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ABSTRACT
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The time complexity of model-checking algorithms depends
on the size of the transition system, where the size of a transition
system is defined as the sum of the number of states and the num-
ber of transition rules. This paper explains an efficient algorithm
for computing pre* of interprocedural parallel flow graphs. 1

1. INTRODUCTION

1.1. Structure of the paper

In this paper we show the reader the algorithm for pre* on inter-
procedural parallel flow graphs that was originally described by
Javier E., et al. [1]. The definition of pre*(L) is given in Section
3.3 of this paper.

We begin in Section 2 by describing how parallel flow graphs
represent concurrent programs.

In section 3, we present the concept of the process algebra, and
we explain how to derive the PA-declaration ∆ from parallel flow
graphs. Furthermore, a transition relation system with 5 inference
rules on ∆ is presented.

In section 4, we give a description about tree automata that
play an important role in our algorithm.

In section 5, a part of the algorithm is shown with the proof in
detail.

Finally we conclude this paper by showing an insight about
future works.

1.2. Related work

This paper is closely following the paper from Javier E. et al. [1].
In the operational part, so-called Dowling-Gallier procedure [9] is
used. Therefore the importance of this paper is not in the devel-
opment of the algorithm, but in the modifications to the algorithm
and its proof in detail.

Due to space limitation, we omit the comparison between the
modified version of the algorithm and the original algorithm. For
that purpose, however, one can find the original paper from Javier
E., et al. [1]

1I warmly thank Dr. Alexander Malkis at the Technische Universität
München for his valuable advice and help

2. PARALLEL FLOW GRAPHS

In this paper we represent interprocedural control flow of a parallel
program by a parallel flow graph system (FGS). A parallel FGS is a
set of graphs with hyperedges, where the nodes represent program
points, the edges correspond to assignments (v := Exp) or call
statements (call ΠExp).2

Hyperedges of the form n→ {n1, n2, . . . , nk} denote parbe-
gin (parallel begin) commands, while those of the form {n1, n2, . . . ,
nk} → n model parend (parallel end) commands. Figure 1 shows
an example of parallel FGS. This graph corresponds to the pseudo-
code in Table 1.

main() { call procedure1;}
procedure1() {x := 1; ‖ y := 2; }

Table 1: concrete pseudo-code

s0

e0

p11

s1

p21

p12 p22

e1

call Π1 x := 1 y := 2

Figure 1: parallel FGS

2Strictly speaking, a parallel FGS is a set of hypergraphs since it con-
tains hyperedges. However, we choose the word “graph” since the hy-
peredges in parallel FGS are expressed by sets of edges, then it may be
considered as a set of graphs.
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3. THE PROCESS ALGEBRA AND LABELLED
TRANSITION SYSTEM

This section explains how to derive the labelled transition system
from a given parallel FGS.

3.1. The process algebra

The process algebra is a specification of labelled transitions from
terms to terms. To interpret parallel flow graph systems in terms
of the process algebra, we need to know their PA-declaration.

3.2. From parallel FGS to PA-declaration ∆

A parallel flow graph system is translated into PA-declaration by
the rules in Table 2 3. Note that each transition is now labelled
with an action a.

in parallel FGS in PA-declaration
for n −→ m N −→M

for n v:=t−−−→ m N
v:=t−−−→M

for n
callΠi(T )−−−−−−→ m N −→ STARTi •M

for end node of procedure Πi ENDi −→ ε

for n −→ {m1,m2}
N −→ K •M ,
K −→M1 ‖M2

for {m′1,m′2} −→ m
M ′1 −→ ε,
M ′2 −→ ε

Table 2: from parallel FGS to PA-declaration ∆ [1, 3]

N →M is an abbreviation for N τ−→M . τ denotes a ”silent”
action, which does not execute an assignment nor call a statement.
ε in Table 2 denotes an empty process. An empty process rep-
resents a successful termination after the execution of the labelled
action a. We need to define terms in the process algebra as follows.

Definition 1 (ε-term). The set of ε-terms is defined as follows.

tε = ε | (tε1 • tε2) | (tε1 ‖ tε2)

Intuitively, ε-terms correspond to processes that do not execute any
action [1, 3]. The set of ε-terms is called IsNil.

Definition 2 (TPA). The set of all PA-terms over a given set of
process constants X is inductively defined as follows.

t = X | tε | (t1 • t2) | (t1 ‖ t2)

This definition is similar to the definition of [7, 35]. The set of
PA-terms is denoted by TPA.

