EFFICIENT ALGORITHMS FOR PRE* ON INTERPROCEDURAL PARALLEL FLOW GRAPH

Yutaka Nagashima
Technische Universität München Computational Science and Engineering Boltzmannstr. 3, Garching bei Munich, BY Germany
yutaka.nagashima@mytum.de

Abstract

keywords: verification, concurrent system, process algebra, transition system, pre, post, interprocedural parallel flow graph, tree automata, Horn clause, Dawling-Gallier procedure, term rewriting.

The time complexity of model-checking algorithms depends on the size of the transition system, where the size of a transition system is defined as the sum of the number of states and the number of transition rules. This paper explains an efficient algorithm for computing pre* of interprocedural parallel flow graphs. ${ }^{1}$

1. INTRODUCTION

1.1. Structure of the paper

In this paper we show the reader the algorithm for pre* on interprocedural parallel flow graphs that was originally described by Javier E., et al. [1]. The definition of pre* (L) is given in Section 3.3 of this paper.

We begin in Section 2 by describing how parallel flow graphs represent concurrent programs.

In section 3, we present the concept of the process algebra, and we explain how to derive the PA-declaration Δ from parallel flow graphs. Furthermore, a transition relation system with 5 inference rules on Δ is presented.

In section 4, we give a description about tree automata that play an important role in our algorithm.

In section 5, a part of the algorithm is shown with the proof in detail.

Finally we conclude this paper by showing an insight about future works.

1.2. Related work

This paper is closely following the paper from Javier E. et al. [1]. In the operational part, so-called Dowling-Gallier procedure [9] is used. Therefore the importance of this paper is not in the development of the algorithm, but in the modifications to the algorithm and its proof in detail.

Due to space limitation, we omit the comparison between the modified version of the algorithm and the original algorithm. For that purpose, however, one can find the original paper from Javier E., et al. [1]

[^0]
2. PARALLEL FLOW GRAPHS

In this paper we represent interprocedural control flow of a parallel program by a parallel flow graph system (FGS). A parallel FGS is a set of graphs with hyperedges, where the nodes represent program points, the edges correspond to assignments ($v:=E x p$) or call statements $\left(\right.$ call $\left.\Pi_{E x p}\right) .^{2}$

Hyperedges of the form $n \rightarrow\left\{n_{1}, n_{2}, \ldots, n_{k}\right\}$ denote parbegin (parallel begin) commands, while those of the form $\left\{n_{1}, n_{2}, \ldots\right.$, $\left.n_{k}\right\} \rightarrow n$ model parend (parallel end) commands. Figure 1 shows an example of parallel FGS. This graph corresponds to the pseudocode in Table 1.

> main() \{ call procedure $1 ;\}$
> procedure 1()$\{x:=1 ; \| y:=2 ;\}$

Table 1: concrete pseudo-code

Figure 1: parallel FGS

[^1]
3. THE PROCESS ALGEBRA AND LABELLED TRANSITION SYSTEM

This section explains how to derive the labelled transition system from a given parallel FGS.

3.1. The process algebra

The process algebra is a specification of labelled transitions from terms to terms. To interpret parallel flow graph systems in terms of the process algebra, we need to know their PA-declaration.

3.2. From parallel FGS to PA-declaration Δ

A parallel flow graph system is translated into PA-declaration by the rules in Table 2^{3}. Note that each transition is now labelled with an action a.

in parallel FGS	in PA-declaration	
for $n \longrightarrow m$	$N \longrightarrow M$	
for $n \xrightarrow[v:=t]{ } m$	$N \xrightarrow{v:=t} M$	
for $n \xrightarrow{\text { call } \Pi_{i}(T)} m$	$N \longrightarrow S T A R T_{i} \bullet M$	
for end node of procedure Π_{i}	$E N D_{i} \longrightarrow \varepsilon$	
for $n \longrightarrow\left\{m_{1}, m_{2}\right\}$	$N \longrightarrow K \bullet M$,	
for $\left\{m_{1}^{\prime}, m_{2}^{\prime}\right\} \longrightarrow m$	$K \longrightarrow M_{1} \\| M_{2}$	
	$M_{1}^{\prime} \longrightarrow \varepsilon$,	
	$M_{2}^{\prime} \longrightarrow \varepsilon$	

Table 2: from parallel FGS to PA-declaration $\Delta[1,3]$
$N \rightarrow M$ is an abbreviation for $N \xrightarrow{\tau} M . \tau$ denotes a "silent" action, which does not execute an assignment nor call a statement. ε in Table 2 denotes an empty process. An empty process represents a successful termination after the execution of the labelled action a. We need to define terms in the process algebra as follows.

Definition 1 (ε-term). The set of ε-terms is defined as follows.

$$
t_{\varepsilon}=\varepsilon\left|\left(t_{\varepsilon_{1}} \bullet t_{\varepsilon_{2}}\right)\right|\left(t_{\varepsilon_{1}} \| t_{\varepsilon_{2}}\right)
$$

Intuitively, ε-terms correspond to processes that do not execute any action $[1,3]$. The set of ε-terms is called IsNil.

Definition $2\left(T_{P A}\right)$. The set of all PA-terms over a given set of process constants X is inductively defined as follows.

$$
t=X\left|t_{\varepsilon}\right|\left(t_{1} \bullet t_{2}\right) \mid\left(t_{1} \| t_{2}\right)
$$

This definition is similar to the definition of [7,35]. The set of PA-terms is denoted by $T_{P A}$.

The rewriting rules over the set of PA-terms are given by the following five rules.

$$
\begin{gathered}
\Delta \quad \frac{(X \xrightarrow{a} t) \in \Delta}{X \xrightarrow{a} t} \\
\text { seqential1 } \frac{t_{1} \xrightarrow{a} t_{1}^{\prime}}{t_{1} \bullet t_{2} \xrightarrow{a} t_{1}^{\prime} \bullet t_{2}}
\end{gathered}
$$

[^2]\[

$$
\begin{gathered}
\text { seqential2 } \frac{t_{2} \xrightarrow{a} t_{2}^{\prime}}{t_{1} \bullet t_{2} \xrightarrow[\rightarrow]{\rightarrow} t_{1} \bullet t_{2}^{\prime}} \quad\left(t_{1} \in \text { IsNil }\right) \\
\text { parallel1 } \frac{t_{1} \xrightarrow{a} t_{1}^{\prime}}{t_{1}\left\|t_{2} \xrightarrow{a} t_{1}^{\prime}\right\| t_{2}} \\
\text { parallel2 } \frac{t_{2} \xrightarrow{a} t_{2}^{\prime}}{t_{1}\left\|t_{2} \xrightarrow{a} t_{1}\right\| t_{2}^{\prime}}
\end{gathered}
$$
\]

