Yutaka Nagashima Technische Universität München

Parallel programming is difficult! We need a good technique of Software Engineering.

Parallel programming is difficult! We need a good technique of Software Engineering. V&V Validation: Are you building the right thing? Verification: Are you building it right?

pre* (L) = { $t | t \xrightarrow{*} t'$ for some $t' \in L$ }

Parallel programming is difficult!

We need a good technique of Software Engineering.

V&V Validation: Are you building the right thing? Verification: Are you building it right?

pre* (L) = {
$$t | t \xrightarrow{*} t'$$
 for some $t' \in L$ }

State-space explosion:

The size of transition system representations grows exponentially to the number of variables or to the number of components in a concurrent system.

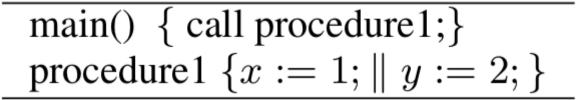
Outline

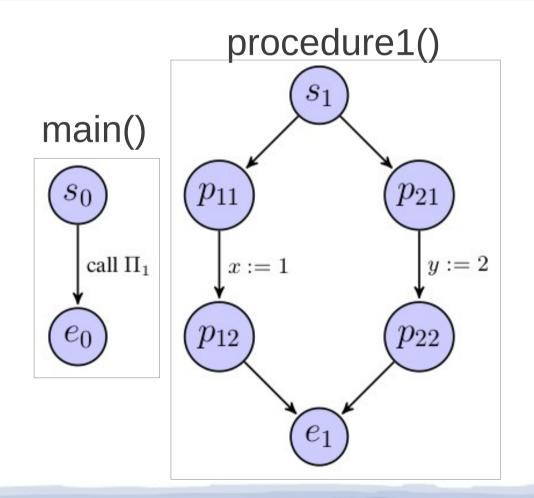
- Introduction → Done!
- Program
- Parallel flow graph system
- PA-declaration Δ
- Construct input Automaton \mathcal{A}
- Epsilon-closed input automaton $\mathcal{\tilde{A}}$
- Declarative Part: Defining PA
- Operational Part:
 - Saturate PA: $PA \rightarrow SatPA$
 - Reduce PA: SatPA \rightarrow RedPA

Parallel Flow Graph System (FGS)

main() { call procedure1;} procedure1 {x := 1; || y := 2; }

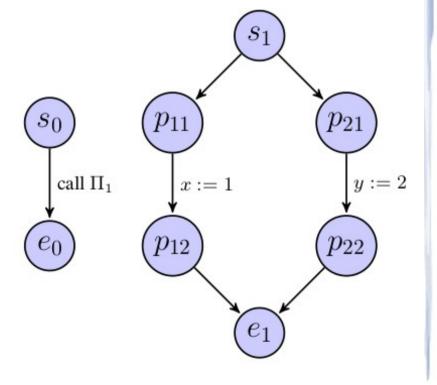
Parallel Flow Graph System (FGS)