The rewriting rules over the set of PA-terms are given by the
following five rules.

∆
(X

a−→ t) ∈ ∆

X
a−→ t

seqential1
t1

a−→ t′1

t1 • t2
a−→ t′1 • t2

3As usual, ‖ represents the parallel composition and • denotes the se-
quential composition in this paper

seqential2
t2

a−→ t′2

t1 • t2
a−→ t1 • t′2

(t1 ∈ IsNil)

parallel1
t1

a−→ t′1

t1 ‖ t2
a−→ t′1 ‖ t2

parallel2
t2

a−→ t′2

t1 ‖ t2
a−→ t1 ‖ t′2

3.3. pre*, pre, post, and post*

Definition 3 (pre*, pre, post, post*). Given a language L, The set
pre*(L), pre(L), post(L), and post*(L) are defined as follows.

pre* (L) = {t|t ∗−→ t′ for some t′ ∈ L}
pre (L) = {t|t −→ t′ for some t′ ∈ L}
post (L) = {t|t′ −→ t for some t′ ∈ L}

post* (L) = {t|t′ ∗−→ t for some t′ ∈ L}
where t is a PA-term. This paper focuses on the algorithm for

pre*.

4. AUTOMATA AND LANGUAGE

The algorithm works on a given automaton. Before the explanation
of tree automata, we need the following definitions.

4.1. Least model and ε-closure

Definition 4 (least model). A model M for a program P is said to
be its least model if M ⊆M ′ for every model M of P .

Definition 5 (ε-closed language). A language L is ε-closed if the
terms t lies in L if and only if tε • t, tε ‖ t, and t ‖ tε lie in L.
Formally, for all tε ∈ L and t ∈ L

t ∈ L ⇐⇒ tε • t ∈ L ⇐⇒ tε ‖ t ∈ L ⇐⇒ t ‖ tε ∈ L.

Definition 6 (ε-closure). The ε-closure of the language L is de-
noted by L̃ and is defined as follows.

L̃ :=
⋂
{M ⊇ L|M is ε-closed}

4.2. Tree automata

In literature a tree automaton is defined as a tuple, however, tree
automata are seen as sets of Horn-clauses in this paper. Horn-
clauses are clauses that contain at most one positive literal. With-
out changing their logical property, Horn-clauses are also expressed
as implications. Horn-clauses in this form are called reduction
classes.

The automata for a given PA-declaration has the following
form. We assume that our automaton A does not accept ε-term.

1. qi(X)⇐ true

2. qi(x • y)⇐ qj(x) ∧ qk(y)

3. qi(x • y)⇐ qi(x)

4. qi(x ‖ y)⇐ qj(x) ∧ qk(y)
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5. qi(x ‖ y)⇐ qi(x)

6. qi(x ‖ y)⇐ qi(y)

where 0 6 i, j, k 6 n and we fix q0 as the initial state.

L = Lq0

Assume that L does not contain ε-term tε, every automaton that
accepts language L can be transformed into a new automaton that
accepts the corresponding L̃.
The only procedure needed for this transformation is to add the
following clauses to the original automaton for all states qi and qε.
4

1. qε(ε)⇐ true

2. qi(x • y)⇐ qε(x) ∧ qi(y)

3. qi(x ‖ y)⇐ qε(x) ∧ qi(y)

4. qi(x ‖ y)⇐ qi(x) ∧ qε(y)

We now the following two facts.

Fact 1 (pre and post are ε-closed). If the language L is ε-closed,
then pre*, pre, post, and post* are also ε closed.

Fact 2 (regularity of ε-closure). If the language L is regular, and
it does not contain ε-term, then so is its qε-closure L̃.

5. THE EFFICIENT ALGORITHM FOR PRE*

Let A be a tree automaton that does not accept any ε-term and
L be the language A accepts, respectively. Ã denotes the new
automaton generated by the procedure described above. (L̃qi)

n
i=0

is the least model of Ã. Note that in this paper, we identify Lε and
Ln.

5.1. The declarative part: defining PA

In the declarative part, we generate logic program PA by adding
clauses in Table 3 to Ã.
The following three propositions are useful to show why we should
compute PA. For more details, please find Theorem 1 in the orig-
inal paper [1].