3.3. pre*, pre, post, and post*

Definition 3 (pre*, pre, post, post*). Given a language L, The set $\operatorname{pre}^{*}(L), \operatorname{pre}(L), \operatorname{post}(L)$, and post*$(L)$ are defined as follows.

$$
\begin{aligned}
& \operatorname{pre}^{*}(L)=\left\{t \mid t \xrightarrow{*} t^{\prime} \text { for some } t^{\prime} \in L\right\} \\
& \text { pre }(L)=\left\{t \mid t \rightarrow t^{\prime} \text { for some } t^{\prime} \in L\right\} \\
& \operatorname{post}(L)=\left\{t \mid t^{\prime} \rightarrow t \text { for some } t^{\prime} \in L\right\} \\
& \operatorname{post}^{*}(L)=\left\{t \mid t^{\prime} \xrightarrow{*} t \text { for some } t^{\prime} \in L\right\}
\end{aligned}
$$

where t is a PA-term. This paper focuses on the algorithm for pre*.

4. AUTOMATA AND LANGUAGE

The algorithm works on a given automaton. Before the explanation of tree automata, we need the following definitions.

4.1. Least model and ε-closure

Definition 4 (least model). A model M for a program P is said to be its least model if $M \subseteq M^{\prime}$ for every model M of P.

Definition 5 (ε-closed language). A language L is ε-closed if the terms t lies in L if and only if $t_{\varepsilon} \bullet t, t_{\varepsilon} \| t$, and $t \| t_{\varepsilon}$ lie in L. Formally, for all $t_{\varepsilon} \in L$ and $t \in L$

$$
t \in L \Longleftrightarrow t_{\varepsilon} \bullet t \in L \Longleftrightarrow t_{\varepsilon}\|t \in L \Longleftrightarrow t\| t_{\varepsilon} \in L
$$

Definition 6 (ε-closure). The ε-closure of the language L is denoted by \tilde{L} and is defined as follows.

$$
\tilde{L}:=\bigcap\{M \supseteq L \mid M \text { is } \varepsilon \text {-closed }\}
$$

4.2. Tree automata

In literature a tree automaton is defined as a tuple, however, tree automata are seen as sets of Horn-clauses in this paper. Hornclauses are clauses that contain at most one positive literal. Without changing their logical property, Horn-clauses are also expressed as implications. Horn-clauses in this form are called reduction classes.

The automata for a given PA-declaration has the following form. We assume that our automaton \mathcal{A} does not accept ε-term.

1. $q_{i}(X) \Leftarrow$ true
2. $q_{i}(x \bullet y) \Leftarrow q_{j}(x) \wedge q_{k}(y)$
3. $q_{i}(x \bullet y) \Leftarrow q_{i}(x)$
4. $q_{i}(x \| y) \Leftarrow q_{j}(x) \wedge q_{k}(y)$
5. $q_{i}(x \| y) \Leftarrow q_{i}(x)$
6. $q_{i}(x \| y) \Leftarrow q_{i}(y)$
where $0 \leqslant i, j, k \leqslant n$ and we fix q_{0} as the initial state.

$$
L=L_{q_{0}}
$$

Assume that L does not contain ε-term t_{ε}, every automaton that accepts language L can be transformed into a new automaton that accepts the corresponding \tilde{L}.
The only procedure needed for this transformation is to add the following clauses to the original automaton for all states q_{i} and q_{ε}.

1. $q_{\varepsilon}(\varepsilon) \Leftarrow$ true
2. $q_{i}(x \bullet y) \Leftarrow q_{\varepsilon}(x) \wedge q_{i}(y)$
3. $q_{i}(x \| y) \Leftarrow q_{\varepsilon}(x) \wedge q_{i}(y)$
4. $q_{i}(x \| y) \Leftarrow q_{i}(x) \wedge q_{\varepsilon}(y)$

We now the following two facts.
Fact 1 (pre and post are ε-closed). If the language L is ε-closed, then pre*, pre, post, and post* are also ε closed.

Fact 2 (regularity of ε-closure). If the language L is regular, and it does not contain ε-term, then so is its q_{ε}-closure \tilde{L}.

5. THE EFFICIENT ALGORITHM FOR PRE*

Let \mathcal{A} be a tree automaton that does not accept any ε-term and L be the language \mathcal{A} accepts, respectively. \mathcal{A} denotes the new automaton generated by the procedure described above. $\left(\tilde{L}_{q_{i}}\right)_{i=0}^{n}$ is the least model of $\tilde{\mathcal{A}}$. Note that in this paper, we identify L_{ε} and L_{n}.

5.1. The declarative part: defining P_{A}

In the declarative part, we generate logic program P_{A} by adding clauses in Table 3 to $\tilde{\mathcal{A}}$.
The following three propositions are useful to show why we should compute P_{A}. For more details, please find Theorem 1 in the original paper [1].

Proposition 1 (8 conditions that define pre* (L)). The following 8 implications hold.

1. If $\chi \in L_{q_{i}}$, then $\chi \in \operatorname{pre}^{*}\left(L_{q_{i}}\right){ }^{5}$
2. If $((X \xrightarrow{a} t) \in \Delta)$ and $\left(t \in \operatorname{pre}^{*}\left(L_{q_{i}}\right)\right)$,
then $X \in \operatorname{pre}^{*}\left(L_{q_{i}}\right)$.
3. If $\left(\left(q_{i}(x \bullet y) \Leftarrow q_{j}(x) \wedge q_{k}(x)\right) \in \tilde{\mathcal{A}}\right)$
and $\left(t_{1} \in \operatorname{pre}^{*}\left(L_{q_{j}}\right)\right)$ and $\left(t_{2} \in L_{q_{k}}\right)$,
then $t_{1} \bullet t_{2} \in \operatorname{pre}^{*}\left(L_{q_{i}}\right)$.
4. If $\left(\left(q_{i}(x \bullet y) \Leftarrow q_{i}(x)\right) \in \tilde{\mathcal{A}}\right)$
and $\left(t_{1} \in \operatorname{pre}^{*}\left(L_{q_{i}}\right)\right)$,
then $\left(t_{1} \bullet t_{2}\right) \in \operatorname{pre}^{*}\left(L_{q_{i}}\right)$ for $t_{2} \in T_{P A}$.
5. If $\left(t_{1} \in \operatorname{pre}^{*}(\operatorname{IsNil})\right)$ and $\left(t_{2} \in \operatorname{pre}^{*}\left(L_{q_{i}}\right)\right)$,
then $\left(t_{1} \bullet t_{2}\right) \in \operatorname{pre}^{*}\left(L_{q_{i}}\right)$.

