
Scalable
Synchronous

Queues

Nakul
Chaudhari

Outline

Background

Implement
ations
Naive

Hanson’s

Java 5

Java 6

Experimental
results

Scalable Synchronous Queues

Nakul Chaudhari

June 25, 2012

Scalable
Synchronous

Queues

Nakul
Chaudhari

Outline

Background

Implement
ations
Naive

Hanson’s

Java 5

Java 6

Experimental
results

1 Background

2 Implement ations
Naive
Hanson’s
Java 5
Java 6

3 Experimental results

Scalable
Synchronous

Queues

Nakul
Chaudhari

Outline

Background

Implement
ations
Naive

Hanson’s

Java 5

Java 6

Experimental
results

Background

1 Need for Concurrent systems
2 Need for Multiprocessor systems - individual processors

reaching a limit of clock speed
3 Using all the parallel processing power we have
4 Concurrent data structures to communicate or synchronize

between them
5 Concurrent Queues, Synchronous Asynchronous Queues

Scalable
Synchronous

Queues

Nakul
Chaudhari

Outline

Background

Implement
ations
Naive

Hanson’s

Java 5

Java 6

Experimental
results

Motivation

1 Performance
2 OSX job scheduler grand central
3 Java job scheduler
4 Increase in performance by use of Java 6 implementation

Scalable
Synchronous

Queues

Nakul
Chaudhari

Outline

Background

Implement
ations
Naive

Hanson’s

Java 5

Java 6

Experimental
results

Background

1 Producer and consumers
2 Put and take
3 Producer and consumer problem - do a put in a full buffer,

take from an empty buffer

Scalable
Synchronous

Queues

Nakul
Chaudhari

Outline

Background

Implement
ations
Naive

Hanson’s

Java 5

Java 6

Experimental
results

Background

1 Wait-free, lock-free and obstruction free
2 In wait-free algorithms all operations are guaranteed to

complete its methods call within a bound of its own
execution steps.

3 Lock-free guarantee progress of at least some operation
and thus progress of the overall program.

4 Obstruction-free guarantees progress of some thread in
absence of contention, and this has a weaker condition
then the previous two types.

Scalable
Synchronous

Queues

Nakul
Chaudhari

Outline

Background

Implement
ations
Naive

Hanson’s

Java 5

Java 6

Experimental
results

Naive Synchronous Queue

102 COMMUNICATIONS OF THE ACM | MAY 2009 | VOL. 52 | NO. 5

research highlights

thread happens to retry its dequeue operation first once data
becomes available. Further, each invocation of the totalized
method introduces performance-degrading contention for
memory–interconnect bandwidth.

As an alternative, suppose we could register a request for a
hand-off partner. Inserting this reservation could be done in a
nonblocking manner, and checking to see whether a partner
has arrived to fulfill our reservation could consist of reading a
Boolean flag in the request data structure. A dual data struc-
ture16, 19 takes precisely this approach: Objects may contain
both data and reservations. We divide partial methods into
separate, first-class request and follow-up operations, each of
which has its own invocation and response. A total queue, for
example, would provide dequeue_request and dequeue_
followup methods (Listing 2). By analogy with Lamport’s
bakery algorithm,10 the request operation returns a unique
ticket that represents the reservation and is then passed as an
argument to the follow-up method. The follow-up, for its part,
returns either the desired result (if one is matched to the ticket)
or, if the method’s precondition has not yet been satisfied, an
error indication.

The key difference between a dual data structure and
a “totalized” partial method is that linearization of the
p_request call allows the dual data structure to deter-
mine the fulfillment order for pending requests. In addi-
tion, unsuccessful follow-ups, unlike unsuccessful calls
to totalized methods, are readily designed to avoid bus or
memory contention. For programmer convenience, we pro-
vide demand methods, which wait until they can return suc-
cessfully. Our implementations use both busy-wait spinning
and scheduler-based suspension to effect waiting in threads
whose preconditions are not met.

