
KISS: Keep it Simple and Sequential
Summary

Steffen Juilf Smolka

July 19, 2012

1 Motivation
In 1965, Intel co-founder Gordon E. Moore published a paper in which he observed an
exponential growth in the number of transistors on chips, a trend he predicted to continue.
This observation later became known as Moore’s Law and has proven to be very accurate
for almost 50 years now, with the number of transistors in CPUs doubling approximately
every two years. As shown in figure 1, this growth in the number of transistors used to
translate to a proportional growth in CPUs’ clock speed, but this correlation no longer
holds. Rather, there has been an increase in the number of cores per socket in recent
years.

Figure 1: Moore’s Law (y-axis uses exponential scale)

As Herb Sutter noted in his article “The Free Lunch Is Over” in 2005, this change
has a deep impact on software development. While in the past, developers could just

1

wait for their programs to get faster as clock speeds increased, they now have to adapt
their software in order to exploit the power of multiple cores. Thus arises the need for
concurrent programs, especially in performance-critical systems. However, programming
concurrent software has shown to be very error-prone in practise. For example, the
access to shared variables has to be synchronized, and synchronization mechanisms can
sometimes behave somewhat counterintuitive. To make things worse, the inherently
non-deterministic nature of concurrent programs can make it very hard to find bugs in
these programs. The problem is that every time a concurrent program is run, its threads
may be scheduled in a different way, resulting in different thread interleavings which in
turn may cause different program behaviours. In fact, there is a combinatorical explosion
in the number of possible schedules as the number of threads increases.

This property of concurrent programs makes testing an ineffective method for checking
program correctness, since testing fails to make any guarantees concerning the set of
schedules explored, yielding low state space coverage in practice. Traditional model
checkers for concurrent programs answer this deficiency by trying to explore all possible
thread interleavings, thus ensuring high coverage. However, the high coverage comes at a
cost: the complexity of model checking a concurrent programs is usually exponential in
the number of threads [1], which severely restricts the scalability of this approach and
makes it useless in many real-life scenarios.

2 The KISS Approach
KISS aims at providing a smart trade off between coverage and scalability. The idea
is to keep it simple and sequential: Given a concurrent program P , it is transformed
to a nondeterministic sequential program Pseq which simulates a subset of all possible
executions of P . Basically, Pseq is a nondeterministic scheduler executing P . The
transformation comes with several benefits. For one, transforming the input program to a
sequential program means we no longer need to worry about the semantics of concurrent
programs. In fact, the transformed program can be analyzed by an ordinary sequential
model checker. From a theoretical point of view, KISS transforms the undecdiable
problem of checking safety properties of a concurrent programs [2] to the decidable
problem of checking safety properties of a sequential programs [3]. 1

Of course, KISS cannot be used to proof the correctness of a program. As Pseq only
simulates a subset of P ’s behaviors, the correctness of Pseq does not imply the correctness
of P . However, the transformation preserves correctness, which means the implication
does hold in the opposite direction. Forming the contrapositive of this implication, we
find that a bug in Pseq implies a bug in P . Thus, we can utilize KISS for finding bugs in
concurrent programs by first transforming P to Pseq, analyzing Pseq with a sequential
checker, and finally translating error traces for Pseq back to error traces for P . The
concept is illustrated in figure 2.

1Under the conventional assumption of an unbounded calling stack

2

KISS

Sequential Checker

No error found

KISS Error trace
for P

Concurrent
program P

Sequential
program Pseq

Error trace
for Pseq

Figure 2: The KISS architecture

3 Transformation
3.1 Mechanics
The idea is that Pseq is basically P executed by a sequential scheduler. Whenever
Pseq is run, the scheduler shall nondeterministically decide in which order the threads are
scheduled and how they interleave. In a concurrent program, each thread holds its own
stack and its own program counter, data we have to keep track of when simulating the
execution of such a program. Storing this information in global variables gets us nowhere:
Model checking sequential programs is exponential in the number of global variables,
once again leading to exponential complexity in the number of threads. The remedy
is to think of threads as functions. When a function is called, the machine pushes the
information about the current state of execution, including the program counter, onto
the stack. It also puts a stack frame for the function being called on top of the stack,
which contains information such as the the functions parameters. The function is then
executed. When it returns, the machine pops its stack frame and finds all the information
needed to continue execution at the original point in the stack frame below. Note that
from a high-level programming language’s point of view, all this happens automatically
and, in particular, without the use of any variables.

This mechanism can be exploited for scheduling threads using almost no variables (see
figure 3). At any point during execution, a new thread can be scheduled simply by calling
its starting function, or, from the machine’s point of view, by putting it’s stack frame on
top of the stack. Likewise, a thread already running can be scheduled by executing one or
more return statements, that is by popping all the stack frames above it. The thread will
then continue running where it left of. To simplify explanations, let us consider a C-like

3

thr1

...

thri

Schedule
new Thread

Schedule
old Thread

Figure 3: Scheduling Threads

parallel language with the statement async(f) for creating new threads, where f denotes
the starting function of the thread. In order to keep track of the threads that have been
created and are waiting to be scheduled, we introduce a global variable ts, which is a
multiset of functions. To avoid exponential complexity in the number of threads, we fix
the maximum size of the set ts to some number MAX. With these preperations, we can
transform a given concurrent program P to a sequential program Pseq as follows, where
$ nondeterministically evaluates to true or false:

async(f); schedule_nondet_nr_of_threads ();
if($) return ;
if(|ts|<MAX) ts.add(f); else f();

stmt; schedule_nondet_nr_of_threads ();
if($) return ;
stmt;