[^3]6. If $\left(\left(q_{i}(x \| y) \Leftarrow q_{j}(x) \wedge q_{k}(x)\right) \in \tilde{\mathcal{A}}\right)$
and $\left(t_{1} \in \operatorname{pre}^{*}\left(L_{q_{j}}\right)\right)$ and $\left(t_{2} \in \operatorname{pre}^{*}\left(L_{q_{k}}\right)\right)$,
then $\left(t_{1} \| t_{2}\right) \in \operatorname{pre}^{*}\left(L_{q_{i}}\right)$.
7. If $\left(\left(q_{i}(x \| y) \Leftarrow q_{i}(x) \in \tilde{\mathcal{A}}\right)\right.$
and $\left(t_{1} \in \operatorname{pre}^{*}\left(L_{q_{i}}\right)\right)$,
then $\left(t_{1} \| t_{2}\right) \in \operatorname{pre}^{*}\left(L_{q_{i}}\right)$ for $t_{2} \in T_{P A}$.
8. If $\left(\left(q_{i}(x \| y) \Leftarrow q_{i}(y) \in \tilde{\mathcal{A}}\right)\right.$
and $\left(t_{2} \in \operatorname{pre}^{*}\left(L_{q_{i}}\right)\right)$,
then $\left(t_{1} \| t_{2}\right) \in \operatorname{pre}^{*}\left(L_{q_{i}}\right)$ for $t_{1} \in T_{P A}$.
Proof. We prove the above 8 implications one by one.

1. As the premise, we have the following implication in $\tilde{\mathcal{A}}$.

$$
\tilde{\mathcal{A}} \models q_{i}(\chi)
$$

Because $\xrightarrow{*}$ is reflexive,

$$
\chi \xrightarrow{0} \chi \text { where } \tilde{\mathcal{A}} \models q_{i}(t) .
$$

This concludes $\chi \in \operatorname{pre}^{*}\left(L_{q_{i}}\right)$
2. Because $t_{1} \in \operatorname{pre}^{*}\left(L_{q_{i}}\right)$,

$$
t \xrightarrow{*} t^{\prime} \text { where } \tilde{\mathcal{A}} \models q_{i}\left(t^{\prime}\right) .
$$

And there is the following transition.

$$
t \xrightarrow{*} t^{\prime} \text { where } \tilde{\mathcal{A}} \models q_{i}\left(t^{\prime}\right) .
$$

In combination with the first closure of the premise, we know

$$
X \xrightarrow{a} t \xrightarrow{*} t^{\prime} \text { where } \tilde{\mathcal{A}} \models q_{i}\left(t^{\prime}\right) .
$$

i.e., the process constant X can be rewritten to t through t^{\prime}. Therefore $X \in \operatorname{pre}^{*}\left(L_{q_{i}}\right)$.
3. Because $t_{1} \in \operatorname{pre}^{*}\left(L_{q_{j}}\right)$,

$$
t_{1} \xrightarrow{*} t_{1}^{\prime} \text { where } \tilde{\mathcal{A}} \models q_{j}\left(t_{1}^{\prime}\right) .
$$

By applying the sequential rule 1 to the above transition repeatedly, the following transition is obtained.

$$
t_{1} \bullet t_{2} \xrightarrow{*} t_{1}^{\prime} \bullet t_{2} \text { where } \tilde{\mathcal{A}} \models q_{j}\left(t_{1}^{\prime}\right) .
$$

$$
\begin{aligned}
& p_{i}(\chi) \Leftarrow q_{i}(\chi) \\
& \quad \text { for each } \chi \in\{\text { process constants of } \Delta\} \cup\{\varepsilon\} \\
& p_{i}(X) \Leftarrow p_{i}(t) \\
& \quad \text { for each }(X \xrightarrow{\rightarrow}(t) \in \Delta \\
& p_{i}\left(x_{1} \bullet x_{2}\right) \Leftarrow p_{j}\left(x_{1}\right) \wedge q_{k}\left(x_{2}\right) \\
& \quad \text { for each }\left(q_{i}(x \bullet y) \Leftarrow q_{j}(x) \wedge q_{k}(y)\right) \in \tilde{\mathcal{A}} \\
& p_{i}\left(x_{1} \bullet x_{2}\right) \Leftarrow p_{i}\left(x_{1}\right) \\
& \quad \text { for each }\left(q_{i}(x \bullet y) \Leftarrow q_{i}(x)\right) \in \tilde{\mathcal{A}} \\
& p_{i}\left(x_{1} \bullet x_{2}\right) \Leftarrow p_{\varepsilon}\left(x_{1}\right) \wedge p_{i}\left(x_{2}\right) \\
& p_{i}\left(x_{1} \| x_{2}\right) \Leftarrow p_{j}\left(x_{1}\right) \wedge q_{k}\left(x_{2}\right) \\
& \quad \text { for each }\left(q_{i}(x \| y) \Leftarrow q_{j}(x) \wedge q_{k}(y)\right) \in \tilde{\mathcal{A}} \\
& p_{i}\left(x_{1} \| x_{2}\right) \Leftarrow p_{i}\left(x_{1}\right) \\
& \quad \text { for each }\left(q_{i}(x \| y) \Leftarrow q_{i}(x)\right) \in \tilde{\mathcal{A}} \\
& p_{i}\left(x_{1} \| x_{2}\right) \Leftarrow p_{i}\left(x_{2}\right) \\
& \quad \text { for each }\left(q_{i}(x \| y) \Leftarrow q_{i}(y)\right) \in \tilde{\mathcal{A}} \\
& \hline
\end{aligned}
$$

Table 3: defining predicate

Because $t_{2} \in L_{q_{k}}$,

$$
\tilde{\mathcal{A}} \mid=q_{k}\left(t_{2}\right)
$$

As the premise, we have the following implication in $\tilde{\mathcal{A}}$.

$$
\left(q_{i}(x \bullet y) \Leftarrow q_{j}(x) \wedge q_{k}(y)\right) \in \tilde{\mathcal{A}}
$$