When reasoning about progress, we must deal with the fact
that a partial method may wait for an arbitrary amount of time
(perform an arbitrary number of unsuccessful follow-ups)
before its precondition is satisfied. Clearly it is desirable that
requests and follow-ups be nonblocking. In practice, good
system performance will also typically require that unsuccess-
ful follow-ups not interfere with other threads’ progress. We
define a data structure as contention-free if none of its follow-up
operations, in any execution, performs more than a constant
number of remote memory accesses across all unsuccessful
invocations with the same request ticket. On a machine with
an invalidation-based cache coherence protocol, a read of

location o by thread t is said to be remote if o has been written
by some thread other than t since t last accessed it; a write by
t is remote if o has been accessed by some thread other than t
since t last wrote it. On a machine that cannot cache remote
locations, an access is remote if it refers to memory allocated
on another node. Compared to the local-spin property,13 con-
tention freedom allows operations to block in ways other than
busy-wait spinning; in particular, it allows other actions to be
performed while waiting for a request to be satisfied.

3. ALGORITHM DESCRIPTIONS
In this section we discuss various implementations of syn-
chronous queues. We start with classic algorithms used
extensively in production software, then we review newer
implementations that improve upon them. Finally, we
describe our new algorithms.

3.1. Classic synchronous queues
Perhaps the simplest implementation of synchronous queues
is the naive monitor-based algorithm that appears in Listing 3.
In this implementation, a single monitor serializes access to
a single item and to a putting flag that indicates whether a
producer has currently supplied data. Producers wait for the
flag to be clear (lines 15–16), set the flag (17), insert an item
(18), and then wait until a consumer takes the data (20–21).
Consumers await the presence of an item (05–06), take it (07),
and mark it as taken (08) before returning. At each point where
their actions might potentially unblock another thread, pro-
ducer and consumer threads awaken all possible candidates
(09, 20, 24). Unfortunately, this approach results in a number
of wake-ups quadratic in the number of waiting producer and
consumer threads; coupled with the high cost of blocking or

datum dequeue(SynchronousQueue Q) {
 reservation r = Q.dequeue_reserve();
 do {
 datum d = Q.dequeue_followup(r);
 if (failed != d) return d;
 /* else delay -- spinning and/or scheduler-based */
 while (!timed_out());
 if (Q.dequeue_abort(r)) return failed;
 return Q.dequeue_followup(r);
}

Listing 2: Combined operations: dequeue pseudocode (enqueue is
symmetric).

00 public class NaiveSQ<E> {
01 boolean putting = false;
02 E item = null;
03
04 public synchronized E take() {
05 while (item == null)
06 wait();
07 E e = item;
08 item = null;
09 notifyAll();
10 return e;
11 }
12
13 public synchronized void put (E e) {
14 if (e == null) return;
15 while (putting)
16 wait();
17 putting = true;
18 item = e;
19 notifyAll();
20 while (item != null)
21 wait();
22 putting = false;
23 notifyAll();
24 }
25 }

Listing 3: Naive synchronous queue.

1 Keywords -
1 Synchronized
2 wait()
3 notifyAll()

2 Disadvantage - Quadratic
wake-ups

3 Why notifyAll() and not
notify()

Scalable
Synchronous

Queues

Nakul
Chaudhari

Outline

Background

Implement
ations
Naive

Hanson’s

Java 5

Java 6

Experimental
results

Naive Synchronous Queue

102 COMMUNICATIONS OF THE ACM | MAY 2009 | VOL. 52 | NO. 5

research highlights

thread happens to retry its dequeue operation first once data
becomes available. Further, each invocation of the totalized
method introduces performance-degrading contention for
memory–interconnect bandwidth.

As an alternative, suppose we could register a request for a
hand-off partner. Inserting this reservation could be done in a
nonblocking manner, and checking to see whether a partner
has arrived to fulfill our reservation could consist of reading a
Boolean flag in the request data structure. A dual data struc-
ture16, 19 takes precisely this approach: Objects may contain
both data and reservations. We divide partial methods into
separate, first-class request and follow-up operations, each of
which has its own invocation and response. A total queue, for
example, would provide dequeue_request and dequeue_
followup methods (Listing 2). By analogy with Lamport’s
bakery algorithm,10 the request operation returns a unique
ticket that represents the reservation and is then passed as an
argument to the follow-up method. The follow-up, for its part,
returns either the desired result (if one is matched to the ticket)
or, if the method’s precondition has not yet been satisfied, an
error indication.

The key difference between a dual data structure and
a “totalized” partial method is that linearization of the
p_request call allows the dual data structure to deter-
mine the fulfillment order for pending requests. In addi-
tion, unsuccessful follow-ups, unlike unsuccessful calls
to totalized methods, are readily designed to avoid bus or
memory contention. For programmer convenience, we pro-
vide demand methods, which wait until they can return suc-
cessfully. Our implementations use both busy-wait spinning
and scheduler-based suspension to effect waiting in threads
whose preconditions are not met.

