
A Summary of Asserting and Checking

Determinism for Multithreaded Programs
Jennifer Reinelt

Abstract

In their article “Asserting and Checking Determin-
ism for Multithreaded Programs” [1], which was in-
troduced at ESEC-FSE in 2009, Jacob Burnim and
Koushik Sen present an assertion framework, that
helps to find concurrency errors in multi-threaded
programs. Their key idea is to check after every
execution of a marked program block whether this
block violates a given deterministic specification, i.e.
whether the program block was already executed ear-
lier with the same parameters, but the outcome was
different.
Burnim et al. implemented this assertion frame-
work as a library for Java. For evaluation purposes
they used some benchmark programs from the Java
Grande Forum and the Parallel Java Library (and
others). It turned out, that all known concurrency
errors where found and no additional program parts
where marked as buggy by the implemented library.

1 Introduction

1.1 Problem Statement

In order to execute programs more efficient, more and
more parallel code is needed. A very common possi-
bility to parallelize code is to use threads. But mak-
ing sure that for all possible thread interleavings the
correctness of the program is still given turns out to
be quite challenging.
Even if many executions of the program lead to the
correct result, it might happen that others do not.

1.2 Approach

Burnim et al. try to solve this problem of uninten-
tional non-determinism in multithreaded programs
by checking whether a given deterministic specifi-
cation was fullfilled. This deterministic specifica-

tion is supposed to be given by the programers and
gives them the possibility to express deterministic
behaviour. If a programer expects deterministic be-
haviour for a program block P , he can use the fol-
lowing construct:

deterministic {

P

}

This deterministic specification says that if the
program block P is executed twice with the same
state in the beginning of the block, then executing
the block P should lead to the same state in the end
of the block.

But since it is very unlikely in many applications
to reach equivalent states in different executions
of a program, programers have the possibility to
give constraints that are checked as a replacement
for checking whether two states are equivalent. In
the following example two matrices A and B are
multiplied in a parallel program, where the entries
of the matrices are floats. Due to rounding errors, it
is very unlikely to compute the same matrix for AB

twice even if the matrices A and B are stay the same
for the two executions of the program. Consequently
the program is not strictly deterministic. Hence
the above deterministic specification without the
equivalence condition would be too conservative.
The following construct shows a deterministic speci-
fication for a parallel matrix multiplication given by
the function parallel_matrix_multiply_float.

deterministic assume(|A - A’| < 10^-6

and |B - B’| < 10^-6){

C = parallel_matrix_multiply_float(A, B);

} assert(|C - C’| < 10^-6);

1

Here the ’-variables refer to a second execution
of the program block. Consequently the given
predicates relate program states from different ex-
ecutions of the program block. In contrast tra-
ditional assertions relate different states of a pro-
gram from one execution. In the above exam-
ple the deterministic specification expresses that
“if parallel_matrix_multiply_floatis called twice
and the parameters (matrices A and A’ and B and B’

respectively) differ no more than 10−6, then the dif-
ference between the resulting matrices C and C’ is
supposed to be less than 10−6 as well.
In the following section 2 a more detailed introduc-
tion to the assertion framework is given. Thereafter
section 3 presents a concept of checking whether a
given deterministic specification is fullfilled. In sec-
tion 4 a concrete implementation of the presented
assertion framework is introduced. Thereafter in sec-
tion 5 the evaluation carried out by Burnim et al. is
summarized and finally this work concludes in section
6 with a short summary of the main contributions
of “Asserting and Checking Determinism for Multi-
threaded Programs” [1].

2 Deterministic Specification

In general, parallel code is said to be deterministic if,
“given any particular initial state, all executions of
the code from the initial state produce the exact same
final state” [1]. The following construct expresses this
behaviour for program block P with a deterministic
specification:

deterministic{

P

}

In many cases this construct can help to specify the
expected deterministic behaviour. For example when
multiplying two matrices, whose entries are integers,
in parallel:

deterministic {

C = parallel_matrix_multiply_int(A, B);

}

Assuming that multiplying matrices A and B leads to
matrix C , it can be expected that the multiplication
of A’=A and B’=B leads to matrix C’=C. This above
deterministic specification expresses this expectation.

In many other cases this specification is too
conservative. For example when multiplying two
matrices in parallel where the entries of the matrices
are floating point numbers. Due to rounding errors,
it is probable to obtain different states in the end
of the program block, even if the multiplication is
started from equivalent initial states.