We simulate creating a thread by adding its starting function to the set ts, thereby
memorizing it for later scheduling, or by calling the thread’s starting function immidiately
if ts is already full. Additionally, before every statement, we add code that may
schedule a nondeterministic number of new threads as well as code that may execute a
nondeterministic return, thereby scheduling a thread already running.
There is one technical detail we have not mentioned so far. Of course, a thread’s

starting function may call another function, which in turn may call yet another function,
and so on and so forth. As a result, the part of the stack belonging to one thread may
consist of more than one stack frame. Let us consider the situation illustrated in figure 4,
where the part of the stack associated with the currently executed thread i consists of
two stack frames g() and h(), with h() currently running. In accordance with our idea of
a scheduler and the technique described in figure 3, a nondeterministic return should
cause thread i’s stack frames to be popped and thread k to be continued. What actually
happens when h() returns is that g() continues running. In order to solve this problem,
we need a way to tell apart returns executed for scheduling reasons from regular returns.
This can be accomplished by introducing a second global variable raise, which is initially

4

set to false and changed to true whenever a return is executed for scheduling reasons.

. . .

. . .

g()

h()
Thr i

Thr k

void g () {
...
x = h() ;
schd_nondt_nr_of_thrs () ;

...
}

void h () {
...
schd_nondt_nr_of_thrs () ;
i f ($) return ;
f oo ;
...

}

Figure 4: Nondeterministic Returns

We can now specify the whole transformation:

f(); schedule_nondet_nr_of_threads ();
if($) { raise=true; return ; }
f(); if(raise) return ;

async(f); schedule_nondet_nr_of_threads ();
if($) { raise=true; return ; }
if(|ts|<MAX) ts.add(f); else f();

stmt; schedule_nondet_nr_of_threads ();
if($) { raise=true; return ; }
stmt;

When executing a nondeterministic return, we set raise=true to communicate our
scheduling decision. When getting back control after a synchronous function call, we
propagate the return in case raise indicates it was executed for scheduling reasons, or
continue regular execution in case it does not. The scheduling function is implemented
as follows:

void schedule_nondet_nr_of_threads () {
var f;
while($) {

if(ts.elements >0) {
f = get ();
f();
raise = false;

}
}

}

5

3.2 Observations
By exploiting the function concept, we are able to implement a nondeterministic scheduler
with the use of only two global variables. Note that the stack frames of the currently
executed thread are always located on top of the stack, giving the stack room to grow as
necessary. However, we cannot simulate all possibles schedules: Once a thread’s stack
frames are popped, we cannot continue its execution since the necessary information is
lost. Thus, we can simulate at most two interleavings between any two threads. For
example, starting from thread 1, thread 2 might be scheduled and be executed for a
while. Thread 2 might then execute a nondeterministic return, giving back control to
thread 1. From that point on, continuing thread 2 is impossible, since all its stack frames
have been popped. The maximum size MAX of the function multiset ts influences what
schedules can be simulated as well. When setting MAX=0, for example, the transformation
has the effect of replacing asynchronous with synchronous function calls.

4 Evaluation
Model checking a sequential program with boolean variables is of complexity O(|C| · 2g+l)
[1], where |C| denotes the size of the control flow graph, g the number of global variable,
and l the maximum number of local variables in scope at any time. The described
transformation enlarges the size of the control flow graph by a small constant factor and
adds a constant number of global variables to the program. Using KISS on a concurrent
program is therefore of about the same complexity as model checking a sequential program
of the same size [1]. In particular, there is no correlation between the complexity and
the number of threads in the concurrent program. Furthermore, the complexity can be
dynamically controlled by altering the maximum size MAX of the set ts, allowing for even
better scalability. KISS is fairly easy to implement and can basically be build on top of
any existing sequential checker. As opposed to other comparable tools, KISS will never
report false errors.
KISS has one serious flaw: It may miss errors. In fact, it can only simulate up to

two interleavings between any two threads, and may therefore disregard many possible
program behaviors. Nonetheless, the KISS author’s experiments in collaboration with
the Windows driver quality team suggest that KISS can be useful in practice. They used
KISS to search for race conditions in 15 different drivers with a time limit of 20 minutes
and a memory limit of 800 MB, and were able to detect 30 races. After investigating a
subset of them, three of the race conditions were confirmed to be bugs [1].

6

References
[1] Qadeer, Shaz ; Wu, Dinghao: KISS: keep it simple and sequential. In: PLDI, 2004,

S. 14–24

[2] Ramalingam, G.: Context-sensitive synchronization-sensitive analysis is undecidable.
In: ACM Trans. Program. Lang. Syst. 22 (2000), Nr. 2, S. 416–430

[3] Reps, Thomas W. ; Horwitz, Susan ; Sagiv, Shmuel: Precise Interprocedural
Dataflow Analysis via Graph Reachability. In: POPL, 1995, S. 49–61

7

	Motivation
	The KISS Approach
	Transformation
	Mechanics
	Observations

	Evaluation