When reasoning about progress, we must deal with the fact
that a partial method may wait for an arbitrary amount of time
(perform an arbitrary number of unsuccessful follow-ups)
before its precondition is satisfied. Clearly it is desirable that
requests and follow-ups be nonblocking. In practice, good
system performance will also typically require that unsuccess-
ful follow-ups not interfere with other threads’ progress. We
define a data structure as contention-free if none of its follow-up
operations, in any execution, performs more than a constant
number of remote memory accesses across all unsuccessful
invocations with the same request ticket. On a machine with
an invalidation-based cache coherence protocol, a read of

location o by thread t is said to be remote if o has been written
by some thread other than t since t last accessed it; a write by
t is remote if o has been accessed by some thread other than t
since t last wrote it. On a machine that cannot cache remote
locations, an access is remote if it refers to memory allocated
on another node. Compared to the local-spin property,13 con-
tention freedom allows operations to block in ways other than
busy-wait spinning; in particular, it allows other actions to be
performed while waiting for a request to be satisfied.

3. ALGORITHM DESCRIPTIONS
In this section we discuss various implementations of syn-
chronous queues. We start with classic algorithms used
extensively in production software, then we review newer
implementations that improve upon them. Finally, we
describe our new algorithms.

3.1. Classic synchronous queues
Perhaps the simplest implementation of synchronous queues
is the naive monitor-based algorithm that appears in Listing 3.
In this implementation, a single monitor serializes access to
a single item and to a putting flag that indicates whether a
producer has currently supplied data. Producers wait for the
flag to be clear (lines 15–16), set the flag (17), insert an item
(18), and then wait until a consumer takes the data (20–21).
Consumers await the presence of an item (05–06), take it (07),
and mark it as taken (08) before returning. At each point where
their actions might potentially unblock another thread, pro-
ducer and consumer threads awaken all possible candidates
(09, 20, 24). Unfortunately, this approach results in a number
of wake-ups quadratic in the number of waiting producer and
consumer threads; coupled with the high cost of blocking or

datum dequeue(SynchronousQueue Q) {
 reservation r = Q.dequeue_reserve();
 do {
 datum d = Q.dequeue_followup(r);
 if (failed != d) return d;
 /* else delay -- spinning and/or scheduler-based */
 while (!timed_out());
 if (Q.dequeue_abort(r)) return failed;
 return Q.dequeue_followup(r);
}

Listing 2: Combined operations: dequeue pseudocode (enqueue is
symmetric).

00 public class NaiveSQ<E> {
01 boolean putting = false;
02 E item = null;
03
04 public synchronized E take() {
05 while (item == null)
06 wait();
07 E e = item;
08 item = null;
09 notifyAll();
10 return e;
11 }
12
13 public synchronized void put (E e) {
14 if (e == null) return;
15 while (putting)
16 wait();
17 putting = true;
18 item = e;
19 notifyAll();
20 while (item != null)
21 wait();
22 putting = false;
23 notifyAll();
24 }
25 }

Listing 3: Naive synchronous queue.

1 using notify - P1 - 21,
P2-16, C1 notifies P2, P2
sleeps again as putting is
still true. P1 is still
waiting and never notified.
All future P and C are
blocked.

2 Putting flag - P2 might
come and set data to not
null before P1 can check it
and move ahead. Also if
C1 sets it to false, P2
could get inside change
data again before P1
checks it.

Scalable
Synchronous

Queues

Nakul
Chaudhari

Outline

Background

Implement
ations
Naive

Hanson’s

Java 5

Java 6

Experimental
results

Hanson’s Synchronous Queue

100 COMMUNICATIONS OF THE ACM | MAY 2009 | VOL. 52 | NO. 5

research highlights

DOI:10.1145/1506409.1506431

Scalable Synchronous Queues
By William N. Scherer III, Doug Lea, and Michael L. Scott

Abstract
In a thread-safe concurrent queue, consumers typically
wait for producers to make data available. In a synchronous
queue, producers similarly wait for consumers to take the
data. We present two new nonblocking, contention-free syn-
chronous queues that achieve high performance through a
form of dualism: The underlying data structure may hold
both data and, symmetrically, requests.