Substitute $x=t_{1}^{\prime}, y=t_{2}$, respectively.
Since the premise of the implication in $\tilde{\mathcal{A}}$ holds, the conclusion also holds, i.e.,

$$
\tilde{\mathcal{A}} \models q_{i}\left(t_{1}^{\prime} \bullet t_{2}\right)
$$

Therefore the transition is now expressed as follows,

$$
t_{1} \bullet t_{2} \xrightarrow{*} t_{1}^{\prime} \bullet t_{2} \text { where } \tilde{\mathcal{A}} \mid=q_{i}\left(t_{1}^{\prime} \bullet t_{2}\right)
$$

This concludes $t_{1} \bullet t_{2} \in$ pre $^{*}\left(L_{q_{i}}\right)$.
4. Because $t_{1} \in \operatorname{pre}^{*}\left(L_{q_{i}}\right)$,

$$
t_{1} \xrightarrow{*} t_{1}^{\prime} \text { where } \tilde{\mathcal{A}} \mid=q_{i}\left(t_{1}^{\prime}\right) .
$$

By applying the sequential rule 1 to the above transition repeatedly, the following transition is obtained.

$$
t_{1} \bullet t_{2} \xrightarrow{*} t_{1}^{\prime} \bullet t_{2} \text { where } \tilde{\mathcal{A}} \models q_{i}\left(t_{1}^{\prime}\right)
$$

As the premise, we have the following implication in $\tilde{\mathcal{A}}$.

$$
\left(q_{i}(x \bullet y) \Leftarrow q_{i}(x)\right) \in \tilde{\mathcal{A}}
$$

Substitute $x=t_{1}^{\prime}, y=t_{2}$, respectively.
Since the premise of the implication in $\tilde{\mathcal{A}}$ holds, the conclusion also holds, i.e.,

$$
\tilde{\mathcal{A}} \models q_{i}\left(t_{1}^{\prime} \bullet t_{2}\right)
$$

Therefore the transition is now expressed as follows,

$$
t_{1} \bullet t_{2} \xrightarrow{*} t_{1}^{\prime} \bullet t_{2} \text { where } \tilde{\mathcal{A}} \mid=q_{i}\left(t_{1}^{\prime} \bullet t_{2}\right) .
$$

This concludes $t_{1} \bullet t_{2} \in$ pre $^{*}\left(L_{q_{i}}\right)$.
5. Because $t_{1} \in$ pre $^{*}(\mathrm{IsNil})$,

$$
t_{1} \xrightarrow{*} t_{\varepsilon} \text { where } \tilde{\mathcal{A}}=q_{\varepsilon}\left(t_{\varepsilon}\right) .
$$

Because $t_{2} \in \operatorname{pre}^{*}\left(L_{q_{i}}\right)$,

$$
t_{2} \xrightarrow{*} t_{2}^{\prime} \text { where } \tilde{\mathcal{A}} \models q_{i}\left(t_{2}^{\prime}\right)
$$

Since we restrict our algorithm to an automaton that defines ε-closed languages,

$$
t_{2}^{\prime} \in L_{q_{i}} \Longleftrightarrow t_{\varepsilon} \bullet t_{2}^{\prime} \in L_{q_{i}} \Longleftrightarrow \tilde{\mathcal{A}}=q_{i}\left(t_{\varepsilon} \bullet t_{2}^{\prime}\right)
$$

By applying the sequential rule 1 to the transition of t_{1} repeatedly, the following transitions are obtained.

$$
\begin{gathered}
t_{1} \bullet t_{2}^{\prime} \xrightarrow{*} t_{\varepsilon} \bullet t_{2}^{\prime} \text { where } \tilde{\mathcal{A}} \mid=q_{i}\left(t_{\varepsilon} \bullet t_{2}^{\prime}\right) \\
t_{1} \bullet t_{2} \xrightarrow{*} t_{\varepsilon} \bullet t_{2} \text { where } \tilde{\mathcal{A}}=q_{i}\left(t_{\varepsilon}\right) \text { and } t_{2} \in T_{P A}
\end{gathered}
$$

By applying the sequential rule 2 to the the transition of t_{2} repeatedly, the following transition is obtained.

$$
t_{\varepsilon} \bullet t_{2} \xrightarrow{*} t_{\varepsilon} \bullet t_{2}^{\prime} \text { where } \tilde{\mathcal{A}} \models q_{i}\left(t_{\varepsilon} \bullet t_{2}^{\prime}\right)
$$

By combining the obtained transitions so far, we know

$$
t_{1} \bullet t_{2} \xrightarrow{*} t_{\varepsilon} \bullet t_{2} \xrightarrow{*} t_{\varepsilon} \bullet t_{2}^{\prime} \text { where } \tilde{\mathcal{A}} \models q_{i}\left(t_{\varepsilon} \bullet t_{2}^{\prime}\right) .
$$

This concludes $t_{1} \bullet t_{2} \in$ pre $^{*}\left(L_{q_{i}}\right)$.
6. Because $t_{1} \in \operatorname{pre}^{*}\left(L_{q_{j}}\right)$,

$$
t_{1} \xrightarrow{*} t_{1}^{\prime} \text { where } \tilde{\mathcal{A}} \models q_{j}\left(t_{1}^{\prime}\right) .
$$

Because $t_{2} \in \operatorname{pre}^{*}\left(L_{q_{k}}\right)$,

$$
t_{2} \xrightarrow{*} t_{2}^{\prime} \text { where } \tilde{\mathcal{A}} \models q_{k}\left(t_{2}^{\prime}\right) .
$$

As the premise, we have the following implication in $\tilde{\mathcal{A}}$,

$$
\left(q_{i}(x \| y) \Leftarrow q_{j}(x) \wedge q_{k}(y)\right) \in \tilde{\mathcal{A}}
$$

Substitute $x=t_{1}^{\prime}, y=t_{2}^{\prime}$, respectively.
Since the premise of the implication in $\tilde{\mathcal{A}}$ holds, the conclusion also holds, i.e.,

$$
\tilde{\mathcal{A}} \mid=q_{i}\left(t_{1}^{\prime} \| t_{2}^{\prime}\right)
$$

By applying the parallel rule 1 to the transition of the left component a number of times, and the parallel rule 2 to the transition of the right component a number of times, the following transitions are obtained.

$$
t_{1}\left\|t_{2} \xrightarrow{*} t_{1}^{\prime}\right\| t_{2}^{\prime} \text { where } \tilde{\mathcal{A}} \models q_{i}\left(t_{1}^{\prime} \| t_{2}^{\prime}\right)
$$