Proposition 1 (8 conditions that define pre*(L)). The following 8
implications hold.

1. If χ ∈ Lqi , then χ ∈ pre*(Lqi).5

2. If ((X
a−→ t) ∈ ∆) and (t ∈ pre*(Lqi)),

then X ∈ pre*(Lqi).

3. If ((qi(x • y)⇐ qj(x) ∧ qk(x)) ∈ Ã)
and (t1 ∈ pre*(Lqj )) and (t2 ∈ Lqk ),
then t1 • t2 ∈ pre*(Lqi).

4. If ((qi(x • y)⇐ qi(x)) ∈ Ã)
and (t1 ∈ pre*(Lqi)),
then (t1 • t2) ∈ pre*(Lqi) for t2 ∈ TPA.

5. If (t1 ∈ pre*(IsNil)) and (t2 ∈ pre*(Lqi)),
then (t1 • t2) ∈ pre*(Lqi).

4Note that in these additional clauses, the qis in premise and in conclu-
sion have to have the same index i.

5χ is either an empty process or a process constant

6. If ((qi(x ‖ y)⇐ qj(x) ∧ qk(x)) ∈ Ã)
and (t1 ∈ pre*(Lqj )) and (t2 ∈ pre*(Lqk )),
then (t1 ‖ t2) ∈ pre*(Lqi).

7. If ((qi(x ‖ y)⇐ qi(x) ∈ Ã)
and (t1 ∈ pre*(Lqi)),
then (t1 ‖ t2) ∈ pre*(Lqi) for t2 ∈ TPA.

8. If ((qi(x ‖ y)⇐ qi(y) ∈ Ã)
and (t2 ∈ pre*(Lqi)),
then (t1 ‖ t2) ∈ pre*(Lqi) for t1 ∈ TPA.

Proof. We prove the above 8 implications one by one.

1. As the premise, we have the following implication in Ã.

Ã |= qi(χ)

Because ∗−→ is reflexive,

χ
0−→ χ where Ã |= qi(t).

This concludes χ ∈ pre*(Lqi)

2. Because t1 ∈ pre*(Lqi),

t
∗−→ t′ where Ã |= qi(t

′).

And there is the following transition.

t
∗−→ t′ where Ã |= qi(t

′).

In combination with the first closure of the premise, we
know

X
a−→ t

∗−→ t′ where Ã |= qi(t
′).

i.e., the process constant X can be rewritten to t through t′.
Therefore X ∈ pre*(Lqi).

3. Because t1 ∈ pre*(Lqj ),

t1
∗−→ t′1 where Ã |= qj(t

′
1).

By applying the sequential rule 1 to the above transition
repeatedly, the following transition is obtained.

t1 • t2
∗−→ t′1 • t2 where Ã |= qj(t

′
1).

pi(χ)⇐ qi(χ)
for each χ ∈ {process constants of∆} ∪ {ε}

pi(X)⇐ pi(t)

for each (X
a−→ t) ∈ ∆

pi(x1 • x2)⇐ pj(x1) ∧ qk(x2)

for each (qi(x • y)⇐ qj(x) ∧ qk(y)) ∈ Ã
pi(x1 • x2)⇐ pi(x1)

for each (qi(x • y)⇐ qi(x)) ∈ Ã
pi(x1 • x2)⇐ pε(x1) ∧ pi(x2)
pi(x1 ‖ x2)⇐ pj(x1) ∧ qk(x2)

for each (qi(x ‖ y)⇐ qj(x) ∧ qk(y)) ∈ Ã
pi(x1 ‖ x2)⇐ pi(x1)

for each (qi(x ‖ y)⇐ qi(x)) ∈ Ã
pi(x1 ‖ x2)⇐ pi(x2)

for each (qi(x ‖ y)⇐ qi(y)) ∈ Ã

Table 3: defining predicate
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Because t2 ∈ Lqk ,

Ã |= qk(t2).

As the premise, we have the following implication in Ã.

(qi(x • y)⇐ qj(x) ∧ qk(y)) ∈ Ã

Substitute x = t′1, y = t2, respectively.
Since the premise of the implication in Ã holds, the conclu-
sion also holds, i.e.,

Ã |= qi(t
′
1 • t2).

Therefore the transition is now expressed as follows,

t1 • t2
∗−→ t′1 • t2 where Ã |= qi(t

′
1 • t2).

This concludes t1 • t2 ∈ pre*(Lqi).