We present performance results on 16-processor SPARC
and 4-processor Opteron machines. We compare our algo-
rithms to commonly used alternatives from the literature
and from the Java SE 5.0 class java.util.concurrent
.SynchronousQueue both directly in synthetic
microbenchmarks and indirectly as the core of Java’s
ThreadPoolExecutor mechanism. Our new algorithms
consistently outperform the Java SE 5.0 SynchronousQueue
by factors of three in unfair mode and 14 in fair
mode; this translates to factors of two and ten for the
ThreadPoolExecutor. Our synchronous queues have been
adopted for inclusion in Java 6.

1. INTRODUCTION
Mechanisms to transfer data between threads are among
the most fundamental building blocks of concurrent sys-
tems. Shared memory transfers are typically effected via
a concurrent data structure that may be known variously as a
buffer, a channel, or a concurrent queue. This structure serves
to “pair up” producers and consumers. It can also serve to
smooth out fluctuations in their relative rates of progress by
buffering unconsumed data. This buffering, in systems that
provide it, is naturally asymmetric: A consumer that tries to
take data from an empty concurrent queue will wait for a
producer to perform a matching put operation; however, a
producer need not wait to perform a put unless space has
run out. That is, producers can “run ahead” of consumers,
but consumers cannot “run ahead” of producers.

A synchronous queue provides the “pairing up” function
without the buffering; it is entirely symmetric: Producers
and consumers wait for one another, “shake hands,” and
leave in pairs. For decades, synchronous queues have played
a prominent role in both the theory and practice of concur-
rent programming. They constitute the central synchroniza-
tion primitive of Hoare’s CSP8 and of languages derived from
it, and are closely related to the rendezvous of Ada. They are
also widely used in message-passing software and in stream-
style “hand-off” algorithms.2, Chap. 8 (In this paper we focus on
synchronous queues within a multithreaded program, not
across address spaces or distributed nodes.)

Unfortunately, design-level tractability of synchronous
queues has often come at the price of poor performance.
“Textbook” algorithms for put and take may repeat-

edly suffer from contention (slowdown due to conflicts

with other threads for access to a cache line) and/or block-
ing (loops or scheduling operations that wait for activity in
another thread). Listing 1, for example, shows one of the
most commonly used implementations, due to Hanson.3
It employs three separate semaphores, each of which is a
potential source of contention and (in acquire operations)
blocking.a

The synchronization burden of algorithms like Hanson’s
is especially significant on modern multicore and mul-
tiprocessor machines, where the OS scheduler may take
thousands of cycles to block or unblock threads. Even an
uncontended semaphore operation usually requires special
read-modify-write or memory barrier (fence) instructions,
each of which can take tens of cycles.b

a Semaphores are the original mechanism for scheduler-based synchroniza-
tion (they date from the mid-1960s). Each semaphore contains a counter and
a list of waiting threads. An acquire operation decrements the counter and
then waits for it to be nonnegative. A release operation increments the
counter and unblocks a waiting thread if the result is nonpositive. In effect, a
semaphore functions as a non-synchronous concurrent queue in which the
transferred data is null.
b Read-modify-write instructions (e.g., compare_and_swap [CAS]) faci-
litate constructing concurrent algorithms via atomic memory updates.
Fences enforce ordering constraints on memory operations.

Listing 1: Hanson’s synchronous queue. Semaphore sync indicates
whether item is valid (initially, no); send holds 1 minus the number
of pending puts; recv holds 0 minus the number of pending takes.

00 public class HansonSQ<E> {
01 E item = null;
02 Semaphore sync = new Semaphore(0);
03 Semaphore send = new Semaphore(1);
04 Semaphore recv = new Semaphore(0);
05
06 Public E take() {
07 recv.acquire();
08 E x = item;
09 sync.release();
10 send.release();
11 return x;
12 }
13
14 public void put(E x) {
15 send.acquire();
16 item = x;
17 recv.release();
18 sync.acquire();
19 }
20 }

A previous version of this paper was published in Proceed-
ings of the 11th ACM Symposium on Principles and Practice
of Parallel Programming, Mar. 2006.