This concludes $t_{1} \| t_{2} \in \operatorname{pre}^{*}\left(L_{q_{i}}\right)$.
7. Because $t_{1} \in \operatorname{pre}^{*}\left(L_{q_{i}}\right)$,

$$
t_{1} \xrightarrow{*} t_{1}^{\prime} \text { where } \tilde{\mathcal{A}} \models q_{i}\left(t_{1}^{\prime}\right)
$$

As the premise, we have the following implication in $\tilde{\mathcal{A}}$.

$$
\left(q_{i}(x \| y) \Leftarrow q_{i}(x)\right) \in \tilde{\mathcal{A}}
$$

Substitute $x=t_{1}^{\prime}, y=t_{2}$, respectively.
Since the premise of the implication in $\tilde{\mathcal{A}}$ holds, the conclusion also holds, i.e.,

$$
\tilde{\mathcal{A}} \mid=q_{i}\left(t_{1}^{\prime} \| t_{2}\right)
$$

By applying the parallel rule 1 to the transition of the left component, repeatedly, the following transition is obtained.

$$
t_{1}\left\|t_{2} \xrightarrow{*} t_{1}^{\prime}\right\| t_{2} \text { where } \tilde{\mathcal{A}}=q_{i}\left(t_{1}^{\prime} \| t_{2}\right)
$$

This concludes $t_{1} \| t_{2} \in \operatorname{pre}^{*}\left(L_{q_{i}}\right)$.
8. Because $t_{2} \in \operatorname{pre}^{*}\left(L_{q_{i}}\right)$,

$$
t_{2} \xrightarrow{*} t_{2}^{\prime} \text { where } \tilde{\mathcal{A}}=q_{i}\left(t_{2}^{\prime}\right)
$$

As the premise, we have the following implication in $\tilde{\mathcal{A}}$.

$$
\left(q_{i}(x \| y) \Leftarrow q_{i}(y)\right) \in \tilde{\mathcal{A}}
$$

Substitute $x=t_{1}, y=t_{2}^{\prime}$, respectively.
Since the premise of the implication in $\tilde{\mathcal{A}}$ holds, the conclusion also holds, i.e.,

$$
\tilde{\mathcal{A}} \mid=q_{i}\left(t_{1} \| t_{2}^{\prime}\right)
$$

By applying the parallel rule 2 to the transition of the right component, repeatedly, the following transition is obtained.

$$
t_{1}\left\|t_{2} \xrightarrow{*} t_{1}\right\| t_{2}^{\prime} \text { where } \tilde{\mathcal{A}}=q_{i}\left(t_{1} \| t_{2}^{\prime}\right) .
$$

This concludes $t_{1} \| t_{2} \in \operatorname{pre}^{*}\left(L_{q_{i}}\right)$.

Proposition 2 (smallest). Let $\left(S_{i}\right)_{i=0}^{n}$ be an arbitrary set that satisfy the following 8 conditions where $n+1$ is the number of states in the new automaton. Then, pre* $\left(\left(L_{q_{i}}\right)_{i=0}^{n}\right) \sqsubseteq\left(S_{i}\right)_{i=0}^{n}$, i.e., pre* $\left(L_{q_{i}}\right)$ is the smallest set S_{i} satisfying the following 8 conditions ${ }^{6}$. Note that we identify S_{ε} and S_{n}.

1. If $\chi \in L_{q_{i}}$, then $\chi \in S_{i}$.
2. If $((X \xrightarrow{a} t) \in \Delta)$ and $\left(t \in S_{i}\right)$, then $X \in S_{i}$.
3. If $\left(\left(q_{i}(x \bullet y) \Leftarrow q_{j}(x) \wedge q_{k}(x)\right) \in \tilde{\mathcal{A}}\right)$
and $\left(t_{1} \in S_{j}\right)$ and $\left(t_{2} \in L_{q_{k}}\right)$,
then $t_{1} \bullet t_{2} \in S_{i}$.
4. If $\left(\left(q_{i}(x \bullet y) \Leftarrow q_{i}(x)\right) \in \tilde{\mathcal{A}}\right)$
and $\left(t_{1} \in S_{i}\right)$,
then $\left(t_{1} \bullet t_{2}\right) \in S_{i}$ for $t_{2} \in T_{P A}$.
5. If $\left(t_{1} \in S_{\varepsilon}\right)$ and $\left(t_{2} \in S_{i}\right)$, then $\left(t_{1} \bullet t_{2}\right) \in S_{i}$.
6. If $\left(\left(q_{i}(x \| y) \Leftarrow q_{j}(x) \wedge q_{k}(x)\right) \in \tilde{\mathcal{A}}\right)$
and $\left(t_{1} \in S_{j}\right)$ and $\left(t_{2} \in S_{k}\right)$,
then $\left(t_{1} \| t_{2}\right) \in S_{i}$.
7. If $\left(\left(q_{i}(x \| y) \Leftarrow q_{i}(x) \in \tilde{\mathcal{A}}\right)\right.$ and $\left(t_{1} \in S_{i}\right)$, then $\left(t_{1} \| t_{2}\right) \in S_{i}$ for $t_{2} \in T_{P A}$.
8. If $\left(\left(q_{i}(x \| y) \Leftarrow q_{i}(y) \in \tilde{\mathcal{A}}\right)\right.$
and $\left(t_{2} \in S_{i}\right)$, then $\left(t_{1} \| t_{2}\right) \in S_{i}$ for $t_{1} \in T_{P A}$.

Proof. Let S_{0}, \ldots, S_{n} be arbitrary sets satisfying the 8 conditions, where $n+1$ is the number of states of the newly generated ε-closed automaton $\tilde{\mathcal{A}}$. We prove this proposition by showing that for every term t and for every $i=0, \ldots, n$ if $t \in \operatorname{pre}^{*}\left(L_{q_{i}}\right)$ then $t \in S_{i}$. Formally,

$$
\text { Goal1 } \forall k, i, t, t^{\prime}: \quad\left(\left(t \xrightarrow{k} t^{\prime} \in L_{q_{i}}\right) \Rightarrow\left(t \in S_{i}\right)\right)
$$

We use double induction to prove this implication. ${ }^{7}$ A double induction hypothesis consists of two levels of inductions. In the outer level, we use an induction on the length of transitions. In the inner level, we use an induction on the size of term t.

The base case for the outer level of induction is as follows.

$$
\mathrm{BC} 1 \quad \forall i, t, t^{\prime}: \quad\left(\left(t \xrightarrow{0} t^{\prime} \in L_{q_{i}}\right) \Rightarrow\left(t \in S_{i}\right)\right)
$$

Note that BC1 is not yet proved. It is necessary to prove BC1 in the inner level of induction.

