are performing certain modifications on the data, so that they 

remain consistent. With such software locks we need to suspend certain threads and reschedule 
them. Thus when rescheduled we have to make context switches and at higher granularity  levels 

as we lock significant portions of code and some times even entire methods. Unlike software locks, 

using CAS we synchronize at finer level of granularity and those threads  which lose out can 

retry immediately (generally inside programming loops e.g. while). Also, nonblocking 

algorithms generally are successful at the first attempt and even with few failed attempts 

they still outperform their counterparts. 

Nonblocking concurrent algorithms using CAS

! Building nonblocking concurrent data structures can be complex, as CAS provides us 
atomic updates on single units of data but not on more at the same time. An easy  guideline then 

can be, is to always maintain consistent data structure, even between an individual threads 
modifying operations start and end.  Other threads should also be able to tell whether a thread 

currently  modifying the data structure has finished modification and if not what operations will it 
need to complete its operation. !

! For e.g. in our Synchronous queue example we have a linked list. There can be two 
possible cases - normal state where the linked list is stable and up to date i.e. the tail pointer points  

to the last element and the next pointer of tail points to null. 



! The other state is intermediate stage where maybe a certain thread has inserted new data 

by linking a new node to the tail node, but yet to update the tail pointer.

 
! So in our case when one thread has inserted the new node, and still has to update the tail 

pointer, another new thread coming sees that the list in inconsistent (and doesn't perform its own 
insertion, instead ), it helps out in making it consistent by updating the tail pointer, and then itself 

retrying again for insertion. When the first thread realizes that someone else has updated the tail 
pointer it just fails its CAS of tail and return. 

! There are three basic types of guarantees a nonblocking algorithms can make about its 
progress. In wait-free algorithms all operations are guaranteed to complete its methods call within 

a bound of its own execution steps. !Lock-free guarantee progress of at least some operation and 
thus progress of the overall program. Thus wait-free have a stronger condition and all wait-free are 

lock-free but not vice versa. Obstruction-free guarantees progress of some thread in absence of 
contention, and this has a weaker condition then the previous two types. Our algorithm of SQ  is a 

lock-free algorithm.
!

Performance summary
! From the various tests performed by  the authors it is evident that blocking and contention 

between threads are the major roadblocks on our path to achieving high scalability. The latest 
implementation makes significant progress in both areas by  implementing a nonblocking algorithm. 

This Java 6 implementation significantly  outperforms previous implementations. One area where 
they suggest we can make improvement is by  reducing the contention faced by thread at the tail 

end of the linked list. 
!

References:
1) Most of the content is based  on the paper ʻScalable Synchronous Queuesʼ By William N. 

Scherer III, Doug Lea, and Michael L. Scott.



2) The explanation on CAS is based on the article at http://www.ibm.com/developerworks/java/
library/j-jtp04186/index.html titled ʻJava theory and practice: Introduction to nonblocking 

algorithms’ by Brian Goetz.

http://www.ibm.com/developerworks/java/library/j-jtp04186/index.html
http://www.ibm.com/developerworks/java/library/j-jtp04186/index.html
http://www.ibm.com/developerworks/java/library/j-jtp04186/index.html
http://www.ibm.com/developerworks/java/library/j-jtp04186/index.html

