

Efficient Algorithm for pre* on
Interprecedural Parallel Flow Graph

Yutaka Nagashima
Technische Universität München

Efficient Algorithm for pre* on
Interprecedural Parallel Flow Graph

Parallel programming is difficult!

We need a good technique of Software Engineering.

Efficient Algorithm for pre* on
Interprecedural Parallel Flow Graph

Validation: Are you building the right thing?
Verification: Are you building it right?

V&V

Parallel programming is difficult!

We need a good technique of Software Engineering.

Efficient Algorithm for pre* on
Interprecedural Parallel Flow Graph

Validation: Are you building the right thing?
Verification: Are you building it right?

V&V

Parallel programming is difficult!

We need a good technique of Software Engineering.

State-space explosion:
The size of transition system representations grows exponentially to
the number of variables or to the number of components in a
concurrent system.

Outline
● Introduction →Done!

● Program

● Parallel flow graph system

● PA-declaration Δ

● Construct input Automaton

● Epsilon-closed input automaton

● Declarative Part: Defining PA

● Operational Part:

– Saturate PA: PA→SatPA

– Reduce PA: SatPA → RedPA

Parallel Flow Graph System (FGS)

Parallel Flow Graph System (FGS)

main()

procedure1()

From parallel FGS to PA-declaration Δ

Process algebra:
action-labelled transitions between
states denoted by PA-terms

From parallel FGS to PA-declaration Δ

Process algebra:
action-labelled transitions between
states denoted by PA-terms

X: process constant
a: action
t: PA-term

From parallel FGS to PA-declaration Δ

empty process: successful termination of process

Process algebra:
action-labelled transitions between
states denoted by PA-terms

PA-term (TA)

epsilon term (IsNil)

X: process constant
a: action
t: PA-term

From parallel FGS to PA-declaration Δ

empty process: successful termination of process

Process algebra:
action-labelled transitions between
states denoted by PA-terms

PA-term (TA)

epsilon term (IsNil)

X: process constant
a: action
t: PA-term

From PA-declaration to input automaton
Possible execution of the program

From PA-declaration to input automaton
Possible execution of the program

Epsilon-closed language

Epsilon-closure

From PA-declaration to input automaton
Possible execution of the program

Epsilon-closed language

Epsilon-closure

Epsilon-closed input automata

Epsilon-closed input automata

Where are we...?

Here!

Where are we...?

PA

An automaton that accepts pre*(L)

SatPA

RedPA

Here!

The declarative part: define PA

The declarative part: define PA

Theory

Proposition:
The sets pre*(Lqi) are the smallest sets such that the following holds:

The operational part: PA→SatPA→RedPA

Selected references

● „Efficient Algorithms for pre* and post* on Interprocedural
Parallel Flow Graphs“ Javier Esparza and Andreas Podelski

Questions?

 Back up transition rules from SOS

Q&A

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25