1 Keywords -
1 Semaphore
2 release()
3 acquire()

2 Wake-ups to only single
consumer or producer

3 total 6 synchronizations
per handoff

Scalable
Synchronous

Queues

Nakul
Chaudhari

Outline

Background

Implement
ations
Naive

Hanson’s

Java 5

Java 6

Experimental
results

Java 5 Synchronous Queue

MAY 2009 | VOL. 52 | NO. 5 | COMMUNICATIONS OF THE ACM 103

The Synchronous Dual Queue: We represent the synchro-
nous dual queue as a singly linked list with head and tail
pointers. The list may contain data nodes or request nodes
(reservations), but never both at once. Listing 5 shows the
enqueue method. (Except for the direction of data transfer,
dequeue is symmetric.) To enqueue, we first read the head
and tail pointers (lines 06–07). From here, there are two main
cases. The first occurs when the queue is empty (h == t) or
contains data (line 08). We read the next pointer for the tail-
most node in the queue (09). If all values read are mutually
consistent (10) and the queue’s tail pointer is current (11), we
attempt to insert our offering at the tail of the queue (13–14).
If successful, we wait until a consumer signals that it has

unblocking a thread, this results in poor performance.
Hanson’s synchronous queue (Listing 1) improves upon

the naive approach by using semaphores to target wake-
ups to only the single producer or consumer thread that an
operation has unblocked. However, as noted in Section 1, it
still incurs the overhead of three separate synchronization
events per transfer for each of the producer and consumer;
further, it normally blocks at least once per operation. It is
possible to streamline some of these synchronization points
in common execution scenarios by using a fast-path acquire
sequence;11 this was done in early releases of the dl.util
. concurrent package which evolved into java.util.concurrent.

3.2. The Java SE 5.0 synchronous queue
The Java SE 5.0 synchronous queue (Listing 4) uses a pair of
queues (in fair mode; stacks for unfair mode) to separately hold
waiting producers and consumers. This approach echoes the
scheduler data structures of Anderson et al;.1 it improves con-
siderably on semaphore-based approaches. When a producer
or consumer finds its counterpart already waiting, the new
arrival needs to perform only one synchronization operation:
acquiring a lock that protects both queues (line 18 or 33). Even
if no counterpart is waiting, the only additional synchroniza-
tion required is to await one (25 or 40). A transfer thus requires
only three synchronization operations, compared to the six
incurred by Hanson’s algorithm. In particular, using a queue
instead of a semaphore allows producers to publish data items
as they arrive (line 36) instead of having to first awaken after
blocking on a semaphore; consumers need not wait.

3.3. Combining dual data structures with
 synchronous queues
A key limitation of the Java SE 5.0 SynchronousQueue class is
its reliance on a single lock to protect both queues. Coarse-
grained synchronization of this form is well known for intro-
ducing serialization bottlenecks; by creating nonblocking
implementations, we eliminate a major impediment to
scalability.

Our new algorithms add support for time-out and for bidi-
rectional synchronous waiting to our previous nonblocking
dual queue and dual stack algorithms19 (those in turn were
derived from the classic Treiber stack21 and the M&S queue14).
The nonsynchronous dual data structures already block when a
consumer arrives before a producer; our challenge is to arrange
for producers to block until a consumer arrives as well. In the
queue, waiting is accomplished by spinning until a pointer
changes from null to non-null, or vice versa; in the stack, it is
accomplished by pushing a “fulfilling” node and arranging for
adjacent matching nodes to “annihilate” one another.

We describe basic versions of the synchronous dual
queue and stack in the sections “The synchronous dual
queue” and “The synchronous dual stack,” respectively. The
section “Time-out” then sketches the manner in which we
add time-out support. The section “Pragmatics” discusses
additional pragmatic issues. Throughout the discussion,
we present fragments of code to illustrate particular fea-
tures; full source is available online at http://gee.cs.oswego
.edu /cgi-bin /viewcvs.cgi/jsr166/src/main/java/util/concurrent/
SynchronousQueue.java.

00 public class Java5SQ<E> {
01 ReentrantLock qlock = new ReentrantLock();
02 Queue waitingProducers = new Queue();
03 Queue waitingConsumers = new Queue();
04
05 static class Node
06 extends AbstractQueuedSynchronizer {
07 E item;
08 Node next;
09
10 Node(Object x) { item = x; }
11 void waitForTake() { /* (uses AQS) */ }
12 E waitForPut() { /* (uses AQS) */ }
13 }
14
15 public E take() {
16 Node node;
17 boolean mustWait;
18 qlock.lock();
19 node = waitingProducers.pop();
20 if(mustWait = (node == null))
21 node = waitingConsumers.push(null);
22 qlock.unlock();
23
24 if (mustWait)
25 return node.waitForPut();
26 else
27 return node.item;
28 }
29
30 public void put(E e) {
31 Node node;
32 boolean mustWait;
33 qlock.lock();
34 node = waitingConsumers.pop();
35 if (mustWait = (node == null))
36 node = waitingProducers.push(e);
37 qlock.unlock();
38
39 if (mustWait)
40 node.waitForTake();
41 else
42 node.item = e;
43 }
44 }

Listing 4: The Java SE 5.0 SynchronousQueue class, fair (queue-based)
version. The unfair version uses stacks instead of queues, but is
otherwise identical. (For clarity, we have omitted details of the way in
which AbstractQueuedSynchronizers are used, and code to generalize
waitingProducers and waitingConsumers to either stacks or queues.)