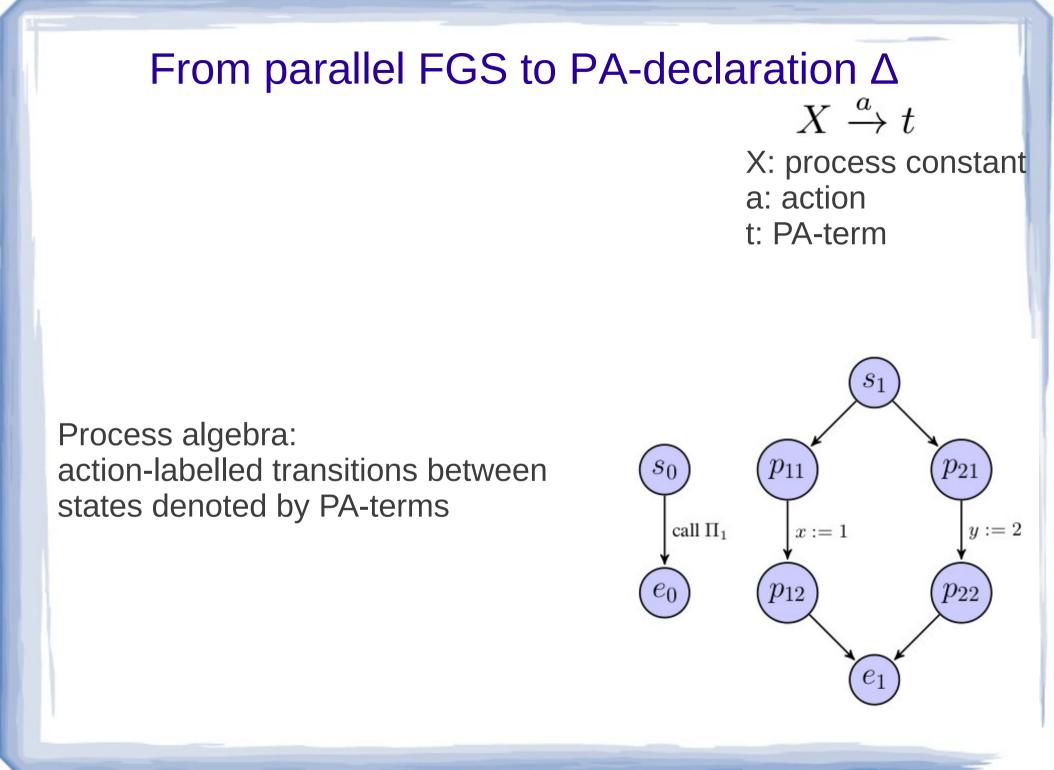


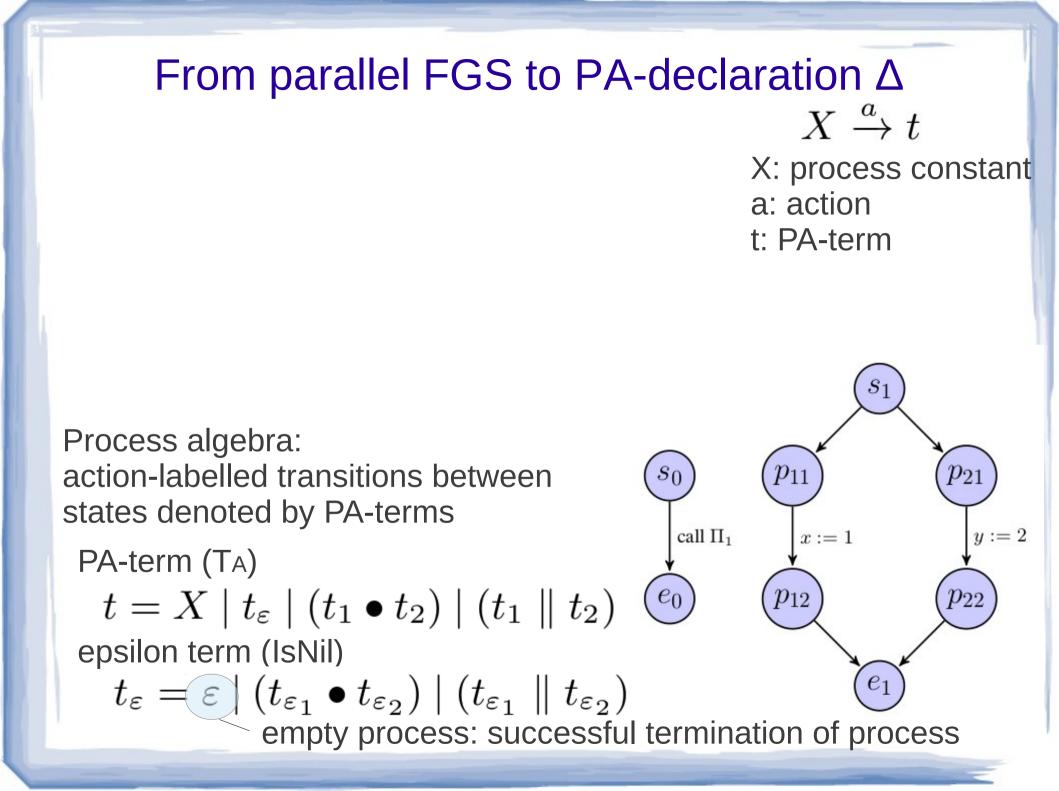


From parallel FGS to PA-declaration Δ

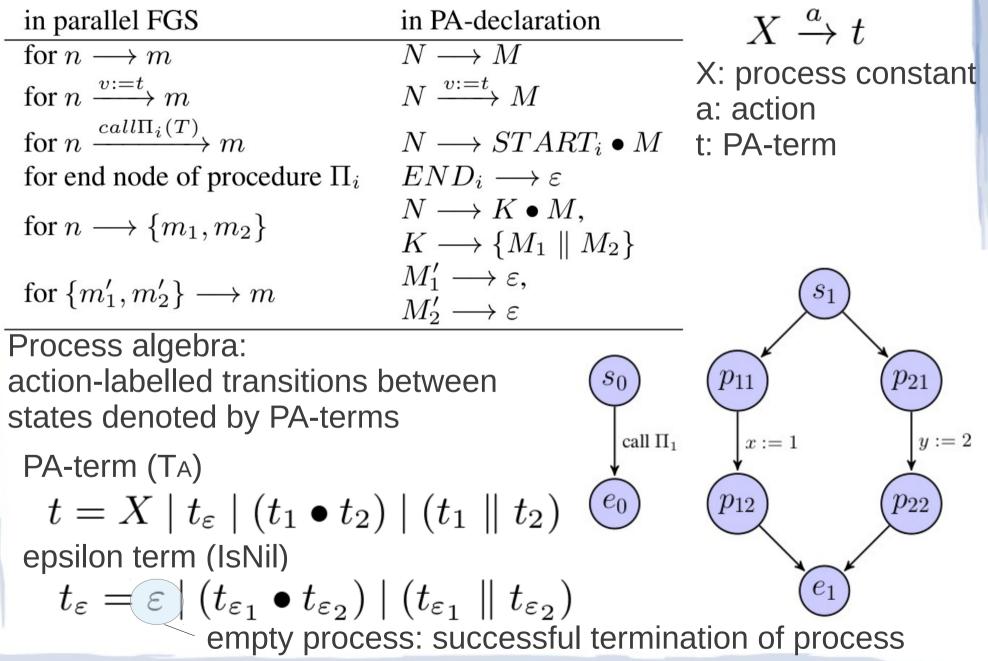
Process algebra: action-labelled transitions between states denoted by PA-terms







From parallel FGS to PA-declaration Δ



From PA-declaration to input automaton \mathcal{A}

Possible execution of the program

 S_0 $\rightarrow S_1 \bullet E_0$ $\rightarrow (K \bullet E_1) \bullet E_0$ $\rightarrow ((P_{11}||(P_{21}) \bullet E_1) \bullet E_0)$ $\xrightarrow{y:=2} ((P_{11}||P_{22}) \bullet E_1) \bullet E_0$ $\xrightarrow{x:=1} ((P_{12}||P_{22}) \bullet E_1) \bullet E_0$ $\rightarrow ((P_{12}||\varepsilon) \bullet E_1) \bullet E_0$ $\rightarrow |((\varepsilon | | \varepsilon) \bullet E_1) \bullet E_0|$ $\rightarrow ((\varepsilon || \varepsilon) \bullet \varepsilon) \bullet E_0$ $\rightarrow ((\varepsilon || \varepsilon) \bullet \varepsilon) \bullet \varepsilon$