4. Because t1 ∈ pre*(Lqi),

t1
∗−→ t′1 where Ã |= qi(t

′
1).

By applying the sequential rule 1 to the above transition
repeatedly, the following transition is obtained.

t1 • t2
∗−→ t′1 • t2 where Ã |= qi(t

′
1).

As the premise, we have the following implication in Ã.

(qi(x • y)⇐ qi(x)) ∈ Ã

Substitute x = t′1, y = t2, respectively.
Since the premise of the implication in Ã holds, the conclu-
sion also holds, i.e.,

Ã |= qi(t
′
1 • t2).

Therefore the transition is now expressed as follows,

t1 • t2
∗−→ t′1 • t2 where Ã |= qi(t

′
1 • t2).

This concludes t1 • t2 ∈ pre*(Lqi).

5. Because t1 ∈ pre*(IsNil),

t1
∗−→ tε where Ã |= qε(tε).

Because t2 ∈ pre*(Lqi),

t2
∗−→ t′2 where Ã |= qi(t

′
2).

Since we restrict our algorithm to an automaton that defines
ε-closed languages,

t′2 ∈ Lqi ⇐⇒ tε • t′2 ∈ Lqi ⇐⇒ Ã |= qi(tε • t′2).

By applying the sequential rule 1 to the transition of t1 re-
peatedly, the following transitions are obtained.

t1 • t′2
∗−→ tε • t′2 where Ã |= qi(tε • t′2)

t1 • t2
∗−→ tε • t2 where Ã |= qi(tε) and t2 ∈ TPA.

By applying the sequential rule 2 to the the transition of t2
repeatedly, the following transition is obtained.

tε • t2
∗−→ tε • t′2 where Ã |= qi(tε • t′2).

By combining the obtained transitions so far, we know

t1 • t2
∗−→ tε • t2

∗−→ tε • t′2 where Ã |= qi(tε • t′2).

This concludes t1 • t2 ∈ pre*(Lqi).

6. Because t1 ∈ pre*(Lqj ),

t1
∗−→ t′1 where Ã |= qj(t

′
1).

Because t2 ∈ pre*(Lqk ),

t2
∗−→ t′2 where Ã |= qk(t′2).

As the premise, we have the following implication in Ã,

(qi(x ‖ y)⇐ qj(x) ∧ qk(y)) ∈ Ã

Substitute x = t′1, y = t′2, respectively.
Since the premise of the implication in Ã holds, the conclu-
sion also holds, i.e.,

Ã |= qi(t
′
1 ‖ t′2).

By applying the parallel rule 1 to the transition of the left
component a number of times, and the parallel rule 2 to the
transition of the right component a number of times, the
following transitions are obtained.

t1 ‖ t2
∗−→ t′1 ‖ t′2 where Ã |= qi(t

′
1 ‖ t′2).

This concludes t1 ‖ t2 ∈ pre*(Lqi).

7. Because t1 ∈ pre*(Lqi),

t1
∗−→ t′1 where Ã |= qi(t

′
1).

As the premise, we have the following implication in Ã.

(qi(x ‖ y)⇐ qi(x)) ∈ Ã

Substitute x = t′1, y = t2, respectively.
Since the premise of the implication in Ã holds, the conclu-
sion also holds, i.e.,

Ã |= qi(t
′
1 ‖ t2)

By applying the parallel rule 1 to the transition of the left
component, repeatedly, the following transition is obtained.

t1 ‖ t2
∗−→ t′1 ‖ t2 where Ã |= qi(t

′
1 ‖ t2).

This concludes t1 ‖ t2 ∈ pre*(Lqi).

8. Because t2 ∈ pre*(Lqi),

t2
∗−→ t′2 where Ã |= qi(t

′
2).

As the premise, we have the following implication in Ã.

(qi(x ‖ y)⇐ qi(y)) ∈ Ã

Substitute x = t1, y = t′2, respectively.
Since the premise of the implication in Ã holds, the conclu-
sion also holds, i.e.,

Ã |= qi(t1 ‖ t′2).

By applying the parallel rule 2 to the transition of the right
component , repeatedly, the following transition is obtained.

t1 ‖ t2
∗−→ t1 ‖ t′2 where Ã |= qi(t1 ‖ t′2).