Similarly to BC1, we assume an induction hypothesis for the outer level of induction.

$$
\text { IH1 } \forall k \leq m, i, t, t^{\prime}: \quad\left(\left(t \xrightarrow{k} t^{\prime} \in L_{q_{i}}\right) \Rightarrow\left(t \in S_{i}\right)\right)
$$

The whole proof is done by showing that under this assumption (IH1), the following induction step (IS1) holds.

$$
\text { IS1 } \forall i, t, t^{\prime}: \quad\left(\left(t \xrightarrow{m+1} t^{\prime} \in L_{q_{i}}\right) \Rightarrow\left(t \in S_{i}\right)\right)
$$

[^4]Note that similarly to the case for BC 1 it is necessary to use one more induction on the size of term t in the second level.

Therefore the whole proof for proposition 2 consists of 1 in duction on the length of transitions in the first level and 2 inductions on the size of terms t in the second level.

We start with the proof of BC 1 . To prove $\mathrm{BC} 1, \mathrm{An}$ induction is applied on the size of term $t .{ }^{8}$ The base case is as follows.

$$
\mathrm{BC} 2_{1} \quad \forall i, t, t^{\prime}: \quad\left(\left(t \xrightarrow{0} t^{\prime} \in L_{q_{i}}\right) \wedge(|t|=1) \Rightarrow\left(t \in S_{i}\right)\right)
$$

Because $|t|=1, t=\chi$. Since $\xrightarrow{0}$ is the identity, $t=t^{\prime}$. Therefore $\mathrm{BC} 2_{1}$ is expressed as follows.

$$
\mathrm{BC} 2_{1}^{\prime} \quad \forall i, t: \quad\left(\left(\chi \in L_{q_{i}}\right) \Rightarrow\left(\chi \in S_{i}\right)\right)
$$

This coincides with the first condition. Therefore $\mathrm{BC} 2_{1}$ holds. To prove BC 1 from $\mathrm{BC} 22_{1}$, we introduce the following induction hypothesis ($\mathrm{IH} 2_{1}$).
$\mathrm{IH} 2_{1} \quad \forall i, t, t^{\prime}: \quad\left(\left(t \xrightarrow{0} t^{\prime} \in L_{q_{i}}\right) \wedge(|t| \leq n \in \mathbb{N}) \Rightarrow\left(t \in S_{i}\right)\right)$
Since $\xrightarrow{0}$ is the identity, $t=t^{\prime}$. Therefore $\mathrm{BC} 2_{1}$ is expressed as follows.

$$
\mathrm{IH} 2_{1}^{\prime} \quad \forall i, t \quad\left(\left(t \xrightarrow{0} t \in L_{q_{i}}\right) \wedge(|t| \leq n \in \mathbb{N}) \Rightarrow\left(t \in S_{i}\right)\right)
$$

Our current aim is to prove the following induction step ($\mathrm{IS} 2_{1}$) using $\mathrm{IH} 2_{1}$.

$$
\mathrm{IS} 2_{1} \quad \forall i, t \quad\left(\left(t \xrightarrow{0} t \in L_{q_{i}}\right) \wedge(|t|=n+1) \Rightarrow\left(t \in S_{i}\right)\right)
$$

All terms of size $n+1$ have one of the following forms.

$$
\begin{aligned}
& t=t_{1} \bullet t_{2} \\
& t=t_{1} \| t_{2}
\end{aligned}
$$

where $\left|t_{1}\right| \leq n \in \mathbb{N}$ and $\left|t_{2}\right| \leq n \in \mathbb{N}$. Remember that the automaton $\tilde{\mathcal{A}}$ may have only the following clauses.

1. $q_{i}(\chi) \Leftarrow$ true
2. $q_{i}(x \bullet y) \Leftarrow q_{j}(x) \wedge q_{k}(y)$
3. $q_{i}(x \bullet y) \Leftarrow q_{i}(x)$
4. $q_{i}(x \| y) \Leftarrow q_{j}(x) \wedge q_{k}(y)$
5. $q_{i}(x \| y) \Leftarrow q_{i}(x)$
6. $q_{i}(x \| y) \Leftarrow q_{i}(y)$
7. $q_{\varepsilon}(\varepsilon) \Leftarrow$ true
8. $q_{i}(x \bullet y) \Leftarrow q_{\varepsilon}(x) \wedge q_{i}(y)$
9. $q_{i}(x \| y) \Leftarrow q_{\varepsilon}(x) \wedge q_{i}(y)$
10. $q_{i}(x \| y) \Leftarrow q_{i}(x) \wedge q_{\varepsilon}(y)$

If t is a sequential composition of two smaller terms t_{1} and t_{2}, one of the following conditions holds.

$$
\text { Case 1: }\left(q_{i}(x \bullet y) \Leftarrow q_{j}(x)_{\tilde{\sim}} \wedge q_{k}(y)\right) \in \tilde{\mathcal{A}}
$$

$$
\text { and } \tilde{\mathcal{A}}=q_{j}\left(t_{1}\right) \text { and } \tilde{\mathcal{A}}=q_{k}\left(t_{2}\right) \text {. }
$$

Case 2: $\left(q_{i}(x \bullet y) \Leftarrow q_{i}(x)\right) \in \tilde{\mathcal{A}}$ and $\tilde{\mathcal{A}} \models q_{i}\left(t_{1}\right)$.

[^5]Case 3: $\left(q_{i}(x \bullet y) \Leftarrow q_{\varepsilon}(x) \wedge q_{i}(y)\right) \in \tilde{\mathcal{A}}$
and $\tilde{\mathcal{A}} \models q_{\varepsilon}\left(t_{1}\right)$ and $\tilde{\mathcal{A}} \models q_{i}\left(t_{2}\right)$.
In case 1,

$$
\begin{aligned}
& \left(q_{i}(x \bullet y) \Leftarrow q_{j}(x) \wedge q_{k}(y)\right) \in \tilde{\mathcal{A}} \\
& \text { and } \tilde{\mathcal{A}} \models q_{j}\left(t_{1}\right) \text { and } \tilde{\mathcal{A}} \models q_{k}\left(t_{2}\right) .
\end{aligned}
$$

Therefore

$$
t_{2} \in L_{q_{k}}
$$

Because of $\mathrm{IH} 2_{1}^{\prime}$,

$$
t_{1} \in S_{j} .
$$

This coincides with the premise of the third condition. Therefore

$$
t_{1} \bullet t_{2} \in S_{i}
$$

This concludes that IS2 2_{1} holds in this case.
In case 2,

$$
\left(q_{i}(x \bullet y) \Leftarrow q_{i}(x)\right) \in \tilde{\mathcal{A}} \text { and } \tilde{\mathcal{A}} \models q_{i}\left(t_{1}\right) .
$$