1 Keywords -
1 ReentrantLock
2 lock()
3 unlock()

2 3 synchronizations per
handoff

3 Queue implementation
allows producers to publish
data items instead of
having to awaken after
blocking on semaphore,
consumers need not wait
also

Scalable
Synchronous

Queues

Nakul
Chaudhari

Outline

Background

Implement
ations
Naive

Hanson’s

Java 5

Java 6

Experimental
results

Java 6 Synchronous Queue

104 COMMUNICATIONS OF THE ACM | MAY 2009 | VOL. 52 | NO. 5

research highlights

reservations, except that in this case there may, temporarily,
be a single node of the opposite type at the head.

Code for the push operation appears in Listing 6. (Except
for the direction of data transfer, pop is symmetric.) We
begin by reading the node at the top of the stack (line 06).

claimed our data (15–16), which it does by updating our node’s
data pointer to null. Then we help remove our node from the
head of the queue and return (18–20). The request linear-
izes in this code path at line 13 when we successfully insert
our offering into the queue; a successful follow-up linearizes
when we notice at line 15 that our data has been taken.

The other case occurs when the queue consists of reser-
vations, and is depicted in Figure 1. After originally reading
the head node (step A), we read its successor (line 24/step B)
and verify consistency (25). Then, we attempt to supply our
data to the headmost reservation (27/C). If this succeeds, we
dequeue the former dummy node (28/D) and return (30). If
it fails, we need to go to the next reservation, so we dequeue
the old dummy node anyway (28) and retry the entire opera-
tion (32, 05). The request linearizes in this code path when
we successfully supply data to a waiting consumer at line
27; the follow-up linearization point occurs immediately
thereafter.

The Synchronous Dual Stack: We represent the synchro-
nous dual stack as a singly linked list with head pointer.
Like the dual queue, the stack may contain either data or

Listing 5: Synchronous dual queue: Spin-based enqueue; dequeue
is symmetric except for the direction of data transfer. The various
cas field (old,new) operations attempt to change field from old to
new, and return a success/failure indication. On modern processors
they can be implemented with a single atomic compare_and_swap
instruction, or its equivalent.

00 class Node { E data; Node next;...}
01
02 void enqueue(E e) {
03 Node offer = new Node(e, Data);
04
05 while (true) {
06 Node t = tail;
07 Node h = head;
08 if (h == t || !t.isRequest()) {
09 Node n = t.next;
10 if (t == tail) {
11 if (null != n) {
12 casTail(t, n);
13 } else if(t.casNext(n, offer)) {
14 casTail(t, offer);
15 while (offer.data == e)
16 /* spin */;
17 h = head;
18 if (offer == h.next)
19 casHead(h, offer);
20 return;
21 }
22 }
23 } else {
24 Node n = h.next;
25 if (t != tail || h != head || n == null)
26 continue; // inconsistent snapshot
27 boolean success = n.casData(null, e);
28 casHead(h, n);
29 if (success)
30 return;
31 }
32 }
33 }

00 class Node { E data; Node next, match; ... }
01
02 void push (E e) {
03 Node f, d = new Node(e, Data);
04
05 while (true) {
06 Node h = head;
07 if (null == h || h.isData()) {
08 d.next = h;
09 if (!casHead(h, d))
10 continue;
11 while (d.match == null)
12 /* spin */;
13 h = head;
14 if (null != h && d == h.next)
15 casHead(h, d.next);
16 return;
17 } else if (h.isRequest()) {
18 f = new Node(e, Data | Fulfilling, h);
19 if (!casHead(h, f))
20 continue;
21 h = f.next;
22 Node n = h.next;
23 h.casMatch(null, f);
24 casHead(f, n);
25 return;
26 } else { // h is fulfilling
27 Node n = h.next;
28 Node nn = n.next;
29 n.casMatch(null, h);
30 casHead(h, nn);
31 }
32 }
33 }

Listing 6: Synchronous dual stack: Spin-based annihilating push; pop
is symmetric except for the direction of data transfer. (For clarity,
code for time-out is omitted.)