In order to relax the deterministic specification,
bridge predicates are used. Bridge predicates are
predicates that relate program states from different
executions of the same program. In

deterministic assume(|A - A’| < 10^-6

and |B - B’| < 10^-6){

C = parallel_matrix_multiply_float(A, B);

} assert(|C - C’| < 10^-6);

For example (|C - C’| < 10^-6) is a bridge predicate.
C and C’ refer to the computed matrix resulting from
multiplying A and B and A’ and B’ respectively. The
primed variables A’ B’ and C’ come from a different
execution of the program block than A B and C.
With the help of bridge predicates expressing the re-
lation between the values of one certain variable from
different executions of a program and therefore as-
serting properties concerning determinism is possible.

3 Checking Determinism

So far only the deterministic specification part was
considered. In this section the general idea of check-
ing the specification will be given.
We assume that a programer gave a program block
P, together with a Pre and a Post condition:

deterministic assume(Pre){

P

} assert(Post);

2

In order to be sure that in P no error occured, it
is necessary to check the deterministic specification.
One simple and incomplete method to do so was pre-
sented in [1]. In this method the program states be-
fore (spre) and after (spost) the certain program block
P for every run of the program are recorded at run-
time. Then for all pairs of pairs of states (spre, spost)
and (spre′, spost′) the following implication is to be
checked:
Pre(spre, spre′) ⇒ Post(spost, spost′).
If this implication is false for at least one pair of
pairs of states ((spre, spost), (spre′, spost′)), then a de-
terminism violation was found. Similarly, if this im-
plication holds for all pairs of pairs, then no concur-
rency error can be found until now. However it is
possible that a determinism violation exists, but the
probability decreases with the number of executions
of the program block P.
In order to improve the results it might be helpful
to combine this determinism checking method with
noise making [8] or other tools for exploring thread
interleavings.

4 Library

In this section an implementation of the determinism
checking method described in the previous section 3 is
presented. This implementation was realized in Java.
In Listing 1 a concrete example for the usage of the
determinism checking library is given. The program
renders images of the Mandelbrot Set and belongs
to the Parallel Java Library [6]. In the beginning the
parameters are read from the command-line and then
several threads are used to compute the resulting im-
age.
A call Deterministic.assume(o, p) refers to
assume(p(o, o′)) in the deterministic specification.
It checks if the predicate p holds for object o and ob-
ject o′ from a former execution of the program. If the
current execution of the program is the first one, no
check has to be done.
The predicate p can be implemented the way it is
supposed to work. Therefore the interface Predicate
can be used, which requires the implementation of a
method boolean apply(Object o1, Object o2). If this

method returns true for an object o and object o′
from a former run, then the assumption holds. As
a consequence (and if there are no other assump-
tions or all assumptions hold), assert(o, o′) has to
hold as well. In the library this assertion refers to
Deterministic.assert(o, p). Here p is also a predi-
cate.

Listing 1: Deterministic assertions for a Mandelbrot
Set

main (S t r ing args []) {
//Read parameters from command−l i n e .
. . .

// Pre−p r e d i c a t e : equal−parameters
Prediquate equa l s = new Equals () ;
De t e rm in i s t i c . open () ;
De t e rm in i s t i c . assume (width , equa l s) ;
De t e rm in i s t i c . assume (he igt , equa l s) ;
. . .

// compute matrix
int matrix [] [] = . . . ;

De t e rm in i s t i c . a s s e r t (matrix , equa l s) ;
Determinst i c . c l o s e () ;
. . .
}

A quite intuitive usage of the predicates is to
check if objects are equal. This Predicate Equal
is a built-in predicate. It was already imple-
mented by the authors and calling the function
apply(Object o1, Object o2) simply returns the re-
sult of equals(Object o, Object o′). In Listing
1 this built-in predicate is used three times, e.g.
in Deterministic.assert(matrix, equals). It states
that if all assumptions (equality of width and height
and maybe more) hold for the current execution
of the program and a former one, then calling
equals(matrix, matrix′) has to return true. For
floating point numbers a similar predicate was al-
ready implemented: ApproxEquals checks whether
the difference of two numbers lies in a given range.
In case that a determinism violation is detected, i.e.
an assertion, where all previous assumptions passed,

3

fails, a message is printed and the application is
halted.

5 Evaluation

This section summarizes the evaluation results
presented by Burnim et al. in [1]. Two main issues
were examined: Ease of Use and effectiveness.
In order to validate both arguments some benchmark
programs from the Java Grand Forum (JGF) [7] and
the Parallel Java (PJ) Library [6] (and others) where
used. An overview is given in Table 1. For each
benchmark program one deterministic specification
was added manually.