This concludes t1 ‖ t2 ∈ pre*(Lqi).
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Proposition 2 (smallest). Let (Si)
n
i=0 be an arbitrary set that sat-

isfy the following 8 conditions where n+1 is the number of states
in the new automaton. Then, pre*((Lqi)

n
i=0) v (Si)

n
i=0, i.e.,

pre*(Lqi) is the smallest set Si satisfying the following 8 condi-
tions6. Note that we identify Sε and Sn.

1. If χ ∈ Lqi , then χ ∈ Si.

2. If ((X
a−→ t) ∈ ∆) and (t ∈ Si),

then X ∈ Si.
3. If ((qi(x • y)⇐ qj(x) ∧ qk(x)) ∈ Ã)

and (t1 ∈ Sj) and (t2 ∈ Lqk ),
then t1 • t2 ∈ Si.

4. If ((qi(x • y)⇐ qi(x)) ∈ Ã)
and (t1 ∈ Si),
then (t1 • t2) ∈ Si for t2 ∈ TPA.

5. If (t1 ∈ Sε) and (t2 ∈ Si),
then (t1 • t2) ∈ Si.

6. If ((qi(x ‖ y)⇐ qj(x) ∧ qk(x)) ∈ Ã)
and (t1 ∈ Sj) and (t2 ∈ Sk),
then (t1 ‖ t2) ∈ Si.

7. If ((qi(x ‖ y)⇐ qi(x) ∈ Ã)
and (t1 ∈ Si),
then (t1 ‖ t2) ∈ Si for t2 ∈ TPA.

8. If ((qi(x ‖ y)⇐ qi(y) ∈ Ã)
and (t2 ∈ Si),
then (t1 ‖ t2) ∈ Si for t1 ∈ TPA.

Proof. Let S0, . . . , Sn be arbitrary sets satisfying the 8 conditions,
where n+1 is the number of states of the newly generated ε-closed
automaton Ã. We prove this proposition by showing that for every
term t and for every i = 0, . . . , n if t ∈ pre*(Lqi) then t ∈ Si.
Formally,

Goal1 ∀k, i, t, t′ : ((t
k−→ t′ ∈ Lqi)⇒ (t ∈ Si))

We use double induction to prove this implication.7 A double
induction hypothesis consists of two levels of inductions. In the
outer level, we use an induction on the length of transitions. In the
inner level, we use an induction on the size of term t.

The base case for the outer level of induction is as follows.

BC1 ∀i, t, t′ : ((t
0−→ t′ ∈ Lqi)⇒ (t ∈ Si))

Note that BC1 is not yet proved. It is necessary to prove BC1
in the inner level of induction.

Similarly to BC1, we assume an induction hypothesis for the
outer level of induction.

IH1 ∀k ≤ m, i, t, t′ : ((t
k−→ t′ ∈ Lqi)⇒ (t ∈ Si))

The whole proof is done by showing that under this assump-
tion (IH1), the following induction step (IS1) holds.

IS1 ∀i, t, t′ : ((t
m+1−−−→ t′ ∈ Lqi)⇒ (t ∈ Si))

6v is the component-wise ordering.
7It is possible to avoid the use of double induction. For example, one

can use induction on lexicographic order.

Note that similarly to the case for BC1 it is necessary to use
one more induction on the size of term t in the second level.

Therefore the whole proof for proposition 2 consists of 1 in-
duction on the length of transitions in the first level and 2 induc-
tions on the size of terms t in the second level.

We start with the proof of BC1. To prove BC1, An induction
is applied on the size of term t.8 The base case is as follows.

BC21 ∀i, t, t′ : ((t
0−→ t′ ∈ Lqi) ∧ (|t| = 1)⇒ (t ∈ Si))

Because |t| = 1, t = χ. Since 0−→ is the identity, t = t′. Therefore
BC21 is expressed as follows.

BC2′1 ∀i, t : ((χ ∈ Lqi)⇒ (χ ∈ Si))

This coincides with the first condition. Therefore BC21 holds.
To prove BC1 from BC21, we introduce the following induction
hypothesis (IH21).

IH21 ∀i, t, t′ : ((t
0−→ t′ ∈ Lqi)∧(|t| ≤ n ∈ N)⇒ (t ∈ Si))

Since 0−→ is the identity, t = t′. Therefore BC21 is expressed as
follows.

IH2′1 ∀i, t ((t
0−→ t ∈ Lqi) ∧ (|t| ≤ n ∈ N)⇒ (t ∈ Si))

Our current aim is to prove the following induction step (IS21)
using IH21.