Head Tail

Dummy

Item

Cancel

A

B

C

D

C

Reserv. Reserv.

Item

Figure 1: Synchronous dual queue: Enqueuing when reservations
are present.

1 Keywords -
1 casFIELD(old,new)

2 Non blocking
3 Queue implementation

allows producers to publish
data items instead of
having to awaken after
blocking on semaphore,
consumers need not wait
also

Scalable
Synchronous

Queues

Nakul
Chaudhari

Outline

Background

Implement
ations
Naive

Hanson’s

Java 5

Java 6

Experimental
results

Java 6 Synchronous Queue

104 COMMUNICATIONS OF THE ACM | MAY 2009 | VOL. 52 | NO. 5

research highlights

reservations, except that in this case there may, temporarily,
be a single node of the opposite type at the head.

Code for the push operation appears in Listing 6. (Except
for the direction of data transfer, pop is symmetric.) We
begin by reading the node at the top of the stack (line 06).

claimed our data (15–16), which it does by updating our node’s
data pointer to null. Then we help remove our node from the
head of the queue and return (18–20). The request linear-
izes in this code path at line 13 when we successfully insert
our offering into the queue; a successful follow-up linearizes
when we notice at line 15 that our data has been taken.

The other case occurs when the queue consists of reser-
vations, and is depicted in Figure 1. After originally reading
the head node (step A), we read its successor (line 24/step B)
and verify consistency (25). Then, we attempt to supply our
data to the headmost reservation (27/C). If this succeeds, we
dequeue the former dummy node (28/D) and return (30). If
it fails, we need to go to the next reservation, so we dequeue
the old dummy node anyway (28) and retry the entire opera-
tion (32, 05). The request linearizes in this code path when
we successfully supply data to a waiting consumer at line
27; the follow-up linearization point occurs immediately
thereafter.

The Synchronous Dual Stack: We represent the synchro-
nous dual stack as a singly linked list with head pointer.
Like the dual queue, the stack may contain either data or

Listing 5: Synchronous dual queue: Spin-based enqueue; dequeue
is symmetric except for the direction of data transfer. The various
cas field (old,new) operations attempt to change field from old to
new, and return a success/failure indication. On modern processors
they can be implemented with a single atomic compare_and_swap
instruction, or its equivalent.

00 class Node { E data; Node next;...}
01
02 void enqueue(E e) {
03 Node offer = new Node(e, Data);
04
05 while (true) {
06 Node t = tail;
07 Node h = head;
08 if (h == t || !t.isRequest()) {
09 Node n = t.next;
10 if (t == tail) {
11 if (null != n) {
12 casTail(t, n);
13 } else if(t.casNext(n, offer)) {
14 casTail(t, offer);
15 while (offer.data == e)
16 /* spin */;
17 h = head;
18 if (offer == h.next)
19 casHead(h, offer);
20 return;
21 }
22 }
23 } else {
24 Node n = h.next;
25 if (t != tail || h != head || n == null)
26 continue; // inconsistent snapshot
27 boolean success = n.casData(null, e);
28 casHead(h, n);
29 if (success)
30 return;
31 }
32 }
33 }

00 class Node { E data; Node next, match; ... }
01
02 void push (E e) {
03 Node f, d = new Node(e, Data);
04
05 while (true) {
06 Node h = head;
07 if (null == h || h.isData()) {
08 d.next = h;
09 if (!casHead(h, d))
10 continue;
11 while (d.match == null)
12 /* spin */;
13 h = head;
14 if (null != h && d == h.next)
15 casHead(h, d.next);
16 return;
17 } else if (h.isRequest()) {
18 f = new Node(e, Data | Fulfilling, h);
19 if (!casHead(h, f))
20 continue;
21 h = f.next;
22 Node n = h.next;
23 h.casMatch(null, f);
24 casHead(f, n);
25 return;
26 } else { // h is fulfilling
27 Node n = h.next;
28 Node nn = n.next;
29 n.casMatch(null, h);
30 casHead(h, nn);
31 }
32 }
33 }

Listing 6: Synchronous dual stack: Spin-based annihilating push; pop
is symmetric except for the direction of data transfer. (For clarity,
code for time-out is omitted.)

Head Tail

Dummy

Item

Cancel

A

B

C

D

C

Reserv. Reserv.