Ease of Use
Although the authors did not know the code of
the benchmark programs before, it took them
no longer than five to ten minutes to add the
deterministic specification for the majority of the
programs. Moreover for all but one program the two
built-in predicates were sufficient. Only for program
montecarlo an equals and a hashCode method
had to be implemented additionally. All in all the
framework seems to be quite easy to use (especially
if compared to asserting functional correctness [1])

Effectiveness
In order to test whether the presented framework
really improves concurrency errors detection, a
modified version of the tool CALFUZZER [4] [5] was
used. CALFUZZER is a data race detection tool,
i.e. it is used to find locations in the code where two
threads could access a resource simultaneously and
at least one of the accesses is writing.
Data races often cause unwished non-determinstic
results. But actually the presence of data races does
not always lead to non-determinism and the absence
of data-races is not enough to ensure determinism
[3][2]. Programs can contain high-level data races as
well. “The notion of high-level data races refers to
sequences in a program where each access to shared
data is protected by a lock, but the program still
behaves incorrectly because operations that should
be carried out atomically can be interleaved with

program data races and determinism
from JGF higher level races violations

sor 2 0
sparsematmult 0 0
series 0 0
crypt 0 0
moldyn 2 0
lufact 1 0
raytracer 3 1
montecarlo 3 0

program data races and determinism
from PJ higher level races violations

pi 10 1
keysearch3 3 0
mandelbrot 9 0
phylogeny 4 0

tsp 8 0

Table 1: Summary of experimental evaluation of de-
terministic assertions.

conflicting operations.” [2]. CALFUZZER is able to
find special kinds of high-level data races as well.

For evaluation purposes CALFUZZER was used to
find data-races and high-level data races in the in-
spected benchmark programs. For each race marked
by CALFUZZER 10 trials were run to create real exe-
cutions and to generate different thread-interleavings.
Tab. 1 shows a summary of the results. The second
column shows for every program the number of data
races and high-level races found by CALFUZZER
(one known high-level race was confirmed by hand,
because CALFUZZER was not able to find it). The
third column shows the number of determinism vio-
lations found by the presented framework. Although
44 races were found, only two determinism violations
were noticed and these are actually the only known
ones for the benchmark programs. The 42 benign
races are mostly due to “benign races on volatile vari-
ables used for synchronization–for example, to im-
plement a tournament barrier or a custom lock” [1].
CALFUZZER marked these races as potential con-
currency errors and the absence of errors has to be

4

verified by hand, which can be quite challenging. In
contrast the presented framework did not mark be-
nign races, it only found the two known determinism
violations. I.e. no false alarms were triggered, but all
known violations were found.

6 Conclusion

Although the presented approach for checking deter-
minism specifications is incomplete–i.e. if no deter-
minism violations are marked, there may exist some
anyway–advantages of using the presented framework
where shown: The introduced determinism specifica-
tions can be used easily and without much effort.
Moreover in contrast to race finding tools bening
races can be distinguished from harmful ones.

References

[1] J. Burnim, K. Sen: Asserting and Check-
ing Determinism for Multithreaded Programs.
In ESEC-FSE 2009, The 7th joint meeting of
the European Software Engineering Conference
(ESEC) and the ACM SIGSOFT Symposium on
the Foundations of Software Engineering (FSE)

[2] C. Artho, K. Havelund, A. Biere: High-level
Data Races. In VVEIS 2003, The First Interna-
tional Workshop on Verification and Validation
of Enterprise Information Systems, April 2003.
Angers, France.

[3] C. Flanagan, S. N. Freund: Atomizer: A dy-
namic atomicity checker for multithreaded pro-
grams. In 31st ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Lan-
guages (POPL), pages 256-267, 2004

[4] K. Sen: Race directed random testing of concur-
rent programs. In PLDI 2008, ACM SIGPLAN
Conference on Programming Language Design
and Implementation

[5] C.-S. Park, K. Sen: Randoized active atomic-
ity violation detection in concurrent programs.
In SIGSOFT 2008/FSE-16, Proceedings of the

16th ACM SIGSOFT International Symposium
on Foundations of Software Engineering

[6] A. Kaminsky: Parallel Java: A Unified API for
Shared Memory and Cluster Parallel Program-
ming in 100% Java. In IPDPS 2007, 21st IEEE
International Parallel and Distributed Process-
ing Symposium

[7] Edinburough Parallel Computing Cen-
tre: Java Grande Forum benchmark suite.
www2.epcc.ed.ac.uk/computing/research_

activities/java_grande/index_1.html

[8] S. D. Stoller: Testing Concurrent Java Pro-
grams using Randomized Scheduling. In RV
2002, Workshop on Runtime Verification

5