IS21 ∀i, t ((t
0−→ t ∈ Lqi) ∧ (|t| = n+ 1)⇒ (t ∈ Si))

All terms of size n+ 1 have one of the following forms.

t = t1 • t2
t = t1 ‖ t2

where |t1| ≤ n ∈ N and |t2| ≤ n ∈ N. Remember that the
automaton Ã may have only the following clauses.

1. qi(χ)⇐ true

2. qi(x • y)⇐ qj(x) ∧ qk(y)

3. qi(x • y)⇐ qi(x)

4. qi(x ‖ y)⇐ qj(x) ∧ qk(y)

5. qi(x ‖ y)⇐ qi(x)

6. qi(x ‖ y)⇐ qi(y)

7. qε(ε)⇐ true

8. qi(x • y)⇐ qε(x) ∧ qi(y)

9. qi(x ‖ y)⇐ qε(x) ∧ qi(y)

10. qi(x ‖ y)⇐ qi(x) ∧ qε(y)

If t is a sequential composition of two smaller terms t1 and t2, one
of the following conditions holds.

Case 1: (qi(x • y)⇐ qj(x) ∧ qk(y)) ∈ Ã
and Ã |= qj(t1) and Ã |= qk(t2).

Case 2: (qi(x • y)⇐ qi(x)) ∈ Ã and Ã |= qi(t1).

8In this paper the size of a terms t is defined as the number of its leaves
when it is seen as a tree. And the size is denoted by |t|. For example, the
size of term (t1 • t2) ‖ t3 is not 5 but 3.
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Case 3: (qi(x • y)⇐ qε(x) ∧ qi(y)) ∈ Ã
and Ã |= qε(t1) and Ã |= qi(t2).

In case 1,

(qi(x • y)⇐ qj(x) ∧ qk(y)) ∈ Ã
and Ã |= qj(t1) and Ã |= qk(t2).

Therefore

t2 ∈ Lqk .

Because of IH2′1,

t1 ∈ Sj .

This coincides with the premise of the third condition. Therefore

t1 • t2 ∈ Si.

This concludes that IS21 holds in this case.
In case 2,

(qi(x • y)⇐ qi(x)) ∈ Ã and Ã |= qi(t1).

Because of IH2′1,

t1 ∈ Si.

This coincides with the premise of the fourth condition. Therefore

t1 • t2 ∈ Si.

where t2 ∈ TPA. This concludes that IS21 holds in this case.
Due to space limitation the proof for case 3 is omitted.
If t is a parallel composition of two smaller terms, at least one of
the following conditions holds.

Case 1: (qi(x ‖ y)⇐ qj(x) ∧ qk(y)) ∈ Ã
and Ã |= qj(t1) and Ã |= qk(t2).

Case 2: (qi(x ‖ y)⇐ qi(x)) ∈ Ã and Ã |= qi(t1).

Case 3: (qi(x ‖ y)⇐ qi(y)) ∈ Ã and Ã |= qi(t2).

Case 4: qi(x ‖ y)⇐ qε(x) ∧ qi(y)) ∈ Ã
and Ã |= qε(t1) and Ã |= qi(t2).

Case 5: qi(x ‖ y)⇐ qi(x) ∧ qε(y)) ∈ Ã
and Ã |= qi(t1) and Ã |= qε(t2).

In case 1,

(qi(t1 ‖ t2)⇐ qj(t1) ∧ qk(t2)) ∈ Ã
and Ã |= qj(t1) and Ã |= qk(t2).

Therefore

t1 ∈ Lqj and t2 ∈ Lqk .

Because of IH2′1,

t1 ∈ Sj and t2 ∈ Sk.

This coincides with the premise of the sixth condition. Therefore

t1 ‖ t2 ∈ Si.

This concludes that IS21 holds in this case.
In case 2,

(qi(x ‖ y)⇐ qi(x)) ∈ Ã and Ã |= qi(t1).

Therefore

t1 ∈ Lqi .

Because of IH2′1,

t1 ∈ Si.

This coincides with the premise of the seventh condition. There-
fore

t1 ‖ t2 ∈ Si.

This concludes that IS21 holds in this case.
In case 3,

(qi(x ‖ y)⇐ qi(y)) ∈ Ã and Ã |= qi(y).

Therefore

t2 ∈ Lqi .

