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State-space explosion:
The size of transition system representations grows exponentially to 
the number of variables or to the number of components in a 
concurrent system.



  

Outline
● Introduction →Done!

● Program

● Parallel flow graph system

● PA-declaration Δ

● Construct input Automaton 

● Epsilon-closed input automaton 

● Declarative Part: Defining PA

● Operational Part:

– Saturate PA: PA→SatPA

– Reduce PA: SatPA → RedPA
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Parallel Flow Graph System (FGS) 

main()

procedure1()
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Where are we...?

PA

An automaton that accepts pre*(L)

SatPA

RedPA  

Here!



  

The declarative part: define PA



  

The declarative part: define PA



  

Theory

Proposition:
The sets pre*(Lqi) are the smallest sets such that the following holds:



  

The operational part: PA→SatPA→RedPA



  

Selected references

● „Efficient Algorithms for pre* and post* on Interprocedural 
Parallel Flow Graphs“ Javier Esparza and Andreas Podelski

Questions?



  

 Back up transition rules from SOS



  

Q&A
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