From PA-declaration to input automaton \mathcal{A}

Possible execution of the program

$$S_{0}$$

$$\rightarrow S_{1} \bullet E_{0}$$

$$\rightarrow (K \bullet E_{1}) \bullet E_{0}$$

$$\rightarrow ((P_{11}||(P_{21}) \bullet E_{1}) \bullet E_{0}$$

$$\xrightarrow{y:=2} ((P_{11}||P_{22}) \bullet E_{1}) \bullet E_{0}$$

$$\xrightarrow{x:=1} ((P_{12}||P_{22}) \bullet E_{1}) \bullet E_{0}$$

$$\rightarrow ((P_{12}||\varepsilon) \bullet E_{1}) \bullet E_{0}$$

$$\rightarrow ((\varepsilon||\varepsilon) \bullet E_{1}) \bullet E_{0}$$

$$\rightarrow ((\varepsilon||\varepsilon) \bullet \varepsilon) \bullet E_{0}$$

$$\rightarrow ((\varepsilon||\varepsilon) \bullet \varepsilon) \bullet \varepsilon$$

Epsilon-closed language

 $t \in L \iff t_{\varepsilon} \bullet t \in L \iff t_{\varepsilon} \parallel t \in L \iff t \parallel t_{\varepsilon} \in L$

Epsilon-closure

 $\tilde{L} := \bigcap \{ M \supseteq L | M \text{ is } \varepsilon \text{-closed} \}$

From PA-declaration to input automaton \mathcal{A}

Possible execution of the program

$$S_{0}$$

$$\rightarrow S_{1} \bullet E_{0}$$

$$\rightarrow (K \bullet E_{1}) \bullet E_{0}$$

$$\rightarrow ((P_{11}||(P_{21}) \bullet E_{1}) \bullet E_{0}$$

$$\xrightarrow{y:=2} ((P_{11}||P_{22}) \bullet E_{1}) \bullet E_{0}$$

$$\xrightarrow{x:=1} ((P_{12}||P_{22}) \bullet E_{1}) \bullet E_{0}$$

$$\rightarrow ((P_{12}||\varepsilon) \bullet E_{1}) \bullet E_{0}$$

$$\rightarrow ((\varepsilon||\varepsilon) \bullet E_{1}) \bullet E_{0}$$

$$\rightarrow ((\varepsilon||\varepsilon) \bullet \varepsilon) \bullet E_{0}$$

$$\rightarrow ((\varepsilon||\varepsilon) \bullet \varepsilon) \bullet \varepsilon$$

$$q_i(\chi) \Leftarrow true \qquad \mathcal{A}$$
$$q_i(x \bullet y) \Leftarrow q_j(x) \land q_k(y)$$
$$q_i(x \bullet y) \Leftarrow q_i(x)$$
$$q_i(x \parallel y) \Leftarrow q_j(x) \land q_k(y)$$
$$q_i(x \parallel y) \Leftarrow q_i(x)$$
$$q_i(x \parallel y) \Leftarrow q_i(y)$$

Epsilon-closed language

 $t \in L \iff t_{\varepsilon} \bullet t \in L \iff t_{\varepsilon} \parallel t \in L \iff t \parallel t_{\varepsilon} \in L$

Epsilon-closure

 $\tilde{L} := \bigcap \{ M \supseteq L | M \text{ is } \varepsilon \text{-closed} \}$