Item

Figure 1: Synchronous dual queue: Enqueuing when reservations
are present.

1 How CAS works
2 2 states
3 2 steps to get to the same

state again
4 Help out

Scalable
Synchronous

Queues

Nakul
Chaudhari

Outline

Background

Implement
ations
Naive

Hanson’s

Java 5

Java 6

Experimental
results

Conclusion

106 COMMUNICATIONS OF THE ACM | MAY 2009 | VOL. 52 | NO. 5

research highlights

Figure 3 displays the rate at which data is transferred
from multiple producers to multiple consumers; Figure 4
displays the rate at which data is transferred from a single
producer to multiple consumers; Figure 5 displays the rate
at which a single consumer receives data from multiple pro-
ducers. Figure 6 presents execution time per task for our
ThreadPoolExecutor benchmark.

As can be seen from Figure 3, Hanson’s synchronous
queue and the Java SE 5.0 fair-mode synchronous queue both
perform relatively poorly, taking 4 (Opteron) to 8 (SPARC)
times as long to effect a transfer relative to the faster algo-
rithms. The unfair (stack-based) Java SE 5.0 synchronous
queue in turn incurs twice the overhead of either the fair or
unfair version of our new algorithm, both versions of which
are comparable in performance. The main reason that the
Java SE 5.0 fair-mode queue is so much slower than unfair
is that the fair-mode version uses a fair-mode entry lock to
ensure FIFO wait ordering. This causes pileups that block
the threads that will fulfill waiting threads. This difference
supports our claim that blocking and contention surround-
ing the synchronization state of synchronous queues are
major impediments to scalability.

When a single producer struggles to satisfy multiple con-
sumers (Figure 4), or a single consumer struggles to receive
data from multiple producers (Figure 5), the disadvantages

queues, the amount of spinning is small enough not to be
noticeable.

4. EXPERIMENTAL RESULTS
We present results for several microbenchmarks and one
“real-world” scenario. The microbenchmarks employ
threads that produce and consume as fast as they can; this
represents the limiting case of producer-consumer applica-
tions as the cost to process elements approaches zero. We
consider producer-consumer ratios of 1 : N, N : 1, and N : N.

Our “real-world” scenario instantiates synchronous
queues as the core of the Java SE 5.0 class java.util.concur-
rent.ThreadPoolExecutor, which in turn forms the backbone
of many Java-based server applications. Our benchmark
produces tasks to be run by a pool of worker threads man-
aged by the ThreadPoolExecutor.

We obtained results on a SunFire V40z with four 2.4GHz
AMD Opteron processors and on a SunFire 6800 with 16
1.3GHz Ultra-SPARC III processors. On both machines,
we used Sun’s Java SE 5.0 HotSpot VM and we varied the
level of concurrency from 2 to 64. We tested each bench-
mark with both the fair and unfair (stack-based) versions
of the Java SE 5.0 java.util.concurrent.SynchronousQueue,
Hanson’s synchronous queue, and our new nonblocking
algorithms.

Figure 3: Synchronous handoff: N producers, N consumers. Figure 4: Synchronous handoff: 1 producer, N consumers.

0

1 2 3 5 8 12 18 27 41 62

1 2 3 5 8 12 18 27 41 62

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000

Single producer (Opteron)

0

5,000

10,000

15,000

20,000

25,000

Consumers

SynchronousQueue

New SynchQueue (fair) HansonSQ

New SynchQueueSynchronousQueue (fair)

SynchronousQueue

New SynchQueue (fair) HansonSQ

New SynchQueueSynchronousQueue (fair)

Single producer (SPARC)

Consumers

ns
/t

ra
ns

fe
r

ns
/t

ra
ns

fe
r

0

10,000

20,000

30,000

40,000

50,000

Pairs

1 2 3 4 6 8 12 16 24 32 48 64

SynchronousQueue

New SynchQueue (fair) HansonSQ

Producer-consumer (SPARC)
ns

/t
ra

ns
fe

r

60,000

New SynchQueueSynchronousQueue (fair)

1 2 3 4 6 8 12 16 24 32 48 64

Producer-consumer (Opteron)

0

5,000

10,000

15,000

20,000

25,000

30,000

Pairs

ns
/t

ra
ns

fe
r

SynchronousQueue SynchronousQueue (fair) New SynchQueue

New SynchQueue (fair) HansonSQ

	Background
	Implement ations
	Naive
	Hanson's
	Java 5
	Java 6

	Experimental results