Because of $\mathrm{IH} 2_{1}^{\prime}$,

$$
t_{1} \in S_{i} .
$$

This coincides with the premise of the fourth condition. Therefore

$$
t_{1} \bullet t_{2} \in S_{i}
$$

where $t_{2} \in T_{P A}$. This concludes that $\mathrm{IS} 2_{1}$ holds in this case.
Due to space limitation the proof for case 3 is omitted.
If t is a parallel composition of two smaller terms, at least one of the following conditions holds.
Case 1: $\left(q_{i}(x \| y) \Leftarrow q_{j}(x) \wedge q_{k}(y)\right) \in \tilde{\mathcal{A}}$ and $\tilde{\mathcal{A}} \models q_{j}\left(t_{1}\right)$ and $\tilde{\mathcal{A}} \models q_{k}\left(t_{2}\right)$.
Case 2: $\left(q_{i}(x \| y) \Leftarrow q_{i}(x)\right) \in \tilde{\mathcal{A}}$ and $\tilde{\mathcal{A}} \models q_{i}\left(t_{1}\right)$.
Case 3: $\left(q_{i}(x \| y) \Leftarrow q_{i}(y)\right) \in \tilde{\mathcal{A}}$ and $\tilde{\mathcal{A}} \models q_{i}\left(t_{2}\right)$.
Case 4: $\left.q_{i}(x \| y) \Leftarrow q_{\varepsilon}(x) \wedge q_{i}(y)\right) \in \tilde{\mathcal{A}}$ and $\tilde{\mathcal{A}} \models q_{\varepsilon}\left(t_{1}\right)$ and $\tilde{\mathcal{A}} \models q_{i}\left(t_{2}\right)$.
Case 5: $\left.q_{i}(x \| y) \Leftarrow q_{i}(x) \wedge q_{\varepsilon}(y)\right) \in \tilde{\mathcal{A}}$ and $\tilde{\mathcal{A}} \models q_{i}\left(t_{1}\right)$ and $\tilde{\mathcal{A}} \models q_{\varepsilon}\left(t_{2}\right)$.
In case 1 ,

$$
\begin{aligned}
& \left(q_{i}\left(t_{1} \| t_{2}\right) \Leftarrow q_{j}\left(t_{1}\right) \wedge q_{k}\left(t_{2}\right)\right) \in \tilde{\mathcal{A}} \\
& \quad \text { and } \tilde{\mathcal{A}} \models q_{j}\left(t_{1}\right) \text { and } \tilde{\mathcal{A}} \models q_{k}\left(t_{2}\right) .
\end{aligned}
$$

Therefore

$$
t_{1} \in L_{q_{j}} \text { and } t_{2} \in L_{q_{k}}
$$

Because of $\mathrm{IH} 2_{1}^{\prime}$,

$$
t_{1} \in S_{j} \text { and } t_{2} \in S_{k} .
$$

This coincides with the premise of the sixth condition. Therefore

$$
t_{1} \| t_{2} \in S_{i}
$$

This concludes that $\mathrm{IS} 2_{1}$ holds in this case.
In case 2 ,

$$
\left(q_{i}(x \| y) \Leftarrow q_{i}(x)\right) \in \tilde{\mathcal{A}} \text { and } \tilde{\mathcal{A}} \models q_{i}\left(t_{1}\right) .
$$

Therefore

$$
t_{1} \in L_{q_{i}} .
$$

Because of $\mathrm{IH} 2_{1}^{\prime}$,

$$
t_{1} \in S_{i}
$$

This coincides with the premise of the seventh condition. Therefore

$$
t_{1} \| t_{2} \in S_{i}
$$

This concludes that $\operatorname{IS} 2_{1}$ holds in this case. In case 3,

$$
\left(q_{i}(x \| y) \Leftarrow q_{i}(y)\right) \in \tilde{\mathcal{A}} \text { and } \tilde{\mathcal{A}} \models q_{i}(y) .
$$

Therefore

$$
t_{2} \in L_{q_{i}}
$$

Because of IH_{2}^{\prime},

$$
t_{2} \in S_{i}
$$

This coincides with the premise of the eighth condition. Therefore

$$
t_{1} \| t_{2} \in S_{i}
$$

This concludes that IS2 ${ }_{1}$ holds in this case.
Due to space limitation the proof for case 4 is omitted.
Due to space limitation the proof for case 5 is omitted.
Therefore, we know that IS 2_{1} holds in any possible case if t is a parallel composition of smaller terms. From $\mathrm{BC} 2_{1}, \mathrm{IH} 2_{1}$ and IS_{1}, we know that BC 1 holds.
Now we prove that IS1 holds under IH1. To prove IS1, an induction is applied on the size of term t. The base case is as follows.
$\mathrm{BC} 2_{2} \quad \forall i, t, t^{\prime}: \quad\left(\left(t \xrightarrow{m+1} t^{\prime} \in L_{q_{i}}\right) \wedge(|t|=1) \Rightarrow\left(t \in S_{i}\right)\right)$
Because $|t|=1, t=\chi$. However, an empty process cannot be reduced further. Therefore $t=X$, and $\mathrm{BC} 2_{2}$ is expressed as follows.

$$
\mathrm{BC} 2_{2}^{\prime} \quad \forall i, t^{\prime \prime}: \quad\left(\left(X \xrightarrow{m+1} t^{\prime \prime} \in L_{q_{i}}\right) \Rightarrow\left(X \in S_{i}\right)\right)
$$

Because $\mathrm{BC} 2_{2}^{\prime}$ is expressed by an implication, we can assume the following transition as its premise.

$$
\forall i, t^{\prime}, t^{\prime \prime} \quad X \rightarrow t^{\prime} \xrightarrow{m} t^{\prime \prime} \in L_{q_{i}}
$$

Due to IH1,

$$
\left(t^{\prime} \xrightarrow{m} t^{\prime \prime} \in L_{q_{i}}\right) \Rightarrow\left(t^{\prime} \in S_{i}\right) .
$$

Therefore

$$
t^{\prime} \in S_{i}
$$

Accordingly, the first transition of the assumption is expressed as follows.