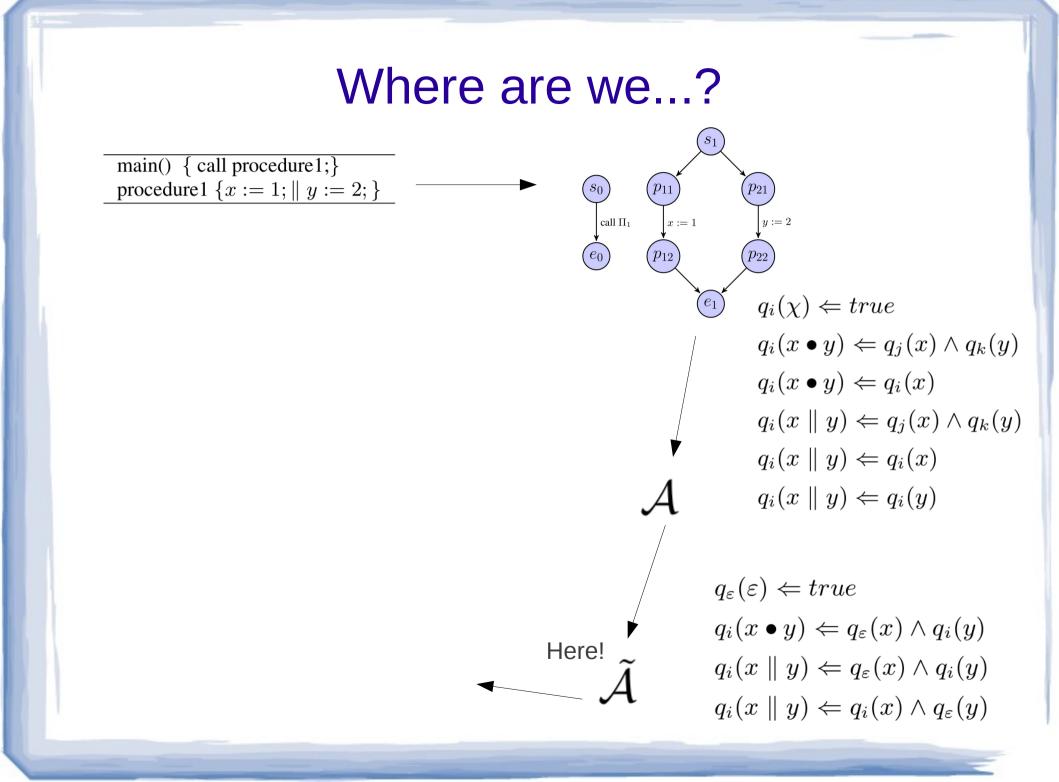
Epsilon-closed input automata $\mathcal{A} \longrightarrow \tilde{\mathcal{A}}$

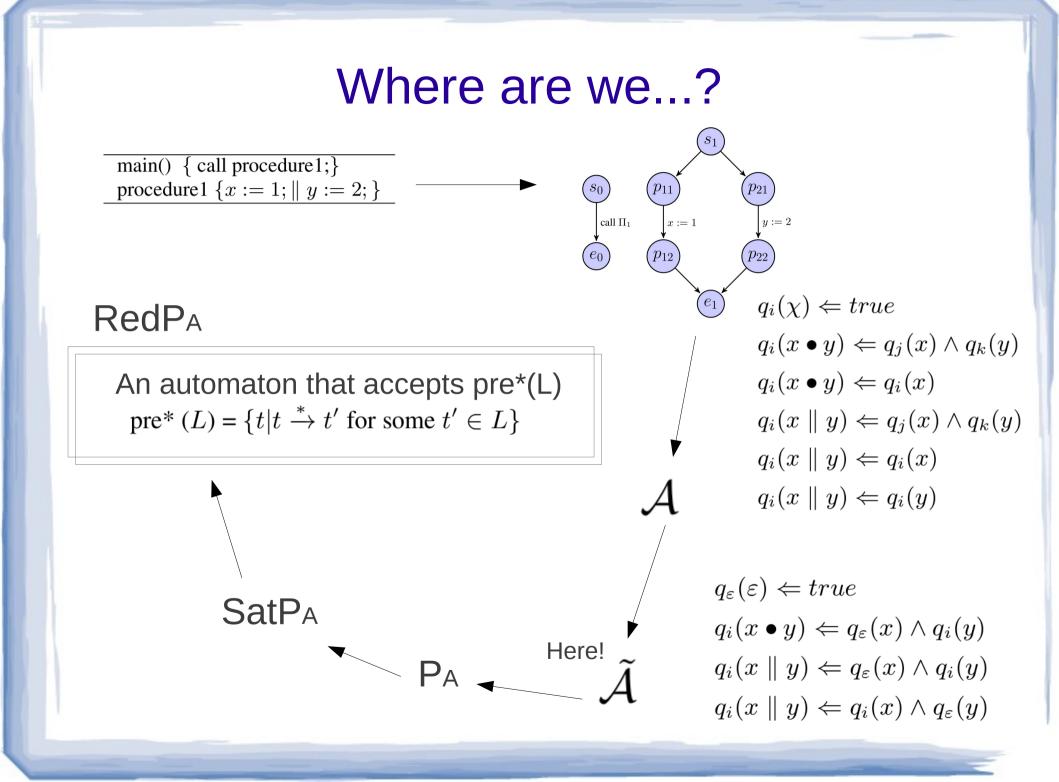
 $q_i(\chi) \Leftarrow true \qquad \mathcal{A}$ $q_i(x \bullet y) \Leftarrow q_j(x) \land q_k(y)$ $q_i(x \bullet y) \Leftarrow q_i(x)$ $q_i(x \parallel y) \Leftarrow q_j(x) \land q_k(y)$ $q_i(x \parallel y) \Leftarrow q_i(x)$ $q_i(x \parallel y) \Leftarrow q_i(x)$