Because of IH2′1,

t2 ∈ Si

This coincides with the premise of the eighth condition. Therefore

t1 ‖ t2 ∈ Si

This concludes that IS21 holds in this case.
Due to space limitation the proof for case 4 is omitted.
Due to space limitation the proof for case 5 is omitted.
Therefore, we know that IS21 holds in any possible case if t is
a parallel composition of smaller terms. From BC21, IH21 and
IS21, we know that BC1 holds.
Now we prove that IS1 holds under IH1. To prove IS1, an induc-
tion is applied on the size of term t. The base case is as follows.

BC22 ∀i, t, t′ : ((t
m+1−−−→ t′ ∈ Lqi) ∧ (|t| = 1)⇒ (t ∈ Si))

Because |t| = 1, t = χ. However, an empty process cannot be
reduced further. Therefore t = X , and BC22 is expressed as
follows.

BC2′2 ∀i, t′′ : ((X
m+1−−−→ t′′ ∈ Lqi)⇒ (X ∈ Si))

Because BC2′2 is expressed by an implication, we can assume the
following transition as its premise.

∀i, t′, t′′ X → t′
m−→ t′′ ∈ Lqi

Due to IH1,

(t′
m−→ t′′ ∈ Lqi)⇒ (t′ ∈ Si).

Therefore
t′ ∈ Si

Accordingly, the first transition of the assumption is expressed as
follows.

∀i, t′ X → t′ ∈ Si
This coincides with the premise of the second condition. Therefore

X ∈ Si.
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This concludes that BC2′2 holds.
To prove IS1 from IH1 and BC2′2, we introduce the following in-
duction hypothesis (IH22).

IH22 ∀i, t, t′ : ((t
m+1−−−→ t′ ∈ Lqi)∧(|t| ≤ n ∈ N)⇒ (t ∈ Si)

Our current aim is to prove the following induction step (IS22)
using IH21.

IS22 ∀i, t, t′ : ((t
m+1−−−→ t′ ∈ Lqi)∧ (|t| = n+ 1)⇒ (t ∈ Si))

Every term of size n+ 1 has one of the following forms.

t = t1 • t2
t = t1 ‖ t2

where |t1| ≤ n ∈ N and |t2| ≤ n ∈ N. Remember that the au-
tomaton Ãmay have the above mentioned 10 clauses. The premise
of IS22 has to have one of the following forms.

Case A: ∀i, t1, t2, t′1 t1 • t2
m+1−−−→ t′1 • t2 ∈ Lqi

where t1
m+1−−−→ t′1 and t2 does not change on any path from

t1 • t2 to t′1 • t2.

Case B: ∀i, t1, t2, t′2 t1 • t2
m+1−−−→ t1 • t′2 ∈ Lqi

where t2
m+1−−−→ t′2 and t1 ∈ Lqε(= IsNil) and t1 does not

change on any path from t1 • t′2 to t1 • t′2.

Case C: ∀i, t1, t2, t′1, t′2 t1 • t2
m+1−−−→ t′1 • t′2 ∈ Lqi

where t1
k−→ t′1 ∈ Lqε(= IsNil),

and t2
m−k+1−−−−−→ t′2,

for some k s.t. 1 ≤ k ≤ m.

The detailed proof is omitted here due to space limitation. By
using case distinctions, one can conclude that IS22 holds for all
cases.
Similarly to the case of sequential composition, one can prove
IS22 for parallel composition. Therefore IS22 holds. Since IS22

holds, IS1 also holds under IH1. This concludes the proof of
proposition 2.

Proposition 3 (pre*(Lqi)). The sets pre*(Lqi) (for i = ε, 0, 1, . . . , n)
are the smallest sets satisfying the 8 conditions.

Proof. Directly from the previous propositions.

5.2. The Operational Part: PA 7→ SatPA 7→ RedPA

Due to space limitation, we focuse on the declarative part of the
original algorithm in this paper. One can find the operational part
of the original algorothm in [1].

6. CONCLUSIONS

We have modified the algorithm in [1] and provided the detailed
proof of it. This algorithm is supposed to enable the efficient com-
putation of pre*.

6.1. Open problems and future works

Similarly to what is shown for pre* in this paper, the algorithm in
[1] requires modifications in the declarative part for pre, post, and
post* as well. Furthermore the detailed proof of operational part
is expected to be done.
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