$$
\forall i, t^{\prime} \quad X \rightarrow t^{\prime} \in S_{i}
$$

This coincides with the premise of the second condition. Therefore

$$
X \in S_{i}
$$

This concludes that BC_{2}^{\prime} holds.
To prove IS1 from IH 1 and $\mathrm{BC} 2_{2}^{\prime}$, we introduce the following induction hypothesis $\left(\mathrm{IH}_{2}\right)$.

$$
\mathrm{IH} 2_{2} \quad \forall i, t, t^{\prime}:\left(\left(t \xrightarrow{m+1} t^{\prime} \in L_{q_{i}}\right) \wedge(|t| \leq n \in \mathbb{N}) \Rightarrow\left(t \in S_{i}\right)\right.
$$

Our current aim is to prove the following induction step (IS_{2}) using $\mathrm{IH} 2_{1}$.
$\mathrm{IS}_{2} \quad \forall i, t, t^{\prime}:\left(\left(t \xrightarrow{m+1} t^{\prime} \in L_{q_{i}}\right) \wedge(|t|=n+1) \Rightarrow\left(t \in S_{i}\right)\right)$
Every term of size $n+1$ has one of the following forms.

$$
\begin{aligned}
& t=t_{1} \bullet t_{2} \\
& t=t_{1} \| t_{2}
\end{aligned}
$$

where $\left|t_{1}\right| \leq n \in \mathbb{N}$ and $\left|t_{2}\right| \leq n \in \mathbb{N}$. Remember that the automaton $\tilde{\mathcal{A}}$ may have the above mentioned 10 clauses. The premise of $\mathrm{IS} 2_{2}$ has to have one of the following forms.
Case A: $\forall i, t_{1}, t_{2}, t_{1}^{\prime} \quad t_{1} \bullet t_{2} \xrightarrow{m+1} t_{1}^{\prime} \bullet t_{2} \in L_{q_{i}}$ where $t_{1} \xrightarrow{m+1} t_{1}^{\prime}$ and t_{2} does not change on any path from $t_{1} \bullet t_{2}$ to $t_{1}^{\prime} \bullet t_{2}$.
Case B: $\forall i, t_{1}, t_{2}, t_{2}^{\prime} \quad t_{1} \bullet t_{2} \xrightarrow{m+1} t_{1} \bullet t_{2}^{\prime} \in L_{q_{i}}$ where $t_{2} \xrightarrow{m+1} t_{2}^{\prime}$ and $t_{1} \in L_{q_{\varepsilon}}(=\mathrm{IsNil})$ and t_{1} does not change on any path from $t_{1} \bullet t_{2}^{\prime}$ to $t_{1} \bullet t_{2}^{\prime}$.
Case C: $\forall i, t_{1}, t_{2}, t_{1}^{\prime}, t_{2}^{\prime} \quad t_{1} \bullet t_{2} \xrightarrow{m+1} t_{1}^{\prime} \bullet t_{2}^{\prime} \in L_{q_{i}}$
where $t_{1} \xrightarrow{k} t_{1}^{\prime} \in L_{q_{\varepsilon}}(=\mathrm{IsNil})$,
and $t_{2} \xrightarrow{m-k+1} t_{2}^{\prime}$,
for some k s.t. $1 \leq k \leq m$.
The detailed proof is omitted here due to space limitation. By using case distinctions, one can conclude that $\mathrm{IS} 2_{2}$ holds for all cases.
Similarly to the case of sequential composition, one can prove $\mathrm{IS} 2_{2}$ for parallel composition. Therefore $\mathrm{IS} 2_{2}$ holds. Since $\mathrm{IS} 2_{2}$ holds, IS1 also holds under IH1. This concludes the proof of proposition 2.

Proposition $3\left(\operatorname{pre}^{*}\left(L_{q_{i}}\right)\right.$). The sets $\operatorname{pre}^{*}\left(L_{q_{i}}\right)($ for $i=\varepsilon, 0,1, \ldots, n)$ are the smallest sets satisfying the 8 conditions.

Proof. Directly from the previous propositions.

5.2. The Operational Part: $P_{A} \mapsto S a t P_{A} \mapsto \operatorname{Red} P_{A}$

Due to space limitation, we focuse on the declarative part of the original algorithm in this paper. One can find the operational part of the original algorothm in [1].

6. CONCLUSIONS

We have modified the algorithm in [1] and provided the detailed proof of it. This algorithm is supposed to enable the efficient computation of pre*.

6.1. Open problems and future works

Similarly to what is shown for pre* in this paper, the algorithm in [1] requires modifications in the declarative part for pre, post, and post* as well. Furthermore the detailed proof of operational part is expected to be done.

7. REFERENCES

[1] Javier Esparza and Andreas Podelski "Efficient Algorithms for pre* and post* on Interprocedural Parallel Flow Graphs"
[2] Luca Aceto, Wan Fokkink, and Chris Verhoef "Structural Operational Semantics"
[3] Wan Fokkink "Introduction to Process Algebra"
[4] C.A.R.Hoare "Communicating Sequential Processes"
[5] J.C.M Baeten "A Brief History of Process Algebra"
[6] Christel Baier and Joost-Pieter Katoen "Principle of Model Checking"
[7] Franz Baader and Tobias Nipkow "'Term Rewriting and All That"
[8] Uwe Schöning "Logic for Computer Scientists"
[9] William F. Dowling and Jean H. Gallier "Linear-time algorithms for testing the satisfiability of propositional horn formulae"
[10] Joost-Pieter Katoen "The State Explosion Problem Lecture 5a of Model Checking"

[^0]: ${ }^{1}$ I warmly thank Dr. Alexander Malkis at the Technische Universität München for his valuable advice and help

[^1]: ${ }^{2}$ Strictly speaking, a parallel FGS is a set of hypergraphs since it contains hyperedges. However, we choose the word "graph" since the hyperedges in parallel FGS are expressed by sets of edges, then it may be considered as a set of graphs.

[^2]: ${ }^{3}$ As usual, $\|$ represents the parallel composition and \bullet denotes the sequential composition in this paper

[^3]: ${ }^{4}$ Note that in these additional clauses, the q_{i} s in premise and in conclusion have to have the same index i.
 ${ }^{5} \chi$ is either an empty process or a process constant

[^4]: ${ }^{6} \sqsubseteq$ is the component-wise ordering.
 ${ }^{7}$ It is possible to avoid the use of double induction. For example, one can use induction on lexicographic order.

[^5]: ${ }^{8}$ In this paper the size of a terms t is defined as the number of its leaves when it is seen as a tree. And the size is denoted by $|t|$. For example, the size of term $\left(t_{1} \bullet t_{2}\right) \| t_{3}$ is not 5 but 3 .