Epsilon-closed input automata $\mathcal{A} \longrightarrow \tilde{\mathcal{A}}$

 $q_i(\chi) \Leftarrow true \qquad \mathcal{A}$ $q_i(x \bullet y) \Leftarrow q_j(x) \land q_k(y)$ $q_i(x \bullet y) \Leftarrow q_i(x)$ $q_i(x \parallel y) \Leftarrow q_j(x) \land q_k(y)$ $q_i(x \parallel y) \Leftarrow q_i(x)$ $q_i(x \parallel y) \Leftarrow q_i(y)$

 $q_{\varepsilon}(\varepsilon) \Leftarrow true \qquad \tilde{\mathcal{A}}$ $q_{i}(x \bullet y) \Leftarrow q_{\varepsilon}(x) \land q_{i}(y)$ $q_{i}(x \parallel y) \Leftarrow q_{\varepsilon}(x) \land q_{i}(y)$ $q_{i}(x \parallel y) \Leftarrow q_{i}(x) \land q_{\varepsilon}(y)$





The declarative part: define PA

 $t \in \operatorname{pre}^*(L) \iff P_A \models p_0(t)$

 $P_A =$ clauses of $\tilde{\mathcal{A}} \cup$ clauses in the table

The declarative part: define PA

 $t \in \operatorname{pre}^*(L) \iff P_A \models p_0(t)$ $P_A = \text{clauses of } \tilde{\mathcal{A}} \cup \text{clauses in the table}$ $p_i(\chi) \Leftarrow q_i(\chi)$ for each $\chi \in \{ \text{process constants of } \Delta \} \cup \{ \varepsilon \}$ $p_i(X) \Leftarrow q_i(X)$ for each $(X \xrightarrow{a} t) \in \Delta$ $p_i(x_1 \bullet x_2) \Leftarrow p_i(x_1) \land q_k(x_2)$ for each $(q_i(x \bullet y) \Leftarrow q_i(x) \land q_k(y)) \in \mathcal{A}$ $p_i(x_1 \bullet x_2) \Leftarrow p_i(x_1)$ for each $(q_i(x \bullet y) \Leftarrow q_i(x)) \in \overline{\mathcal{A}}$ $p_i(x_1 \bullet x_2) \Leftarrow p_{\varepsilon}(x_1) \land p_i(x_2)$ $p_i(x_1 \parallel x_2) \Leftarrow p_i(x_1) \land q_k(x_2)$ for each $(q_i(x \parallel y) \Leftarrow q_j(x) \land q_k(y)) \in \tilde{\mathcal{A}}$ $p_i(x_1 \parallel x_2) \Leftarrow p_i(x_1)$ for each $(q_i(x \parallel y) \Leftarrow q_i(x)) \in \tilde{\mathcal{A}}$ $p_i(x_1 \parallel x_2) \Leftarrow p_i(x_2)$ for each $(q_i(x \parallel y) \Leftarrow q_i(y)) \in \mathcal{A}$

Theory pre* $(L_{q_i}) = \{t \in T_{PA} \mid P_A \models p_i(t)\}$

Proposition:

The sets pre*(Lqi) are the smallest sets such that the following holds:

- 1. If $\chi \in L_{q_i}$, then $\chi \in \operatorname{pre}^*(L_{q_i})$.
- 2. If $((X \xrightarrow{a} t) \in \Delta)$ and $(t \in \operatorname{pre}^*(L_{q_i}))$, then $X \in \operatorname{pre}^*(L_{q_i})$.
- 3. If $((q_i(x \bullet y) \Leftarrow q_j(x) \land q_k(x)) \in \tilde{\mathcal{A}})$ and $(t_1 \in \operatorname{pre}^*(L_{q_j}))$ and $(t_2 \in L_{q_k})$, then $t_1 \bullet t_2 \in \operatorname{pre}^*(L_{q_i})$.

4. If
$$((q_i(x \bullet y) \Leftarrow q_i(x)) \in \tilde{\mathcal{A}})$$

and $(t_1 \in \operatorname{pre}^*(L_{q_i}))$,
then $(t_1 \bullet t_2) \in \operatorname{pre}^*(L_{q_i})$ for $t_2 \in T_{PA}$.

5. If $(t_1 \in \text{pre}^*(\text{IsNil}))$ and $(t_2 \in \text{pre}^*(L_{q_i}))$, then $(t_1 \bullet t_2) \in \text{pre}^*(L_{q_i})$.

- 6. If $((q_i(x \parallel y) \Leftarrow q_j(x) \land q_k(x)) \in \tilde{\mathcal{A}})$ and $(t_1 \in \operatorname{pre}^*(L_{q_j}))$ and $(t_2 \in \operatorname{pre}^*(L_{q_k}))$, then $(t_1 \parallel t_2) \in \operatorname{pre}^*(L_{q_i})$.
- 7. If $((q_i(x \parallel y) \Leftarrow q_i(x) \in \tilde{\mathcal{A}}))$ and $(t_1 \in \operatorname{pre}^*(L_{q_i}))$, then $(t_1 \parallel t_2) \in \operatorname{pre}^*(L_{q_i})$ for $t_2 \in T_{PA}$.

8. If
$$((q_i(x \parallel y) \Leftarrow q_i(y) \in \tilde{\mathcal{A}}))$$

and $(t_2 \in \operatorname{pre}^*(L_{q_i}))$,
then $(t_1 \parallel t_2) \in \operatorname{pre}^*(L_{q_i})$ for $t_1 \in T_{PA}$.

The operational part: $PA \rightarrow SatPA \rightarrow RedPA$ P_A $SatP_A = P_A \cup \{p(\chi) \mid P_A \models p(\chi)\}$ $RedP_A = reduction clauses of SatP_A$

Selected references

 "Efficient Algorithms for pre* and post* on Interprocedural Parallel Flow Graphs" Javier Esparza and Andreas Podelski

Questions?

Back up transition rules from SOS

$$\Delta \quad \frac{(X \xrightarrow{a} t) \in \Delta}{X \xrightarrow{a} t}$$
sequential 1
$$\frac{t_1 \xrightarrow{a} t'_1}{t_1 \bullet t_2 \xrightarrow{a} t'_1 \bullet t_2}$$
sequential 2
$$\frac{(t_2 \xrightarrow{a} t'_2) \land (t_1 \in \text{IsNil})}{(t_1 \bullet t_2 \xrightarrow{a} t_1 \bullet t'_2)}$$
parallel 1
$$\frac{(t_1 \xrightarrow{a} t'_1)}{(t_1 \parallel t_2 \xrightarrow{a} t'_1 \parallel t_2)}$$
parallel 2
$$\frac{(t_2 \xrightarrow{a} t'_2)}{(t_1 \parallel t_2 \xrightarrow{a} t_1 \parallel t'_2)}$$

